
Achieving CAPP/EAL3+ Security Certification for
Linux

Kittur (Doc) S. Shankar
IBM Linux Technology Center

dshankar@us.ibm.com

Olaf Kirch
SUSE Linux AG
okir@suse.de

Emily Ratliff
IBM Linux Technology Center

emilyr@us.ibm.com

Abstract

As far as we know, no Open Source program
has been certified for security—until now. Al-
though some people believed that it was not
possible for an Open Source program to re-
ceive a security certification, we have proven
otherwise by obtaining a Common Criteria se-
curity certification for SuSE SLES 8 SP3. With
the increasing use of Open Source in general
and Linux in particular within government and
commercial environments, security of Open
Source products is of increasing importance
and as a result the demand for the security eval-
uation of Linux is evident. It is also generally
believed that security certifications are time
consuming and can take years to accomplish.
We were able to obtain the Common Criteria
certification of Linux in a few months. The
presentation will cover our experience and the
technical challenges associated with this Linux
evaluation. In particular, we will discuss the
enhancements we made to SLES 8 SP3 includ-
ing the Linux kernel to support CAPP audit
requirements. In addition the business advan-
tages of the evaluation for Open Source soft-
ware will be covered.

1 Introduction

In promoting Linux to IBM’s enterprise and
government customers, the requirement for
Common Criteria certification emerged as a
barrier to entry. All of Linux’s commercial
competitors have the required level of certifica-
tion. As Linux continues to be adopted by the
enterprise market, many customers, especially
those from the government sector, have raised
concerns regarding Linux security and ques-
tioned whether Linux was capable of achiev-
ing certification. These customers view se-
curity certification as table stakes for proving
a minimal level of operating system security.
In order to increase Linux adoption by these
customers, certification is required. The ex-
pense of achieving certification makes certi-
fication unobtainable by community projects
without corporate or government sponsorship.
For these reasons, and after a careful analy-
sis, IBM decided to sponsor a Common Crite-
ria (CC) security certification for Linux. SUSE
agreed to partner with IBM to evaluate SUSE
LINUX Enterprise Server 8 (SLES 8).

In this paper, we will begin with a brief
overview of the Common Criteria standard.
We will then describe our approach and expe-



496 • Linux Symposium 2004 • Volume Two

rience during this certification effort. We will
describe in detail the additional functionality
that was needed in kernel and user space to ful-
fill the requirements of the certification. We
will also describe the level of documentation
and test needed to obtain the certification.

Throughout the paper, we use the pronoun
‘we.’ By ‘we,’ we mean individuals or sub-
teams from the large team of people who con-
tributed time and effort in achieving this evalu-
ation, including:

• IBM, the evaluation sponsor

• SUSE, the developer

• atsec information security GmbH, the
evaluator

• BSI, the German agency for information
security, the evaluation body

2 Common Criteria Overview

Common Criteria (CC) is documented in the
ISO standard 15408 for the security analysis of
IT products. The governments of 18 nations
have officially adopted the Common Criteria,
including the United States, Canada, Germany,
France, and the UK. The U.S. government has
required a Common Criteria evaluation for all
IT-products used for the processing of security-
critical data since July 1, 2002.1

Common Criteria splits the requirements into
two sets: functional and assurance. Func-
tional requirements describe the security at-
tributes of the product under evaluation. Assur-
ance requirements describe the activities that
must take place to increase the evaluator’s con-
fidence that the security attributes are present,
effective, and are designed and implemented

1The requirement is codified by NSTISSP No. 11.

correctly. Examples of assurance activities in-
clude documentation of the developer’s search
for vulnerabilities and testing.

2.1 Functional Requirements

The functional requirements desired by the
customer are described in the Protection Pro-
file (PP). Protection Profiles are targeted at spe-
cific types of systems. For example, there are
unique protection profiles for operating sys-
tems, firewalls, databases and other complex
or security sensitive products. Protection Pro-
files are often created by the product devel-
oper, standards bodies, or government agen-
cies, rather than by the customer. To be offi-
cially recognized, the Protection Profile must
itself be evaluated. Protection Profiles are in-
tended to be reusable and thus typically define
standard sets of security attributes that can be
used to compare different implementations of a
product type. The name of the Protection Pro-
file is therefore often used as shorthand to de-
scribe the functional level of the evaluation.

The product being evaluated is known as the
Target of Evaluation (TOE). The security pol-
icy used by the TOE is known as the TOE Se-
curity Policy (TSP) and the functionality that
enforces the TSP is known as the TOE Se-
curity Functions (TSF). The TSP may be en-
forced by software, hardware or firmware, but
no matter what the enforcement mechanism is,
the enforcement functionality is included in the
TSF. The TOE does not exist in a vacuum; ex-
ternal forces that act on the TOE are known
as the TOE (security) environment. The TOE
environment may consist of elements such as
non-privileged processes running in an operat-
ing system and the network to which a system
is attached. The main purpose of an evaluation
is to determine whether or not the TSP is cor-
rectly enforced.



Linux Symposium 2004 • Volume Two • 497

2.2 Assurance Requirements

Evaluated Assurance Levels (EALs) are de-
fined on a scale of increasingly rigorous devel-
opment methodologies. The Common Criteria
defines multiple classes of assurance compo-
nents with multiple levels of difficulty for each
component. The assurance levels are then com-
posed from these components. These compo-
nents include items such as level of documen-
tation and testing. The assurance components
used for this evaluation are described in more
detail in the EAL3 Overview Section. Each
higher assurance level requires more proof that
security was a fundamental element of the de-
velopment process; therefore, each higher level
is more difficult to achieve than the previous
level. There are seven ordered EALs2:

• EAL1 – Functionally Tested

• EAL2 – Structurally Tested

• EAL3 – Methodically tested and checked

• EAL4 – Methodically designed, tested
and reviewed

• EAL5 – Semiformally designed and
tested

• EAL6 – Semiformally verified, designed
and tested

• EAL7 – Formally verified, designed and
tested

EAL1 is the entry level assurance level. EAL4
is the highest assurance level that any product
is expected to be able to achieve without sig-
nificant expense and rework if it had not been
specifically developed with Common Criteria
evaluation in mind.

2Common Criteria Part 3 available from
http://csrc.nist.gov/cc/Documents/
CC%20v2.1%20-%20HTML/CCCOVER.HTM

2.3 Evaluation Approach

When the developer has decided on a Target
of Evaluation and a Protection Profile, the first
step towards evaluation is writing a Security
Target (ST) which describes the security ob-
jectives of the TOE and how they meet the se-
curity requirements defined in the chosen PP.
It is possible for an ST to claim conformance
to multiple PPs or no PP at all. The claims in
the security target determine the scope of the
evaluation. Every facet of the evaluation is di-
rectly impacted by what is claimed in the Secu-
rity Target. After the evaluation is completed,
the Security Target is always made available
for customer scrutiny so that the customer can
understand exactly what was evaluated.

3 Description of the Evaluated
TOE

Our target of evaluation (TOE) was the SUSE
LINUX Enterprise Server 8 operating system
with Service Pack 3 and the certification-sles-
eal3.rpm package.

The SLES evaluation covers a distributed,
but isolated, network of IBM® xSeries®,
pSeries®, iSeries®, and zSeries® servers run-
ning the evaluated version of SLES. The hard-
ware platforms selected for the evaluation
consisted of commercially available machines
from across the IBM product line.

The TOE Security Functions (TSF) consist
of Linux kernel functions plus some trusted
processes. These functions enforce the secu-
rity policy as defined in the Security Target.
The TOE includes standard networking appli-
cations, such as ftp, ssh, ssl, and xinetd. Sys-
tem administration tools include standard ad-
min commands. Yast2 and several yast2 mod-
ules were also included in the package list that
formed the TOE. The X Window System was



498 • Linux Symposium 2004 • Volume Two

not included in the evaluated configuration.

The hardware and the system firmware are not
considered to be part of the TOE but rather are
a part of the TOE environment. The TOE envi-
ronment also includes applications that are not
evaluated, but are used as unprivileged tools to
access public system services. For example, an
HTTP server using a port above 1024 (e.g., on
port 8080) can be used as a normal applica-
tion running without root privileges on top of
the TOE. The Security Guide provides guid-
ance on how to set up a http server on the TOE
without violating the evaluated configuration.

4 ST Description

The Security Target specifies that the evalua-
tion covers the Controlled Access Protection
Profile (CAPP) functionality at the EAL3 aug-
mented assurance level.3 The primary secu-
rity features and assurance documentation are
described below, along with how the require-
ments were satisfied. The key features are sup-
ported by domain separation and reference me-
diation, which ensure that the features are al-
ways invoked and cannot be bypassed. Most
of the security and assurance features are in-
cluded in the vanilla kernel (e.g., object reuse)
or are standard to most Linux distributions
(e.g., PAM, OpenSSH, OpenSSL) and were
thus already present in SLES 8. A few, most
notably audit, had to be added for the evalua-
tion.

4.1 EAL3 Overview

EAL3 provides assurance by an analysis of
the security functions, using its functional and
interface specifications, guidance documenta-
tion, and the high-level design of the TOE to
understand the security behavior. The EAL3

3The augmentation is the flaw remediation proce-
dure.

assurance requirements fall into the following
seven categories:

• Configuration Management

• Delivery and Operations

• Development

• Guidance Documents

• Life Cycle Support

• Security Testing

• Vulnerability Assessment.

Many of the documents created to sup-
port the assurance requirements can be re-
viewed athttp://oss.software.ibm.
com/linux/pubs/?topic_id=5

4.1.1 Configuration Management

The Configuration Management assurance
class specifies the means for establishing that
the integrity of the TOE is preserved during
development. The Configuration Management
process must provide a mechanism for track-
ing changes and ensuring that all the changes
are authorized.

Configuration management procedures within
SUSE are highly automated using a process
supported by the AutoBuild tool. Source code,
generated binaries, documentation, test plan,
test cases and test results are maintained under
configuration management. Because of this,
SUSE already exceeded the requirements for
this evaluation, so we just had to document ex-
isting procedures to fulfill this requirement.

This assurance requirement is the one that was
commonly expected to be the source of diffi-
culty in achieving certification of code devel-
oped via the open source methodology. The



Linux Symposium 2004 • Volume Two • 499

key to meeting this assurance requirement is
that every line of new code that comes into the
SUSE AutoBuild environment is assigned to an
owner within SUSE who becomes responsible
for its integrity.

4.1.2 Delivery and Operations

The Delivery and Operations class provides re-
quirements for the assurance that the TOE is
not corrupted between the time the developer
releases it and the customer fires it up.

SLES is delivered on CD/DVD in shrink-
wrapped package to the customer. SUSE
verifies the integrity of the production CDs
and DVDs by checking a production sample.
Service Pack 3, the certification-sles-eal3.rpm
package, as well as other packages that con-
tain fixes must be downloaded from the SUSE
maintenance Web site. Because those packages
are digitally signed, the user is both able to and
required to verify the integrity and authentic-
ity of those packages. Guidance for installation
and system configuration is provided in the Se-
curity Guide.

Again, existing SUSE processes met the re-
quirements for the EAL3 assurance level, so
documenting existing procedures was suffi-
cient for this evaluation.

4.1.3 Development

The Development class encompasses require-
ments for documenting the TSF at various lev-
els of abstraction, from the functional inter-
face to the implementation representation. For
EAL3, we needed a functional specification
and a high-level design. In addition, the corre-
spondence between the security functionality,
the functional specification, and the high level
design had to be documented.

The functional specification for SLES con-
sists of the man pages that describe the sys-
tem calls, the trusted commands, and a descrip-
tion of the security-relevant configuration files.
A spreadsheet tracks all system calls, trusted
commands, and security-relevant configuration
files with a mapping (correspondence) to their
description in the high-level design and man
page(s). The high-level design of the secu-
rity functions of SLES provides an overview
of the implementation of the security functions
within the subsystems of SLES, and points
to other existing documents for further details
where appropriate.

To fulfill this requirement, the functional
specification spreadsheet, correspondence, and
high-level design were written. Additionally,
several new man pages were created for un-
documented system calls, PAM modules and
utilities, and many man pages required minor
corrections.

4.1.4 Guidance Documents

The Guidance Documents class provides the
requirements for user and administrator guid-
ance documentation. A security guide is also
necessary to fulfill the requirements of this
class at EAL3.

SLES 8 already shipped with User and Ad-
ministrator Guides. The Security Guide and a
special README file were created that con-
tain the specifics for the secure administration
and usage of the evaluated configuration. The
Security Guide explicitly documents setting up
and maintaining the system in an evaluated
configuration.



500 • Linux Symposium 2004 • Volume Two

4.1.5 Life Cycle Support

The Life Cycle Support assurance requirement
includes requirements for processes that deal
with vulnerabilities found after release of the
product, as well as the physical security of the
developer’s lab.

The SUSE security procedures are defined and
described in documents in the SUSE intranet.
The defect handling procedure SUSE has in
place for the development of SLES requires the
description of the defect with its effects, secu-
rity implications, fixes and required verifica-
tion steps.

Again, existing (and previously planned up-
dates to) SUSE procedures met the require-
ments for this class and were merely required
to be documented to fulfill the assurance re-
quirements.

4.1.6 Security Testing

The emphasis of the Security Testing class is
on the confirmation that the TSF operates ac-
cording to its specification. This testing pro-
vides assurance that the TOE satisfies the se-
curity functionality requirements. Coverage
(completeness) and depth (level of detail) are
separated for flexibility.

A detailed test plan was produced to test the
functions of SLES on each evaluated platform.
The test plan includes an analysis of the test
coverage, an analysis of the functional inter-
faces tested, and an analysis of the testing
against the high level design. Test coverage of
internal interfaces was defined and described
in the test plan documents and the test case de-
scriptions. The tests were executed on every
platform. The test results are documented so
that the tests can be repeated and the results in-
dependently confirmed.

Although, SUSE has an excellent test infras-
tructure for regression testing already in place,
additional tests were required to test new func-
tionality, such as audit, and ensure cover-
age of security relevant events. The Linux
Test Project provided an excellent base for the
test suite needed for EAL3. It already con-
tained almost all of the necessary test cases
for every system call. In some cases, we had
to add tests of expected failure cases to en-
sure that the security was being correctly en-
forced. We added some test cases for security-
relevant programs, such as su, cron, at, and
ssh. We created tests to ensure that the sys-
tem was configured in the evaluated man-
ner. We also created many tests for correct
ACL behavior. Many of the system call and
security-relevant program test cases were cre-
ated during the course of the EAL2 evaluation
and then reused during the EAL3 evaluation.
The largest class of new test cases for EAL3
was tests of the new audit system. Testing
the audit subsystem required showing that all
security-relevant system calls are logged cor-
rectly, all trusted programs (including PAM)
correctly logged security-relevant events, the
audit userspace tools contained correct func-
tionality, and that audit exhibits Controlled Ac-
cess Protection File (CAPP)-compliant behav-
ior during threshold and failure events (for ex-
ample, low disk space). Gcov was used to show
test coverage of the kernel internal interfaces.
Writing, documenting, and running these test
cases on all of the evaluated platforms was a
significant portion of the evaluation effort.

4.1.7 Vulnerability Assessment

The Vulnerability Assessment class defines re-
quirements for evidence that the developer
looked for vulnerabilities that might arise dur-
ing development and use of the TOE.

Our search for vulnerabilities was documented



Linux Symposium 2004 • Volume Two • 501

in the Vulnerability Assessment document.
This assessment included TOE misuse analy-
sis and a password strength of function anal-
ysis. The analysis also describes the approach
used to identify vulnerabilities of SLES and the
results of the findings.

The Vulnerability Assessment was performed
and written as part of this evaluation.

4.2 CAPP Overview

The Controlled Access Protection Profile
(CAPP) is based on the C2 class of the
“Department of Defense Trusted Computer
Systems Evaluation Criteria” (DoD 5200.28
– STD) colloquially known as the “Orange
Book.” CAPP requires that the operating sys-
tem implement the Discretionary Access Con-
trol (DAC) security policy. DAC allows the in-
formation owner to control who is allowed to
access the information.

The CAPP functional requirements fall in the
following five broad categories:

• Identification and Authentication

• User Data Protection

• Security Management

• Protection of the TSF

• Security Audit.

4.2.1 Identification and Authentication

Identification and Authentication include the
functionality required to uniquely identify the
user.

SLES provides identification and authentica-
tion using pluggable authentication modules

(PAM) based upon user passwords. Other au-
thentication methods (e.g., Kerberos authen-
tication, token based authentication) that are
supported by SLES as pluggable authentication
modules are not part of the evaluated configu-
ration. PAM was configured to ensure medium
password strength, to ensure password quality
to limit the use of the su command, and to re-
strict root login to specific terminals.

Meeting the CAPP requirements for Identifica-
tion and Authentication involved changing the
default PAM configuration for SLES 8. The
new configuration is documented by the Secu-
rity Guide.

4.2.2 User Data Protection

User Data Protection specifies the functional-
ity that protects data from unauthorized access
and modification—the enforcement of the Dis-
cretionary Access Control policy. In addition,
deleted information must not be accessible and
newly created objects must not contain residual
information.

The Discretionary Access Control policy re-
stricts access to file system objects based on
Access Control Lists (ACLs) that include the
standard UNIX® permissions for user, group,
and others. Access control mechanisms also
protect IPC objects from unauthorized access.

The evaluated configuration used the ACL sup-
port in the ext3 file system. The vanilla kernel
already clears file system, memory and IPC ob-
jects before they can be reused by a process be-
longing to a different user. Thus, the User Data
Protection functionality requirements were al-
ready being met by SLES 8.



502 • Linux Symposium 2004 • Volume Two

4.2.3 Security Management

The Security Management class specifies how
security attributes, security data and security
functions are managed by the TOE. Security
Management includes management of groups
and roles, separation of capability, and man-
agement of audit data.

Management of the security critical parame-
ters of the TOE is performed by administra-
tive users. Commands that require root privi-
leges, such as useradd and groupdel, are used
for system management. Security parame-
ters are stored in specific files that are pro-
tected by the access control mechanisms of
the TOE against unauthorized access by non-
administrative users.

Other than the audit data management com-
mands (which are described in the Security
Audit section below) all security management
functionality was provided by standard func-
tionality already included in SLES 8.

4.2.4 TSF Protection

Protection of the TSF specifies the require-
ments for maintaining the integrity of the TSF
and its data, particularly the protection of con-
figuration data. The TSF will need to perform
the appropriate testing to demonstrate the secu-
rity assumptions about the underlying abstract
machine upon which the TSF relies. In addi-
tion, the TSF must be demonstrated to be com-
plete and tamperproof.

While in operation, the kernel software and
data are protected by the hardware memory
protection mechanisms. The memory and pro-
cess management components of the kernel en-
sure that user processes cannot access kernel
storage or storage belonging to other processes.

Non-kernel TSF software and data are pro-
tected by DAC and process isolation mecha-
nisms. In the evaluated configuration, the root
user owns the directories and files that define
the TSF configuration. Files and directories
containing internal TSF data (e.g., configura-
tion files, batch job queues) are also protected
by DAC permissions.

The TOE and the hardware and firmware com-
ponents are required to be physically protected
from unauthorized access. The system ker-
nel mediates all access to the hardware mech-
anisms themselves, other than program visible
CPU instruction functions.

4.2.5 Abstract Machine Test Utility
(AMTU)

To completely fulfill the TSF Protection re-
quirement, we had to produce a tool to test the
underlying abstract machine: “The TSF shall
run a suite of tests [selection: during initial
start-up, periodically during normal operation,
or at the request of an authorized administra-
tor] to demonstrate the correct operation of the
security assumptions provided by the abstract
machine that underlies the TSF.”4 This require-
ment is sometimes fulfilled by Power-On Self
Test (POST) procedures, but given the diver-
sity of platforms that were included in the cer-
tification, we decided that a userspace admin-
istrative tool, AMTU, would be the simpler ap-
proach. AMTU can be run by an administrator
at any time and ensures that the hardware en-
forced security protection is still in effect. To
this end, the tool runs a simple check for mem-
ory errors, checks for enforcement of mem-
ory separation, checks the correct operation of
network and disk I/O controllers, and verifies

4Controlled Access Protection Profile available
from http://www.radium.csc.mil/tpep/
library/protection_profiles/CAPP-1.d.
pdf



Linux Symposium 2004 • Volume Two • 503

that privileged instructions cannot be executed
when the hardware is in user mode.

The source code for AMTU is avail-
able at http://www-124.ibm.com/
developerworks/projects/amtu .

4.2.6 Security Audit

Auditing systems collect information about
events related to security-relevant activities.
Security-relevant activities are defined as those
events that are governed by the security pol-
icy. The resulting audit records can be exam-
ined to determine which security-relevant ac-
tivity took place and which user is responsible
for them. No fully CAPP-compliant audit sub-
system was available for Linux, so we imple-
mented this feature to achieve the certification.
The audit subsystem developed for the evalua-
tion is called Linux Audit System or LAuS.5

LAuS Conceptual Overview The Linux
Audit System (LAuS) consists of three primary
components: a kernel module responsible for
intercepting system calls and recording rele-
vant events, an audit daemon (auditd) that re-
trieves the records generated by the kernel and
writes them to disk, and a number of com-
mand line utilities for displaying, querying and
archiving the audit trail. See Figure 1.

The interface between kernel and user space
uses a character device named /dev/audit. The
audit daemon uses I/O Control operations
(ioctls) on this device to configure the audit
module, and it retrieves audit records from it
using the read() system call.

To improve performance, filtering of audit

5The LAuS Design Document is available at
ftp://ftp.suse.com/pub/projects/
security/laus/doc/LAuS-Design.pdf

events is performed at the kernel level. Unlike
some existing implementations, the audit dae-
mon does not perform any filtering itself. This
eliminates a serious performance bottleneck.

The set of filter primitives provided by LAuS is
fairly rich, and primitives can be combined us-
ing boolean operations. For instance, it is pos-
sible to audit open(2) calls made by a setuid
application, while ignoring all other open(2)
calls, or to restrict auditing to certain files. The
eal3-certification RPM contains the evaluated
audit configuration files.

At startup, auditd reads its configuration and
the set of filter expressions from one or more
files, loads the filters to the kernel, and starts
auditing.

Auditd then proceeds to listen for audit events
generated by the kernel. It retrieves and writes
all records directly to disk. Because of the
CAPP requirement that audit records must
never be lost, this process is more complex than
it might seem. auditd constantly monitors disk
usage and can be configured to respond in dif-
ferent ways if free disk space drops below cer-
tain thresholds. Possible reactions to low disk
space include notifying the administrator, sus-
pending all audited processes, or shutting down
the system immediately. Both the thresholds
and auditd’s reactions can be configured by the
administrator.

LAuS supports different output modes to pro-
vide a flexible way to configure data collection.
The simplest approach simply writes the audit
trail to a single file in append mode, similar to
the way syslogd works.

In “bin mode,” audit writes data to a number of
fixed sized files (bins), switches to the next file
when the current one fills up, and invokes an
external command to archive the full bin. Fi-
nally, there is a so-called “stream mode” that
lets you pipe the audit trail directly into an ex-



504 • Linux Symposium 2004 • Volume Two

audit.o
kernel module

system calls
rtnetlink

user land audit events auditd

audit trail
aucat

augrep

(user land)

(kernel)

Figure 1: LAuS Conceptual Overview

ternal command; this can be useful if you want
to forward the trail to a central storage server.

Auditing can be enabled globally or on a per-
process basis; in the latter case, all the child
processes are audited as well. The only pro-
cesses always exempt from auditing are init
and the audit daemon itself.

User land utilities were created to parse and
read the audit log files. aucat ’cats’ the file,
transforming all of the audit records to a hu-
man readable format. augrep ’greps’ the audit
records and allows the administrator to selec-
tively review the records. augrep allows the
administrator to select audit records based on
type, time (range), user, syscall, program (by
name or PID) that generated the event, or any
combination of these attributes.

Even though the user land utilities are far from
trivial, the kernel portion of LAuS proved far
more complex; in fact, the kernel portion of the
LAuS is a lot more complex than we had ini-

tially anticipated. The rest of this section deals
with the questions surrounding the audit kernel
module.

Additional Design Constraints In addition
to making our audit implementation compliant
with the CAPP requirements, we had to deal
with several constraints which are worth not-
ing.

One was to minimize performance overhead.
In the case where auditing was compiled into
the kernel, but not configured by the adminis-
trator, we wanted it to have zero performance
impact if possible. Our kernel developers spent
quite a lot of time on additional kernel tuning,
making sure the kernel performed and scaled
well. Breaking this was not an option.

We also wanted to have a performance over-
head as small as possible for the audited case,
even though this wasn’t as high on our agenda.
This definitely took second place to correctness



Linux Symposium 2004 • Volume Two • 505

and CAPP compliance.

A third objective was entirely non-technical,
but played a crucial role in choosing an ap-
proach to intercepting system calls. We wanted
our modifications to the core kernel as small as
possible; most of the code should be inside a
loadable module.

The rationale behind this was to minimize
the probability of introducing bugs (except, of
course, bugs in the audit code itself), and to
ease maintenance.

The latter point was a fairly important item in
the context of the SLES 8 kernel, which in-
cludes well above 1,500 additional patches ap-
plied on top of the mainline kernel. Updating
SLES 8 to a new mainline kernel version was
a bit of an adventure, so we wanted to avoid
adding audit patches to the kernel that changed
lots of files all over the place.

Where to intercept system calls There are
basically three ways to intercept system calls
on a 2.4 Linux kernel.

The first approach is to create wrappers for
those system calls you wish to track, and re-
place the original function pointers in the sys-
tem call table with those of the new wrapper
functions. This sounds simple enough, and
would also satisfy our requirements for zero
performance impact in the non-audit case, and
a minimally intrusive kernel patch. Unfortu-
nately, this approach doesn’t work on all archi-
tectures.

The next approach is to add hooks to all ker-
nel functions that must be audited. The ma-
jor drawback to this approach is that the kernel
patch would touch lots of files in the kernel,
which we wanted to avoid.

The third approach, which we chose, was to
hook into the code path that intercepts sys-

tem calls for ptrace. This intercept happens
very early in the platform-specific assembler
code, before the system-call function itself is
invoked. The assembly code retrieves a set of
flags associated with the calling process, and
checks thePT_TRACESYSbit . If that bit is set,
it jumps to a separate code branch dealing with
ptracing. The same test is performed when re-
turning from a system call.

In our audit implementation, we simply
defined an additional task flag named
PT AUDITED, and extended the bit test
in the system-call entry and exit code to test
for both bits at the same time. This gave us
system-call intercept with zero performance
overhead in the normal, non-audited code path.

See Figure 2 for a picture showing the flow of
control when auditing a system call.

Defining which system calls to audit By
far, the most important part of auditing con-
cerns system calls. As mentioned above, CAPP
requires auditing all security-relevant system
calls. We needed to determine which system
calls are security relevant and which aren’t.

The obvious ones are those that change the
state of a process, the file system, or other sys-
tem resources. These includes calls such as se-
tuid, open, close, and setting the system’s host
name or clock. An audit implementation also
needs to cover less obvious operations, such
as binding a socket to a port, attaching shared
memory segments, and performing ioctls.

Most system calls are fairly straightforward to
handle, and much of the information on sys-
tem calls and the arguments they take can be
encoded statically in tables. Some calls, such
as msgrcv, which comes in two versions on the
i386 platform for historical reasons, were diffi-
cult to handle. 64-bit platforms usually require
an additional table as they support a 32-bit sys-



506 • Linux Symposium 2004 • Volume Two

Event:
System Call

Event:
Netlink

Audit Hooks

Filtering

Filter table Kernel Buffer

Device File

Audit
Daemon Logs

Binary log
data

read(),
configure

(kernel)

(user land)

Figure 2: Auditing a System Call

tem call interface in addition to their native 64-
bit interface.

However, some of the operations we wanted to
audit proved a little more elusive; these were
the ioctl system call and network configuration
changes.

Auditing ioctls The ioctl system call is the
dirty little back alley of UNIX-like operating
systems. If a driver for a piece of hardware,
a network protocol or a file system needs to
expose some driver-specific mechanism or tun-
able parameters to user-space applications, the
most common method for doing so is to define
one or more ioctls.

The ioctl system call takes an open file descrip-
tor, which must refer to something controlled
by the driver (for example, a terminal, a device
file, or a socket), an integer number specify-
ing the request, and an opaque pointer to some
chunk of memory. Exactly what to do with this
piece of memory depends on the driver that is
being talked to, and the integer passed as the
request ID.

Unfortunately for us, the Linux kernel supports
well over a thousand ioctls, and while many
of them are rather obscure, they do change the
system’s state and are thus subject to auditing.
It is obvious that compiling and maintaining a
list of 1000 ioctls and their arguments was not
an option.



Linux Symposium 2004 • Volume Two • 507

Most ioctl numbers nowadays encode suffi-
cient information on whether the operation
passes data into the kernel, retrieves data, or
both, and the size of the argument. Therefore,
writing audit records for these is straightfor-
ward. However, there is still a fair number of
ioctls that do not follow this convention.

What is far worse is that ioctl numbers are not
unique—frequent users of strace will proba-
bly know that the TCGETS ioctl uses the same
number as some obscure sound card operation.
But this is not the only conflict.

However, the most difficult aspect of auditing
ioctls is that it isn’t sufficient to simply gener-
ate audit records for these calls; you must also
be able to display the information of each audit
record to the user.

The way we solved this problem was entirely
non-technical. Our target of evaluation clearly
stated that the super user account remains spe-
cial. The super user can do everything, from
loading unsupported modules not covered by
the certification, to disabling the audit subsys-
tem altogether.

Instead of trying to handle each and every ioctl
in the audit module, we went through all ioctls
available in our to-be-certified configuration
and categorized them. The ones we needed to
audit were those that were security relevant in
some way, but did not require administrative
privilege; the list we came up with this way was
much smaller than the original list and more
manageable.

Auditing network configuration Another
aspect that proved to be a challenge was track-
ing network configuration changes, because
only a fraction of those are done through ioctl
calls. Most network configuration changes
are performed by passing data to a netlink
socket. These changes can be audited by sim-

ply recording all sendmsg and recvmsg calls
on netlink sockets, but that is far from optimal.
On the one hand, a send or receive operation
on a netlink socket can include more than one
request. On the other hand, the outcome of a
netlink call is not returned through the system-
call return value, but in a separate netlink mes-
sage generated by the kernel and queued to that
socket. Simply logging the raw netlink data
sent and received would require quite a bit of
built-in intelligence on the part of the user land
applications that are supposed to display this
data.

So instead, we decided to tap into the netlink
layer directly, where a data blob sent to a
netlink socket is broken up into separate re-
quests, and each request is processed in return.
This allowed us to record each netlink request
separately, and place the outcome of the oper-
ation into the same audit record as the original
request.

The Login User ID An aspect of auditing
that is worth mentioning is how to deal with
the CAPP requirement that each record identi-
fies the user performing the operation.

The obvious solution (which would be to use
the real user ID associated with the calling pro-
cess) is not sufficient, as setuid applications
can change these IDs at will. Tracking all
uid changes, and thereby allowing the audit
utilities to piece together the original user ID
from this mosaic, is not practical either. It is
not uncommon for some processes on a dedi-
cated server to run for hundreds of days, so the
amount of data to look at would be prohibitive.

The only viable solution in this case is to at-
tach a “login uid” to each process. The login
uid remained constant across all other changes
of real, effective, and saved user IDs, and was
inherited by all child processes. Of course, this
required changes to PAM so that this uid would



508 • Linux Symposium 2004 • Volume Two

be set on login.

Nightmare on Audit Street There is one
major problem with the approach to system
call intercept that we chose and which in hind-
sight made it a less than optimal choice. The
problem is that our approach requires data to
be copied twice. To understand why this is a
problem, let’s look at the open(2) system call,
which takes a path name as an argument. This
path name is passed into the kernel function
as a pointer to a string (essentially a chunk of
memory) in the address space of the user pro-
cess. In order to operate on this string, the ker-
nel must copy it to a buffer in the kernel address
space, possibly paging in memory as it goes.

When entering the kernel, the audit module re-
trieves the path name from user space, and de-
cides whether to create an audit record for this
call. If it does decide to create an audit record,
it sets up an audit record containing the sys-
tem call number and a copy of all arguments,
including the path.

The system call proceeds as normal, and the
kernel functionsys_open retrieves the path
name from user space a second time, and car-
ries out the requested operation based on this
data.

The problem is that the memory in user space
may have changed in the meantime, so that the
record written by the audit module does not
correspond to what was actually performed by
the operating system.

There are several ways this can happen. Of
course, the calling process itself cannot mod-
ify this memory, as it is currently executing
the system call. However, memory can be
shared between processes in a variety of ways.
Threads can share the entire address space;
processes can attach to the same shared mem-
ory segment; memory can be mapped from a

file, which can be mapped by other processes
as well.

Such an attack on the audit module is not re-
ally practical, because proper timing is proba-
bly quite hard, and any attempt to perform this
attack would most likely leave a trail in the au-
dit file. But even the theoretical possibility of
circumventing the audit subsystem is unaccept-
able in terms of CAPP compliance.

The cases described above can be detected
and dealt with by the audit module. Deal-
ing with these problems, however, incurs ad-
ditional complexity and performance loss (es-
pecially in the case of multithreaded applica-
tions). Needless to say, the added complex-
ity engendered a considerable number of bugs.
For this reason, these additional checks can be
turned off by the administrator. These checks
are turned off in the evaluated configuration of
audit and the associated risk, considered min-
imal, is documented in the Vulnerability As-
sessment.

SUSE Linux Server 9 SUSE Linux Server
9 will include an updated version of the LAuS
kernel patches. In many respects, the updated
LAuS module will work in the same way as the
SLES 8 version did, with the major exception
being the way system calls are intercepted.

When planning audit for SUSE Linux Server 9,
we considered two options.

The first option was a solution we had already
looked at for SLES 8 and abandoned, namely
adding hooks to all system call functions rele-
vant for CAPP. This is the approach we chose
for SUSE Linux Server 9, mainly in order to
avoid having to jump through all those extra
hoops in an attempt to prevent the race con-
ditions described in the previous section. One
pleasant side effect of this approach is that it
also eliminated a lot of platform-specific code.



Linux Symposium 2004 • Volume Two • 509

The second option we considered was to add
audit support as an LSM module, or extend-
ing an existing LSM module such as SELinux.
The security framework in the 2.6 kernel goes
a long way toward intercepting all security-
relevant operations. Adding audit hooks in
this place is appealing, because it would mean
no additional performance cost (the security
hooks do come with a certain performance
penalty already) and no additional maintenance
problems (because the audit patch would not
have to touch multiple kernel files).

The main reason why we did not choose this
approach was that the security hooks provide a
more abstracted view than we had chosen for
LAuS in SLES 8. Security hooks do not cor-
respond directly to system calls, but rather rep-
resent the security check necessary to validate
whether an operation is permitted. There is a
fine distinction between “user X attempted to
perform operation Y, and the outcome was Z”
and “user X attempted an operation on object
A that caused us to perform security check B,
and the outcome of this check was C.” In par-
ticular, we are neither aware of the operation
that triggered the security check, nor of its fi-
nal outcome, because the operation can still fail
even if security clearance is given.

Moreover, a single system call may require
several security checks, such as renaming a
file, where we need permission to remove the
file from the source directory and permission
to add it to the destination directory.

Changing LAuS to use the security hooks
would have meant rewriting much more code
than we wanted to, including the filtering code
and much of the user-land applications. We
also would have had to modify considerable
parts of the documentation required for recerti-
fication.

Future Directions This is not to say that it is
not possible to write an audit implementation
leveraging some features of the LSM frame-
work. In fact, we hope to have a common audit
implementation in the mainstream kernel one
day. It would greatly help acceptance by the
kernel community if that solution did not add
another set of hooks into many performance-
critical functions.

5 Evaluation Roadmap

Performing a security evaluation should never
be a one-time accomplishment. To maintain
the security level achieved, the security cer-
tificate must be maintained. In the case of
Linux, the intent is to go a step further: to
increase, step-by-step, the assurance level and
the security functionality until Linux achieves
the highest assurance level of any commer-
cial operating system product, while offering
the richest set of security functions. The first
step was accomplished in July 2003, when
we obtained an EAL2+ evaluation for SUSE
SLES 8 as-is. This paper documented the re-
sults of the second step, where we obtained a
CAPP/EAL3+ certification for SLES 8 SP3 in
January 2004. Linux, like its commercial com-
petitors, has now been successfully evaluated
for compliance with the requirements of the US
government-defined CAPP. As a further step,
Linux is currently in evaluation for compliance
with the requirements of the EAL4 level. This
includes the development of a low-level de-
sign of the Linux kernel (the evaluation will be
based on the 2.6 version of the kernel) as well
as a more sophisticated vulnerability analysis
being performed. The experience gathered in
the EAL2 and the EAL3 evaluations have given
us the confidence that compliance with EAL4
can be achieved in fairly short order.



510 • Linux Symposium 2004 • Volume Two

6 Value of Certification

The value of certification can be considered
from two perspectives: business and technical.

In order for Linux to be adopted by the com-
mercial and government markets, it faces stiff
competition from entrenched incumbents. All
of the incumbent products have been evaluated
using the Common Criteria. In addition, the
U.S government instituted a national security
community policy against procuring unevalu-
ated products (NSTISSP No. 11). There is
a high probability that other governments and
commercial entities will do the same.

While there is much skepticism surrounding
the technical value of certification, certification
is very much in line with the “many eyes” phi-
losophy. For commercial products, certifica-
tion is often the only time the code is reviewed
by people outside of the development team.
The assurance requirements of Common Crite-
ria add to the number of trained eyes looking at
the design and source of a project using defined
and rigorous procedures. During the course of
the EAL3 evaluation, we found and fixed sev-
eral bugs, created lots of documentation, and
shipped an integrated CAPP-compliant audit
system. We noticed an anomaly on the iSeries
platform while testing the Abstract Machine
Testing Utility. Analysis of this anomaly by
the ppc64 development team led to the discov-
ery of a memory separation bug on the iSeries
platform.6 Many PAM module bugs were iden-
tified and fixed in SLES 8, including a double
free bug inpam_pwcheck .7 Man pages were
created for several undocumented system calls,

6Paul Mackerras fix to “Make kernel RAM user-
inaccessible on iSeries”http://www.kernel.
org/diff/diffview.cgi?file=/pub/
linux/kernel/v2.4/patch-2.4.23.bz2;z=
290

7http://www.atsec.com/01/index.php?
id=03-0002-01&news=28 Patches are available
from klaus@atsec.com

PAM modules and admin utilities, including
io_setup , readahead , set_thread_
area , pam_wheel , pam_securetty , and
others.

7 Conclusion

Achieving the EAL2 and EAL3/CAPP certifi-
cations was significant because it proved that
Linux is indeed certifiable. The certification
opened the market up to include U.S. govern-
ment agencies and commercial entities that re-
quire certification. Future evaluations of Linux
distributions can be made easier by Linux
adoption of a CAPP-compliant audit subsys-
tem.

8 Legal Statement

This document represents the views of the authors
and does not necessarily represent the view of IBM.

IBM, iSeries, pSeries, xSeries, and zSeries are reg-
istered trademarks of International Business Ma-
chines Corporation in the United States, other coun-
tries, or both.

UNIX is a registered trademark of The Open Group
in the United States and other countries.

Other company, product, or service names may be
trademarks or service marks of others.



Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


