
Linux on a Digital Camera
Porting 2.4 Linux kernel to an existing digital camera

Alain Volmat
Ricoh Company Ltd.

avolmat@src.ricoh.co.jp

Shigeki Ouchi
Ricoh Company Ltd

shigeki@src.ricoh.co.jp

Abstract

The RDC-i700 is one of high specs digital
camera of Ricoh. Its relatively big size, large
amount of different interfaces, input methods
(buttons, or touch panel), have made it a good
candidate for prototyping the world first Linux
embedded digital camera. This paper presents
our experiences of porting the 2.4 linux ker-
nel to an existing digital camera. (the RDC-
i700 is originally build on top of VxWorks).
Eventhough embedded systems running on
Linux are getting more and more popular, the
digital camera field remains to be unexplored.
The paper introduces how digital cameras dif-
fer from any other PC-like devices (PDA, HDD
recorder. . . ) and what problems, such as tim-
ing or software design issues, have to be (have
been) solved in order to get the world first linux
digital camera running on the linux 2.4 kernel.

1 The hardware

Ricoh’s RDC-i7001 is a relatively old digital
camera (released late 2000 in japan) running
on VxWorks, a famous Real-Time OS (RTOS).
Some might be asking the reason why we de-
cided to port Linux OS to the camera. The
reason is to make it become aprogrammable
camera. Once it becomes a programmable de-
vice, many VARs or individual programmers

1http://www.ricohzone.com/product_rdci700.html

Figure 1: The RDC-i700 digital camera

may write a lot of useful software for it. Then
it will be a good platform for business imaging
use.

The RDC-i700 is one of high specs digital
camera of Ricoh. It integrates all peripher-
als traditional digital camera has, but also sev-
eral different interfaces, allowing wide range
of application to run on it. The VxWorks ver-
sion allows user to perform various tasks such
as taking picture or movie, recording voice
memo, browse the Internet, send email or up-
load picture to a remote server. Its relatively
big size, large amount of different interfaces,
input methods (buttons, or touch panel), makes
it a good candidate for prototyping the world
first Linux embedded digital camera.

The RDC-i700 is a 3.2 million pixels dig-
ital camera equipped with a Hitachi SH3



526 • Linux Symposium 2004 • Volume Two

(SH7709A) CPU. The SH7709A is a 32 bit
RISC CPU which include MMU and several
other peripherals such as serial communica-
tion interfaces (SCIs), D/A - A/D converters.
Around this CPU, traditional digital camera pe-
ripherals (CCD, LCD, buttons, Image Proces-
sor) but also 1 PCMCIA and 1 CF socket, touch
panel, audio input/output interface, USB de-
vice controller and a serial port are available.
Figure 2 shows a block diagram of the RDC-
i700.

2 Digital camera is not “PDA com-
bined with camera function”

Nowadays, embedded Linux has become a
very hot topic in the Linux community. More
and more Linux gadget are becoming available
and the share of embedded related paper pub-
lished has literally exploded in the last 3 years.
Linux seems to be everywhere, lots of devices
that were running on RTOS in the past are now
running on Linux. However, one field seems
to be still unexplored: digital camera. Some
might say that a digital camera is just a PDA
combined with a CCD (this kind of combina-
tion is actually already available, for example
the Zaurus CF Digital Camera option), but this
is not that simple.

The quality point of view: PDA combined
with a digital camera option can take pictures
or even movies and in that sense can be com-
pared to a digital camera. But digital cameras
still have some advantages that make them irre-
placeable. Indeed optical zoom, but also auto-
focus or strobe are all precious elements that
are currently not available on Linux PDA. For
example, the Zaurus camera has a focus but
this one is manual. Auto-exposure is also an-
other very important part when taking picture;
for that, Zaurus PDA has some-kind of gain
control but this cannot have same quality as
a traditional digital camera auto-exposure sys-

tem.

The technical point of view: We will see that
having digital camera specific peripherals is a
very good plus in term of quality, but it also
creates lots of problem that traditional Linux
PDA doesn’t face. Keeping the Zaurus PDA
as an example, only few parameters are con-
figurable and the CPU doesn’t actually have to
perform much work in order to get an image.
On the contrary, in case of a fully configurable
digital camera, the OS must orchestrate all de-
vices in order to get a picture.

2.1 Zoom and Focus

Several motors are used inside the camera.
Two of them are used for zoom and focus in
order to adjust the lens position. Due to high
precision requirements, those two motors are
stepping motors. As the name says, this kind of
motors are controlled step by step (at the differ-
ence with traditional motors which only have
start/stop command). The CPU has to set ports
of the motor at a quite fast frequency in order
to make the motor turn. In that case the period
between two steps is only few milli-seconds.

2.2 Strobe

In case of strobe, the problem is not doing thing
at very high speed, but making perfect synchro-
nization between the moment the strobe is go-
ing to flash and the moment the CCD sensor
will acquire the picture.(see figure 3) For that
purpose, we will need precision of only very
few milli-seconds.

2.3 Auto-Exposure / White Balance

So called Auto-Exposure is the algorithm in
charge of adjusting the exposure time (that is
to say the time period while the CCD is ex-
posed to light) in order to have a good image



Linux Symposium 2004 • Volume Two • 527

SH3 7709A

SCI

SCIF

SCIF

Image
Processing
Peripheral

PCMCIA
Controller

FPGA

Memory
(RAM/ROM/NAND)

M
a
p
p
e
d
 
M
e
m
o
r
y


LCD
Controller

B
R
G

CCD
Front End CCD sensor

LCD

PCMCIA/CF slot

Analogic
ASIC

Microphone
Speaker
Video Out

8 bit
SUB CPU

Buttons
Sensors
RTC

USB
Controller USB device socket

Motors
Strobe

RS232C
Touch PanelTouch Panel

Controller

Memory mapped devices

Serial bus

Image
SDRAM

Figure 2: The RDC-i700 peripherals diagram

1 CCD frame (NTSC: 1/29.89 s)

Electronic shutter resetted

Exposure time
(ex: 1/100)

Mechanical
shutter close

Strobe

opened

Figure 3: CCD Frame sequence



528 • Linux Symposium 2004 • Volume Two

in both dark and bright conditions. White bal-
ance algorithm needs to analyze data coming
from the CCD sensor and adjusts the Image
Processing Peripheral (IPP) settings in order to
have good color matching between the gener-
ated image and the reality. Several implemen-
tations of those two algorithms can exist (some
needs very heavy calculations while others can
be very simple), but the main issue is that those
algorithms have to be performed very often (in
the worst case, every frame of the CCD, that is
to say every 33 milli-seconds).

This second part introduced particularity of
digital cameras. The next part will discuss how
those functions have been implemented into
the Linux RDC-i700.

3 Current Support

As the name “Linux on a digital camera” sug-
gests, the RDC-i700 can now run using Linux
OS. Although some work remains in some ar-
eas, kernel support now exists for most of the
hardware and features of the camera. This part
explains current status for important features
(digital camera related) of the kernel.

3.1 SH-Linux

The RDC-i700 linux kernel is originally based
on the work of the SH-Linux [1] team. First
tested with the kernel version 2.4.2, the cam-
era is now using the version 2.4.19 of the ker-
nel. SH-Linux kernel already had support for
almost all parts of the SH3 7709, but since
the RDC-i700 is using the CPU in big endian
mode, some modifications were necessary in
that field. Source code necessary to run the ker-
nel on this new platform has also been added
into /arch/sh/kernel .

3.2 RDC-i700 device drivers

RDC-i700 drivers can be separated into two
kinds (or two layers). (See figure 4) The lower
layer contains so-calledLow level drivers, or
drivers providing control to a specific device
(such as focus sensor, IPP . . . ). All those
drivers doesn’t have any algorithm included
and only provide basic access to the device ca-
pabilities. For example in case of the driver
controlling motors (MECH driver), only func-
tions provided are to set or get the position
of the motor (motors have some predefined
positions). RDC-i700 currently has 5 device
drivers controlling imaging related devices (we
will avoid non-imaging specific drivers here):

• The CCD F/E (Front End) which per-
mits to control the CCD parameters (such
as exposure time, gain . . . )

• The IPP (Image Processing Peripheral)
which is actually the heart of the camera
(almost everything goes through the IPP)

• The Strobedriver which allows to charge
or flash the strobe

• The Focus Sensorwhich permits to eval-
uate the distance between the camera and
the target

• Mech driver which controls all mechani-
cal parts of the camera, that is to say, iris,
shutter, zoom and focus.

All those drivers are very system dependent
and might change from one camera to another.

On the top of those 5 drivers is what we could
called the “Algorithms” layer. This layer con-
tains “intelligent” drivers such as auto focus
driver, or auto exposure driver. One more
driver, simply called CCD driver, is actually
the driver which performs actions such as tak-
ing a picture or switching to monitoring mode.



Linux Symposium 2004 • Volume Two • 529

Note:
device files in

gray are only used
for debug purpose

StrobeIPPCCD F/E
Focus
Sensor

Mech

Zo
om


Fo
cu
s

Ir
is


Sh
ut
te
r

Ex
te
rn
al


se
ns
or


St
ro
be


CC
D

/dev/i700mech/dev/i700strobe/dev/i700ipp/dev/i700ccdfe /dev/i700af

Low level
drivers

Algorythms ...
CCD CCD AE AutoFocus

Kernel
Space

User
Space

/dev/i700ccd /dev/i700ae /dev/i700afocus

Libraries

Programs

Figure 4: RDC-i700 device drivers

This driver has to access both low level drivers
and algorithms drivers. Drivers of the up-
per layer are “virtually” platform independent.
However since the current system lacks of
a well defined abstraction layer, upper layer
drivers are currently directly accessing lower
layer driver which make them unable to work
with any other lower driver without having to
slightly change the source code. (see Future
Work section). Currently device drivers com-
municate with each others by accessing EX-
PORTED functions.

All 8 drivers are registered to the kernel as
characters drivers and can be accessed from
user-level using each device file. Some of those
drivers don’t actually need to be accessed from
user space and in that case device file is only
used for debugging purpose. In user space, li-
braries provide easy access to camera function-
alities, avoiding an intensive usage of IOCTL
commands.

Forward Backward

FM2

FM1

FM2

FM1

Figure 5: Motors step sequence

3.3 Motors

As the name says, stepping motors are going
step by step; the CPU sets 2 I/O ports in order
to specify the position of the rotor. Figure 5
shows motor ports state sequence when going
forward and backward. Rotation speed is deter-
mined by the time between 2 states. Each mo-
tor has already predetermined positions, 19 for
zoom and 18 for focus; however, if positions
for the zoom are fixed, focus position varies
depending on the current zoom position. All



530 • Linux Symposium 2004 • Volume Two

those things are handled by the MECH driver
and are accessible via IOCTL command such
as “Get/Set position.” The MECH driver is
timer based, that is to say, the delay between 2
steps is performed using a timer (2.8 ms in case
of focus, and 1.4 ms in case of zoom); we will
see in part 4 the current problems when using
this implementation. The driver provides both
SYNC and NOSYNC mode; that is to say, in
the first one, the ioctl command will hold un-
til the command finish, but in NOSYNC mode,
the ioctl will immediately return, allowing to
call another ioctl command, even if the mo-
tor is still running. This is useful in the case
of user’s adjustment of the zoom. Since motor
needs time to start and stop, it would be inef-
ficient to request each time 1 position change.
Instead of this, when the user uses the zoom
lever, the first IOCTL command request the
motor to go to max position and then when the
user release the button, the ioctl STOP com-
mand will be requested. In other cases, such as
when controlling the FOCUS motor from the
auto focus driver, the SYNC mode should be
used.

3.4 Auto Exposure

In order to control exposure, the auto exposure
driver is accessing 3 different device drivers
(IPP, MECH and the CCD front end). The
IPP has the ability to divide a CCD image into
several block and inform about each block lu-
minance. By looking at those luminance val-
ues, the auto exposure algorithm decide how
parameters should be modified; it can decide
to change iris diameter (MECH driver), or use
the strobe (STROBE driver), and in most of
the case change parameters of the CCD front
end (electronic shutter speed. . . ). The digi-
tal camera can work in 2 different modes: the
monitoring mode which permits to see in real
time what the CCD sensor is targeting, and the
still image mode which is used when the user

pushes the shutter button to take a still image.
The behaviour of the auto exposure module de-
pends on the camera mode:

• monitoring mode

in that mode, we adjust CCD F/E parameters
every 2 CCD frames. The auto exposure driver
starts a kernel thread which needs to be syn-
chronized with the CCD frame (an hardware
interrupt is generated by the CCD F/E at every
start of frame). Synchronization is achieved
by using wait queues.2 The function which
needs to get synchronized creates a wait queue
(as follows):

struct task_struct *tsk = current;
DECLARE_WAITQUEUE(wait, tsk);
add_wait_queue(&ccd_vd_wq,&wait);
set_current_state(TASK_INTERRUPTIBLE);
schedule();
set_current_state(TASK_RUNNING);
remove_wait_queue(&ccd_vd_wq,&wait);

and the wait queue is woken up by the interrupt
handler (as follow):

wake_up(&ccd_vd_wq);

The CCD F/E is controlled using the SCI port
of the SH3 which use is shared with some other
devices. In some case, it might be necessary to
wait for the SCI port availability and, for that
reason, the kernel thread implementation has
been preferred to some other solutions such as
bottom halves (it is not possible to schedule
from a bottom halves while kernel thread al-
lows that).

• still image mode

in that mode, exposure parameters are only ad-
justed once before taking the picture. The CCD

2This synchronization method is also heavily used by
the CCD driver



Linux Symposium 2004 • Volume Two • 531

driver requests information to the auto expo-
sure module which will calculate parameters
used to take the picture. After that, the CCD
driver will directly control lower driver to set
those parameters. Synchronization between all
devices is very important and for that reason
it is easier to perform everything sequentially
from a unique driver. No thread is used and
the CCD driver get synchronized with the CCD
frame using the same wait queue method as in
monitoring mode.

Currently only a very simple algorithm is avail-
able for both monitoring and still mode. This
algorithm doesn’t make use of neither iris nor
strobe and the exposure is only controlled us-
ing CCD FE’s parameters and the mechanical
shutter.

3.5 Auto Focus

Compared to the auto exposure, the auto focus
driver is quite an easy one. The IPP driver has
the ability to determine the “focus level” (the
more the focus is correct, the more the value
returned by the IPP will be high). In normal
mode, the auto-focus driver should get an ap-
proximation of the distance to the target by us-
ing the focus sensor, then first adjust the focus
to this approximation. This permits to perform
the “fine focus” (using the IPP capability) to
a smaller range. However, the current imple-
mentation doesn’t use the focus sensor approx-
imation which means that the “fine focus” is
performed to the full range of the focus (this
is actually the mode which is used in case of
MACRO mode). The consequence is that the
auto-focus process is much slower than in nor-
mal mode. Currently the driver performs the
following things:

• check zoom status to calculate focus posi-
tions

• retrieve focus level for all focus positions

• go back to the position with the highest
focus level

3.6 CCD - IPP

The IPP driver is some kind of library which,
except performing initialization of the device,
mainly provides a lot of functions, accessible
from other drivers and permitting to control the
hardware. The driver is quite big since the IPP
performs very various things such as

• JPEG compression/decompression

• YUV-RGB conversion

• video output (for the LCD and TV)

• image scaler

The CCD driver is considered as the main
driver since almost everything starts from it. It
is in charge of coordination between all other
drivers. The driver can be controlled using a
user land library permitting to control the mon-
itoring mode or to take still image. The driver
mainly uses other drivers functions (CCD F/E,
IPP, MECH) and performs synchronization us-
ing the waitqueue method introduced previ-
ously.

3.7 LCD

The RDC-i700 LCD has a fixed resolution of
640x480 pixels. What we could call video card
is actually a part of the IPP chip and can con-
trol 4 layers of display (1 layer for image/video
data, and 3 On Screen Display or OSDs). In
the current design the first layer is controlled
by the IPP driver and doesn’t have direct in-
terface to the user land. Even if 3 OSDs are
available, only one is currently used as a frame-
buffer device. The OSD uses a 8 bit YUV
palette (maintained by the IPP device) which



532 • Linux Symposium 2004 • Volume Two

means that_setcolreg and_getcolreg
entry points are used to perform conversion be-
tween RGB and YUV color space. This solu-
tion allows to use the camera LCD as any tradi-
tional Linux console and run any software that
usually works on the top of a Linux Frame-
buffer. One reason why only 1 OSD level is
supported is because all OSDs share the same
palette which means that it cannot be simply
designed as 3 different framebuffer devices.
However there is also currently no real need
for 3 OSDs so this is not actually a big issue.

3.8 Filesystem

The RDC-i700 has 8 MB of NAND Flash in-
ternal memory. The Linux kernel now pro-
vides support for this kind of memory by us-
ing the Memory Technology Devices (MTD)
[2] support. Only a very small layer needs to
be written in order to get the camera’s NAND
work. [3] JFFS2 [4] is usually used on the top
of a NAND device, however we will see that
in case of digital camera, it might not be the
best solution. In our case, internal flash mem-
ory is usually exclusively used for storage of
compressed data such as JPEG or MPEG. In
that case, using JFFS2, which is a compressed
filesystem, makes the CPU spend lots of time
compressing data which anyway will almost
not get compressed more than they are. In such
case, YAFFS [5] should be preferred to JFFS2
since it is not a compressed filesystem.(see ta-
ble 1 for details of tests performed on the RDC-
i700)

4 Issues

Several problems have been encountered while
developing the Linux RDC-i700. Some have
been solved but some are still under progress.

Time consumption for 1 transaction (secs)
YAFFS JFFS2

JPG (80k) 0.37 0.54
JPG (193k) 0.79 1.32
JPG (547k) 2.21 3.63

MJPG (1463k) 5.6 9.51
*1 transaction = NAND to NAND file copy

Table 1: YAFFS / JFFS2 tests on RDC-i700

Video SDRAM
16bits-16MB

0x000000

0x7FFFFF

0x3F0000
0x3F4000

SH3 memory map

0xa8000000
0xa8008000

IPP video
offset

register:
0x3F0000

Figure 6: Accessing the video SDRAM

4.1 Framebuffer with non-linear memory

The purpose of a framebuffer device is to pro-
vide a standard way to accesslinearly video
memory from the user space. This is the case
of almost (or probably all) video card running
on linux. Usually the kernel CPU can directly
access any part of the video memory, linearly.
However, in case of the RDC-i700, this is not
the case. As figure 6 shows, the video SDRAM
is not directly accessible from the CPU but is
seen through the IPP chip. The IPP provides
a 8KB window of memory directly accessible
from the SH CPU. By setting a register of the
IPP it becomes possible to define which “page”
of the SDRAM becomes visible to the CPU.
This makes problem with the framebuffer since
the video memory is supposed to be linearly
accessible, so no method is provided for such
kind of system.



Linux Symposium 2004 • Volume Two • 533

Inside a framebuffer device driver, two mem-
ory access methods exist:

linux console access modeis performed via
function call. 6 functions (read and write for
byte, word and long type) are provided. In case
of the RDC-i700, the trick is just to overwrite
those function in order to set the IPP register to
the page needed to be accessed.

mmap access modeis necessary to allow
user land application to access the framebuffer
memory. The problem in case of mmap access
is that the driver doesn’t know which part of the
memory is being accessed and so it becomes
impossible to correctly set the page selector.

To solve this problem, the framebuffer uses
a NOPAGE memory handler, combined with
the remap_page_range function. By al-
ways leaving only 1 page mapped at a time,
we ensure that the NOPAGE handler will be
called everytime the application is trying to ac-
cess a page which is not mapped. The han-
dler will then unmap the previous page and
map the page corresponding to the address to
be accessed. One problem remains, which
is, if remap_page_range allows to map
page, it seems there is no function to “un-
map” a previously mapped page. The func-
tion zap_page_range seems to do similar
thing and by implementing the nopage handler
as follows, the trick seems to work.

nopage_handler(...)
{

calculate pointed addr in SDRAM;
calculate physical addr;
if(already_mapped){

zap_page_range(...);
flush_tlb_range(...);

}
remap_page_range(...);
already_mapped=1;

}

However, some errors occurs time to time

when using mmap on the framebuffer and
those errors might come from this implemen-
tation.

4.2 Timers

We have seen in previous section that several
timers are used in various drivers. Some must
be very short and for that reason, timer is a very
hot topic in our case. Several implementations
are possible to perform delay.

busy wait: this solution should be avoided
since it would for example almost stop the
camera everytime the zoom is adjusted.

kernel timers: kernel timers should be used in
order to avoid problems introduced by the busy
wait solution. However, in order to achieve
such implementation we need first to solve one
big problem. While we need about 1ms or less
resolution timer, a vanilla 2.4.19 kernel only
permits to use timers with resolution of 10ms.
In case of stepping motors, this doesn’t re-
ally make big problem except that motors will
just run about 10 times slower than their nom-
inal speed. However, the low accuracy of ker-
nel timers makes problem when used to con-
trol other devices such as mechanical shutter,
strobe or iris since it can result in low qual-
ity image or, even worse, wrong operation per-
formed (narrow instead of large for the iris). In
order to solve this problem, several possibili-
ties exist:

• High Resolution Timer: [7] is a project
hosted on sourceforge in order to add high
resolution (nano seconds) capable timer to
the Linux kernel. However currently only
the i386 architecture is supported, which
means that some work is needed in order
to get it work on the SH architecture.

• Hardware Timer: if such short delay
cannot be achieved using software timer,



534 • Linux Symposium 2004 • Volume Two

it still remains the possibility to use hard-
ware timers of the SH3. However, this
would make drivers very architecture de-
pendent which should be avoided if pos-
sible. Moreover, even if the hardware
timer can generate very short period, we
need to ensure that the time between the
hardware interrupt is generated and the in-
terrupt handler get called is not too long
otherwise using hardware timer wouldn’t
have any meaning. In order to achieve
such requirement, it might be necessary to
use preemptive kernel.

• Vanilla kernel with HZ=1000: changing
tick period from 10ms to 1ms allows to
use 1ms timer. However, if this solution
works fine in some case, we need further
experimentation in order to check the ac-
curacy under heavy load condition.

5 Future works

5.1 Design of device driver architecture and
user access

Kernel driver layering: the goal is to create
a proper abstraction layer permitting to have
upper kernel drivers (algorithms) totally inde-
pendent from the hardware. Currently EX-
PORTED functions are used to allow function
calls between drivers, however it means that
upper drivers must understand the behavior of
hardware drivers. The abstraction layer needs
to define both function prototypes and struc-
tures used to access lower driver functionali-
ties. Such interface would permit to easily cus-
tomize any upper drivers, for example auto ex-
posure algorithm or auto white balance.

Exporting functionalities to user space:cur-
rently small libraries are available, permitting
to control camera functionalities. However, it
doesn’t seem reasonable to write new libraries
specifically for the camera. Modifying device

drivers to make them compatible with some ex-
isting standard should be the solution to take
advantage of the large amount of existing soft-
ware. In the camera field, Video For Linux
would probably be a good candidate, and espe-
cially the second release which is currently un-
der development. The idea would be to provide
access to the CCD as a standard video input in-
terface, similar to any USB camera for exam-
ple. Other functionalities, such as JPEG com-
pression, decompression could be accessed as
a CODEC.

5.2 Remaining tasks

Some features still need to be implemented on
the camera such as:

Power Management: currently no power
management is performed while running Linux
on the RDC-i700. This makes the battery life
as short as about 25 minutes when using PCM-
CIA cards. This part should be the next big
issue for the linux RDC-i700.

USB controller: the RDC-i700 includes a
PDIUSBD12 USB device (slave) controller3.
The Linux-USB Gadget API [8] allows to eas-
ily implement USB device class on the top
of controller drivers, however this device con-
troller is currently not supported yet.

6 Conclusion

The linux RDC-i700 has now enough support
in order to be used as a digital camera. Most
of the constrains due to the architecture and
specific hardware have been solved but we still
need some more performance testing in order
to ensure that everything can run well. But
remaining issues are not only technical one.
Since we are now preparing for distributing the

3http://www.semiconductors.philips.com
/pip/PDIUSBD12.html



Linux Symposium 2004 • Volume Two • 535

source codes, we still needs some more coordi-
nation in our company. We also have to think
of how to make and support a developing com-
munity.

References

[1] SH-Linux
http://linuxsh.sourceforge.net

[2] Memory Technology Devices (MTD)
http://www.linux-mtd.

infradead.org

[3] MTD’s NAND Flash support
http://www.linux-mtd.

infradead.org/tech/nand.html

[4] JFFS2 homepage
http://source.redhat.com/

jffs2/

[5] YAFFS homepage
http://www.aleph1.co.uk/yaffs/

[6] Linux Framebuffer Driver Writing
HOWTO
http://linux-fbdev.

sourceforge.net/HOWTO/

[7] High Resolution Timer Project
http://high-res-timers.

sourceforge.net/

[8] USB-Gadget API
http://www.linux-usb.org/

gadget/

[9] Linux Device Drivers, 2nd Edition
Alessandro Rubini & Jonathan Corbet



536 • Linux Symposium 2004 • Volume Two



Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


