
On a Kernel Events Layer and User-space Message
Bus System

Robert Love
Novell

rml@ximian.com

Abstract

Various Linux usage scenarios, particularly the
widely accepted server and the rapidly growing
desktop, require a lightweight, simple, asyn-
chronous mechanism for kernel to user-space
communication. Such a mechanism is cru-
cial for the transmissions of events to user-
space in a type-safe and clean manner. Further,
a system-level messaging bus, which can de-
liver messages up the system stack on both a
system-wide and per-user level, is required to
further the integration of the Linux system.

This talk will discuss the design and imple-
mentation for two specific solutions, the Kernel
Events Layer and D-BUS, to these two prob-
lems. Finally, useful solutions built on the sum
of these technologies will be discussed—such
as a fully integrated Linux desktop, from the
kernel up through the GNOME desktop.

1 Introduction

Usually considered a plus of open source de-
velopment, the Linux system is developed
piece-meal, resulting in cleanly separated lay-
ers and properly defined interfaces. This sep-
aration, however, also results in a lack of in-
tegration among the various components com-
prising the system stack. In particular, the lack
of integration is readily manifest between the
lower levels of the stack—kernel and system-

level components—and the upper levels of the
system, such as the desktop environment on
desktop machines.

A particularly important, but missing, compo-
nent of the Linux system is an ubiquitous IPC
mechanism and events system. Such a com-
ponent would facilitate the dissemination of
information up the system stack, better inte-
grating the Linux system from the kernel up
through the system layers, the desktop, and the
end user applications and daemons. With well
defined interfaces, such integration could occur
while continuing the current separation and in-
teroperability of Linux components.

What would such an IPC mechanism and event
system allow? Quite a bit. Photo applications
could start automatically in response to cam-
era insertion. The volume of your music player
could automatically lower in response to your
phone ringing. System shutdown, reboot, and
suspend messages could be trasmitted up the
stack. HA applications could receive instant
notifications from the kernel. No longer need
components in the system live separate lives
from the kernel, the layers below them, and
themselves. Now, applications can communi-
cate, listen, and evolve.

Such a system may be broken into three re-
quirements:

• Kernel support implementing a kernel-to-
user event mechanism



312 • Linux Symposium 2004 • Volume Two

• A user-space message transport and IPC
mechanism

• Applications sending and receiving such
messages

This paper will discuss two specific implemen-
tations of these requirements:

• The Kernel Events Layer

• D-BUS

2 The Kernel Events Layer

2.1 Goals and Design

Current user-space grokking of the kernel typ-
ically requires some combination of periodic
polling, parsing of unformatted text files from
/proc , and luck. The Linux kernel currently
lacks a mechanism for kernel to user-space
communication.

The requirements for such a system include:

• simple and clean

• low overhead and scalable

• asynchronous transport accessible with-
out polling

• type-safe

• generic enough for use in multiple usage
scenarios

• support for formalized sender interfaces,
allowing standardized messaging

Event systems have been proposed and even
implemented, but they generally receive min-
imal community buyin, presumably due to a
lack of one or moe of these requirements (more
than likely, the “simple” bit).

2.2 Implementation

The Kernel Events Layer implements an event
system satisfying these requirements.

Usage is simple:

send_event (int type, char
*interface, char *fmt, ...)

Thetype parameter specifies a constant value
representing the type of message being sent.
The interface value specifies the origina-
tor of the message. It is used to provide an in-
terface object for object-based component and
IPC systems such as CORBA and D-BUS. Fi-
nally, fmt and any following arguments pro-
vide the usualva_list of format and argu-
ments.

Example:

send_event (DBUS_NORMAL,
"org.kernel.arch.cpu",
"overheating")

This specifies a message from the
org.kernel.arch.cpu interface with a
value ofoverheating .

The actual implementation of the Kernel
Events Layer uses netlink. In fact, the Kernel
Event Layer is simply specific netlink socket
into user-space in which the event is formated
and then reconstructed by user-space. Netlink
is fast, simple, and already in the kernel. Thus
it was a natural choice.

The Kernel Events Layer code uses
netlink_broadcast() internally.

2.3 Real World Usage

The Kernel Events Layer is independent
of any specific user-space transport mecha-



Linux Symposium 2004 • Volume Two • 313

nism. The assumed use case is to create
a new daemon (or modify an existing dae-
mon, like the D-BUS system message bus,
dbus-system-1 ). This daemon listens on
the netlink socket, reading each event as it oc-
curs. The events are parsed and reconstructed
into the format native to the user-space trans-
port mechanism.

In the case of D-BUS, thedbus-system-1
daemon sends the kernel events out the system
message bus. Components up the system stack
may then receive the kernel events right off the
D-BUS system bus, along with other system-
wide messages.

3 D-BUS

D-BUS is a user-space IPC system.

D-BUS varies from other IPC mechanisms in
that it provides a bus system (as opposed to
point-to-point) over which messages (as op-
posed to byte streams) are transported. Mes-
sages include a header containing metadata
about the message itself and a body containing
the data. The bus system is created by form-
ing a point-to-point connection between the D-
BUS daemon and each listener. The daemon
acts as the hub and the listeners as the spokes
of a wheel.

D-BUS provides both a system-wide and a
per-user session bus. The system-wide bus is
used to dissemenate information on a machine-
global scale. A single system daemon provides
this service, allowing applications up the stack
to receive messages from components down
the stack. A security system implements ac-
cess control.

The per-user session bus exists on a per-user
basis, with one daemon created for each user
session. The per-user daemon is used for gen-
eral application IPC and is physically separate

from the system-wide bus. The per-user dae-
mon is generally used for traditional point-to-
point IPC.

D-BUS is the name given to this system. It is
composed of several architectural layers:

• The message bus daemon

• The D-BUS library, libdbus , which
connects to applications together

• Wrapper libraries and bindings that wrap
libdbus for direct use on various appli-
cation frameworks, such as Glib or QT,
and various languages, such as C# and
Python. The wrapper libraries and bind-
ings provide the API that most program-
mers should use as they both simplify the
rather low-levellibdbus API and pro-
vide an API more familiar and fit for that
particular environment.

3.1 D-BUS Concepts

D-BUS introduces various concepts that com-
prise the IPC system.

• The bus is either the system-wide global
bus or the per-user session bus.

• Objectsrepresent an instance of a specific
listener of a D-BUS message. Objects
are contained within the applications that
use D-BUS, and generally map to objects
in object-oriented languages. Because D-
BUS would not find using a pointer or ref-
erence to identify an object very friendly,
it introduces a name for each object. The
name resembles a UNIX filesystem path,
such as /org/kernel/fs/filesystem.

• Interfaces represent methods or signals
implemented on an object. Each object
supports at least one interface.



314 • Linux Symposium 2004 • Volume Two

• Messagesare sent to and from a defined
method or signal. D-BUS supports mul-
tiple message types: method invocation,
method return, error message, and signal.

3.2 Use of D-BUS

D-BUS’s simplicity, performance, and use of
the message and bus paradigm set it up for use
across the entire Linux system and make it a
perfect replacement for CORBA, DCOP, and
other IPC mechanisms.

Multiple projects are taking advantage of D-
BUS. They include:

• Project Utopia uses D-BUS as the IPC
mechanism to link the kernel, udev, HAL,
and the GNOME desktop.

• A CUPS patch uses D-BUS to transmit in-
formation about the printer spool.

• Jamboree uses D-BUS to automatically
mute the volume.

• A Gconf patch uses D-BUS as the Gconf
transport mechanism.

4 The Kernel Events Layer, D-
BUS, and Project Utopia

D-BUS is used as the backbone of Project
Utopia, an umbrella project aiming to bring
improved hardware management and system
integration to the Linux system and GNOME
desktop. Project Utopia uses D-BUS to link
the kernel, up through hotplug, udev and HAL
to the rest of the system. Libraries utilizing
D-BUS and built on top of HAL provide en-
hanced hardware support. Applications at the
desktop level can then reap the benefits.

4.1 Example: libinput

libinput is a simple library for managing
input devices that sits on top of HAL and com-
municates to HAL beneath it and the appli-
cations above it via D-BUS.libinput is
used to enumerate all input devices on the sys-
tem. libinput also provides an interface
for applications to register callbacks, and in-
tegrate these callbacks into its mainloop. The
callbacks are invoked when input devices are
added to or removed from the system.

Sample usage of enumerating all input devices
on the system:

struct input *devices;

if (input_init ())
/* error ... */

devices = input_devices_get ();
while (devices) {

/* ... */
devices = devices->next;

}
input_devices_put (devices);

Given a specificstruct input , the library
provides wrappers for opening and closing the
device viaopen (2) andclose (2). This is not
strictly required, but furthers the abstracting of
device nodes not only from the user but even
from the application.

Example:

fd = input_device_open (device, 0);

/* ... */

input_device_close (device);

Registering of the callbacks is also easy:

void my_mainloop



Linux Symposium 2004 • Volume Two • 315

(DBusConnection *dbus_connection)
{

dbus_connection_setup_with_g_main
(dbus_connection, NULL);

}

void my_added
(struct input *device)
{

printf
("%s was just "

"hotplugged!\n",
device->product);

}

void my_removed
(struct input *device)
{

printf
("%s was just "

"hotunplugged!\n",
device->product);

}

/* ... */
input_init_with_callbacks

(&my_mainloop,
&my_added,
&my_removed);

gtk_main ();

When an input device is added or re-
moved from the system,my_added andmy_
removed are invoked as appropriate.

The goals behind such a library are twofold:

• Abstract away concepts of device nodes
and low-level system-specific behavior
and allow application developers to search
for enumerate the devices on a system
through simple interfaces.

• Allow asynchronous poll-free hack-free
callbacks into the application to notify the
program of changes in events, such as a
new joystick on the system.

5 Conclusion

The Kernel Events Layer and D-BUS are two
crucial components in better unifying and in-
tegrating the Linux system. They provide the
infrastructure required for a future rich with in-
formation exchange. Where all levels of the
desktop can communicate—talking, listening,
evolving.



316 • Linux Symposium 2004 • Volume Two



Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


