Achieving CAPP/EAL3+ Security Certification for

Linux
Kittur (Doc) S. Shankar Olaf Kirch
IBM Linux Technology Center SUSE Linux AG
dshankar@us.ibm.com okir@suse.de
Emily Ratliff

IBM Linux Technology Center
emilyr@us.ibm.com

Abstract 1 Introduction

In promoting Linux to IBM’s enterprise and

government customers, the requirement for

As far as we know, no Open Source prograntcommon Criteria certification emerged as a
has been certified for security—until now. Al- 4 rier to entry. All of Linux's commercial

though some people believed that it was nogompetitors have the required level of certifica-
possible for an Open Source program 0 retjon - As Linux continues to be adopted by the
ceive a security certification, we have provengperprise market, many customers, especially
otherwise by obtaining a Common Criteria Se-ngse from the government sector, have raised
curity certification for SUSE SLES 8 SP3. With 4 cerns regarding Linux security and ques-

the increasing use of Open Source in genergfgned whether Linux was capable of achiev-
and Linux in particular within government and jg certification. These customers view se-
commercial environments, security of Opengity certification as table stakes for proving

Source products is of increasing importancey minimal level of operating system security.
and as aresult the demand for the security evaly, order to increase Linux adoption by these

uation of Linux is evident. It is also generally customers, certification is required. The ex-
believed that security certifications are timepense of achieving certification makes certi-

consuming and can take years to accomplisication unobtainable by community projects

We were able to obtain the Common Criteriaithout corporate or government sponsorship.

certification of Linux in a few months. The For these reasons, and after a careful analy-
presentation will cover our experience and the;is |BM decided to sponsor a Common Crite-
technical challenges associated with this Linux (CC) security certification for Linux. SUSE

evaluation. In particular, we will discuss the agreed to partner with IBM to evaluate SUSE
enhancements we made to SLES 8 SP3 incluqJNUX Enterprise Server 8 (SLES 8).

ing the Linux kernel to support CAPP audit

requirements. In addition the business advani this paper, we will begin with a brief
tages of the evaluation for Open Source softoverview of the Common Criteria standard.
ware will be covered. We will then describe our approach and expe-

496 ¢ Linux Symposium 2004 ¢ Volume Two

rience during this certification effort. We will correctly. Examples of assurance activities in-
describe in detail the additional functionality clude documentation of the developer’s search
that was needed in kernel and user space to fufer vulnerabilities and testing.

fill the requirements of the certification. We

will also describe the level of documentation

and test needed to obtain the certification. 2.1 Functional Requirements

Throughout the paper, we use the pronoun
‘we.” By ‘we, we mean individuals or sub-
teams from the large team of people who con
tributed time and effort in achieving this evalu-
ation, including:

The functional requirements desired by the
customer are described in the Protection Pro-
file (PP). Protection Profiles are targeted at spe-
cific types of systems. For example, there are
unique protection profiles for operating sys-

* IBM, the evaluation sponsor tems, firewalls, databases and other complex
or security sensitive products. Protection Pro-
* SUSE, the developer files are often created by the product devel-

oper, standards bodies, or government agen-
cies, rather than by the customer. To be offi-

cially recognized, the Protection Profile must

BSI, the German agency for information itSelf be evaluated. Protection Profiles are in-

tended to be reusable and thus typically define
standard sets of security attributes that can be
used to compare different implementations of a
2 Common Criteria Overview product type. The name of the Protection Pro-

file is therefore often used as shorthand to de-
scribe the functional level of the evaluation.

 atsec information security GmbH, the
evaluator

security, the evaluation body

Common Criteria (CC) is documented in the

ISO standard 15408 for the security analysjs Offhe product being evaluated is known as the
IT products. The governments of 18 nationstarget of Evaluation (TOE). The security pol-
have officially adopted the Common Ciriteria, icy used by the TOE is known as the TOE Se-
including the United States, Canada, Germany(writy Policy (TSP) and the functionality that
France, and the UK. The U.S. government hagnorces the TSP is known as the TOE Se-
required a Common Criteria evaluation for a"curity Functions (TSF). The TSP may be en-
IT-products used for the processing of securityforced by software, hardware or firmware, but
critical data since July 1, 2002. no matter what the enforcement mechanism is,
Common Criteria splits the requirements intofnger_‘;géc_?_ggn(;ézgcr?gtn;l('gt';'gc\lll;céiﬂr':.tgi

two sets: functional and assurance. Func-

tional requirements describe the security at:[ernal forces that act on the TOE are known

tributes of the product under evaluation. Assur2S the TOE (security) environment. The TOE

ance requirements describe the activities thagnvironment may consist of elements such as

must take place to increase the evaluator's Conr)on-prlvneged Processes running In an operat-
Ing system and the network to which a system

fidence that the security attributes are present, . .
attached. The main purpose of an evaluation

effective, and are designed and implemente))
g P Jljz to determine whether or not the TSP is cor-

The requirement is codified by NSTISSP No. 11. rectly enforced.

Linux Symposium 2004 ¢ Volume Two * 497

2.2 Assurance Requirements 2.3 Evaluation Approach

Evaluated Assurance Levels (EALs) are dewhen the developer has decided on a Target
fined on a scale of increasingly rigorous devel-of Evaluation and a Protection Profile, the first
opment methodologies. The Common Criteriastep towards evaluation is writing a Security
defines multiple classes of assurance compcfarget (ST) which describes the security ob-
nents with multiple levels of difficulty for each jectives of the TOE and how they meet the se-
component. The assurance levels are then congurity requirements defined in the chosen PP.
posed from these components. These compat is possible for an ST to claim conformance
nents include items such as level of documento multiple PPs or no PP at all. The claims in
tation and testing. The assurance componentfie security target determine the scope of the
used for this evaluation are described in moresvaluation. Every facet of the evaluation is di-
detail in the EAL3 Overview Section. Each rectly impacted by what is claimed in the Secu-
higher assurance level requires more proof thafity Target. After the evaluation is completed,
security was a fundamental element of the dethe Security Target is always made available
velopment process; therefore, each higher levelbr customer scrutiny so that the customer can
is more difficult to achieve than the previousunderstand exactly what was evaluated.

level. There are seven ordered EALs

3 Description of the Evaluated

* EAL1 - Functionally Tested TOE

* EAL2 — Structurally Tested

« EAL3 — Methodically tested and checked Our target of evaluation (TOE) was the SUSE
LINUX Enterprise Server 8 operating system

 EAL4 — Methodically designed, tested with Service Pack 3 and the certification-sles-
and reviewed eal3.rpm package.

« EAL5 — Semiformally designed and The SLES evaluation covers a distributed,
tested but isolated, network of IBM® xSeries®,
pSeries®, iSeries®, and zSeries® servers run-
ning the evaluated version of SLES. The hard-
ware platforms selected for the evaluation
« EAL7 — Formally verified, designed and consisted of commercially available machines

tested from across the IBM product line.

* EAL6 — Semiformally verified, designed
and tested

The TOE Security Functions (TSF) consist
EALL1 is the entry level assurance level. EAL4of Linux kernel functions plus some trusted
is the highest assurance level that any produqirocesses. These functions enforce the secu-
is expected to be able to achieve without sig+ity policy as defined in the Security Target.
nificant expense and rework if it had not beenThe TOE includes standard networking appli-
specifically developed with Common Criteria cations, such as ftp, ssh, ssl, and xinetd. Sys-

evaluation in mind. tem administration tools include standard ad-
2Common__ Criteria Part 3 available from Min commands. Yast2 and several yast2 mod-
http://csrc.nist.govicc/Documents/ ules were also included in the package list that

CC%20v2.1%20-%20HTML/CCCOVER.HTM formed the TOE. The X Window System was

498 e Linux Symposium 2004 ¢ Volume Two

not included in the evaluated configuration. assurance requirements fall into the following

, seven categories:
The hardware and the system firmware are not

considered to be part of the TOE but rather are
a part of the TOE environment. The TOE envi-
ronment also includes applications that are not
evaluated, but are used as unprivileged tools to
access public system services. For example, an ¢ Development
HTTP server using a port above 1024 (e.g., on
port 8080) can be used as a normal applica-
tion running without root privileges on top of . jfe Cycle Support
the TOE. The Security Guide provides guid-

ance on how to set up a http server on the TOE * Security Testing
without violating the evaluated configuration.

» Configuration Management

Delivery and Operations

» Guidance Documents

Vulnerability Assessment.

4 ST Description Many of the documents created to sup-
port the assurance requirements can be re-

The Security Target specifies that the evaluaviewed athttp://oss.software.ibm.

tion covers the Controlled Access Protectioncom/linux/pubs/?topic_id=5

Profile (CAPP) functionality at the EAL3 aug-

mented assurance level.The primary secu-

rity features and assurance documentation are1.1 Configuration Management

described below, along with how the require-

ments were satisfied. The key features are suprhe Configuration Management assurance

ported by domain separation and reference meelass specifies the means for establishing that

diation, which ensure that the features are althe integrity of the TOE is preserved during

ways invoked and cannot be bypassed. Mostievelopment. The Configuration Management

of the security and assurance features are irprocess must provide a mechanism for track-

cluded in the vanilla kernel (e.g., object reuse)ing changes and ensuring that all the changes

or are standard to most Linux distributionsare authorized.

(e.g., PAM, OpenSSH, OpenSSL) and were

thus already present in SLES 8. A few, mostConfiguration management procedures within

notably audit, had to be added for the evaluasSUSE are highly automated using a process

tion. supported by the AutoBuild tool. Source code,
generated binaries, documentation, test plan,
41 EAL3 Overview test cases and test results are maintained under

configuration management. Because of this,

PUSE already exceeded the requirements for

EAL3 provides assurance by an analysis Oth' luat iust had to d t
the security functions, using its functional and. 1S evaiuation, So We Just had 1o doctment ex-

interface specifications, guidance documenta'—Sting procedures to fulfill this requirement.

tion, and the high-level design of the TOE 10 Thjs assurance requirement is the one that was
3The augmentation is the flaw remediation proce-Culty in achieving certification of code devel-
dure. oped via the open source methodology. The

Linux Symposium 2004 ¢ Volume Two * 499

key to meeting this assurance requirement ighe functional specification for SLES con-
that every line of new code that comes into thesists of the man pages that describe the sys-
SUSE AutoBuild environment is assigned to antem calls, the trusted commands, and a descrip-
owner within SUSE who becomes responsibldion of the security-relevant configuration files.
for its integrity. A spreadsheet tracks all system calls, trusted
commands, and security-relevant configuration
files with a mapping (correspondence) to their
4.1.2 Delivery and Operations description in the high-level design and man
page(s). The high-level design of the secu-

The Delivery and Operations class provides relly functions of SLES provides an overview
quirements for the assurance that the TOE i9of the implementation of the security functions

not corrupted between the time the developelVithin the subsystems of SLES, and points
releases it and the customer fires it up. to other existing documents for further details

where appropriate.
SLES is delivered on CD/DVD in shrink- _) _ i
wrapped package to the customer. gusgo fulfill this requirement, the functional
verifies the integrity of the production CDs specification spreadsheet,.correspon.d.ence, and
and DVDs by checking a production Samp|e_h|gh-level design were written. Additionally,
Service Pack 3, the certification-sles-eal3.rpns€veral new man pages were created for un-
package, as well as other packages that coffocumented system calls, PAM modules and
tain fixes must be downloaded from the susgttilities, and many man pages required minor

maintenance Web site. Because those packag€8"ections.
are digitally signed, the user is both able to and

required to verify the integrity and authentic-

ity of those packages. Guidance for installation

and system configuration is provided in the Se-

curity Guide.

Ag.aln, existing SUSE processes met the '®1 1 4 Guidance Documents
qguirements for the EAL3 assurance level, so

documenting existing procedures was suffi-

cient for this evaluation. _ _
The Guidance Documents class provides the

requirements for user and administrator guid-
ance documentation. A security guide is also
necessary to fulfill the requirements of this

~class at EALS3.
The Development class encompasses require-

ments for documenting the TSF at various lev-SLES 8 already shipped with User and Ad-

els of abstraction, from the functional inter- ministrator Guides. The Security Guide and a
face to the implementation representation. Fospecial README file were created that con-

EAL3, we needed a functional specificationtain the specifics for the secure administration
and a high-level design. In addition, the corre-and usage of the evaluated configuration. The
spondence between the security functionalitySecurity Guide explicitly documents setting up

the functional specification, and the high leveland maintaining the system in an evaluated
design had to be documented. configuration.

4.1.3 Development

500 e Linux Symposium 2004 ¢ Volume Two

4.1.5 Life Cycle Support Although, SUSE has an excellent test infras-
tructure for regression testing already in place,

The Life Cycle Support assurance requiremenﬁdditipnal tests were required to test new func-
includes requirements for processes that dedionality, such as audit, and ensure cover-
with vulnerabilities found after release of the 29€ Of security relevant events. The Linux
product, as well as the physical security of thelest Pr_OJect provided an excellent base for the
developer's lab. test suite needed for EAL3. It already con-
tained almost all of the necessary test cases
The SUSE security procedures are defined anfbr every system call. In some cases, we had
described in documents in the SUSE intranetto add tests of expected failure cases to en-
The defect handling procedure SUSE has irsure that the security was being correctly en-
place for the development of SLES requires thdorced. We added some test cases for security-
description of the defect with its effects, secu-relevant programs, such as su, cron, at, and
rity implications, fixes and required verifica- ssh. We created tests to ensure that the sys-
tion steps. tem was configured in the evaluated man-

_ o) ner. We also created many tests for correct
Again, existing (and previously planned up- acp pehavior. Many of the system call and

dates to) SUSE procedures met the requiresecyrity-relevant program test cases were cre-
ments for this class and were merely requiredyeq during the course of the EAL2 evaluation
to be documented to fulfill the assurance re4nq then reused during the EAL3 evaluation.
quirements. The largest class of new test cases for EAL3
was tests of the new audit system. Testing
the audit subsystem required showing that all
4.1.6 Security Testing security-relevant system calls are logged cor-
rectly, all trusted programs (including PAM)
gorrectly logged security-relevant events, the
audit userspace tools contained correct func-
tionality, and that audit exhibits Controlled Ac-

The emphasis of the Security Testing class i
on the confirmation that the TSF operates ac

cording to its specification. This testing pro-

vides assurance that the TOE satisfies the s&€SS Protection File (CAPP)-compliant behav-
curity functionality requirements. Coverage '°" during threshold and failure events (for ex-

(completeness) and depth (level of detail) aréMPl€, low disk space). Geov was used to show
separated for flexibility. test coverage of the kernel internal interfaces.

Writing, documenting, and running these test
A detailed test plan was produced to test thecases on all of the evaluated platforms was a
functions of SLES on each evaluated platformsignificant portion of the evaluation effort.
The test plan includes an analysis of the test
coverage, an analysis of the functional inter-
faces tested, and an analysis of the testing.1.7 Vulnerability Assessment
against the high level design. Test coverage of

internal interfaces was defined and describegtg \yyinerability Assessment class defines re-
in the test plan documents and the test case d%ruirements for evidence that the developer

scriptions. The tests were executed on everyygked for vulnerabilities that might arise dur-
platform. The test results are documented Sthg development and use of the TOE.
that the tests can be repeated and the results in-

dependently confirmed. Our search for vulnerabilities was documented

Linux Symposium 2004 ¢ Volume Two * 501

in the Vulnerability Assessment document.(PAM) based upon user passwords. Other au-
This assessment included TOE misuse analythentication methods (e.g., Kerberos authen-
sis and a password strength of function analtication, token based authentication) that are
ysis. The analysis also describes the approacsupported by SLES as pluggable authentication
used to identify vulnerabilities of SLES and the modules are not part of the evaluated configu-
results of the findings. ration. PAM was configured to ensure medium

assword strength, to ensure password quality

The Vulnerability Assessment was performedf0 limit the use of the su command. and to re-
and written as part of this evaluation. strict root login to specific terminals.

4.2 CAPP Overview Meeting the CAPP requirements for Identifica-
tion and Authentication involved changing the

The Controlled Access Protection Profiledef‘rjlult PAM cgnflguratlon for SLES 8. The
(CAPP) is based on the C2 class of thenew configuration is documented by the Secu-

“Department of Defense Trusted Computerrlty Guide.
Systems Evaluation Criteria” (DoD 5200.28

— STD) colloquially known as the “Orange

Book.” CAPP requires that the operating sys-

tem implement the Discretionary Access Con-

trol (DAC) security policy. DAC allows the in-
formation owner to control who is allowed to

. . 4.2.2 User Data Protection
access the information.

The CAPP functional requirements fall in the
following five broad categories: User Data Protection specifies the functional-

ity that protects data from unauthorized access
- o and modification—the enforcement of the Dis-
Identification and Authentication cretionary Access Control policy. In addition,
deleted information must not be accessible and
newly created objects must not contain residual
information.

User Data Protection

Security Management

_ The Discretionary Access Control policy re-
Protection of the TSF stricts access to file system objects based on
Access Control Lists (ACLSs) that include the
standard UNIX® permissions for user, group,
and others. Access control mechanisms also
protect IPC objects from unauthorized access.

Security Audit.

4.2.1 Identification and Authentication
The evaluated configuration used the ACL sup-
Identification and Authentication include the POTtin the ext3 file system. The vanilla kernel
functionality required to uniquely identify the &lréady clearsfile system, memory and IPC ob-
user. jects before they can be reused by a process be-
longing to a different user. Thus, the User Data
SLES provides identification and authentica-Protection functionality requirements were al-

tion using pluggable authentication modulesready being met by SLES 8.

502 ¢ Linux Symposium 2004 * Volume Two

4.2.3 Security Management Non-kernel TSF software and data are pro-
tected by DAC and process isolation mecha-

. o nisms. In the evaluated configuration, the root
The Security Management class specifies how : . . :
security attributes, security data and securityuser owns the directories and files that define
’ the TSF configuration. Files and directories

functions are managed by the TOE. Securltycontaining internal TSF data (e.g., configura-

Management incl management of gr . :
anagement inc udes anageme torg OlJpfQion files, batch job queues) are also protected
and roles, separation of capability, and man;

agement of audit data. by DAC permissions.

: . The TOE and the hardware and firmware com-
Management of the security critical parame- . :
) - ponents are required to be physically protected
ters of the TOE is performed by administra-)
. : .. from unauthorized access. The system ker-
tive users. Commands that require root privi-)
nel mediates all access to the hardware mech-
leges, such as useradd and groupdel, are used. -
. anisms themselves, other than program visible
for system management. Security parame: : . :
. I CPU instruction functions.
ters are stored in specific files that are pro-
tected by the access control mechanisms of

the TOE against unauthorized access by non- . o
administrative users. 4.2.5 Abstract Machine Test Utility

(AMTU)
Other than the audit data management com-

mands (which are described in the SecurityTo completely fulfill the TSF Protection re-
Audit section below) all security managementquirement, we had to produce a tool to test the
functionality was provided by standard func-underlying abstract machine: “The TSF shall
tionality already included in SLES 8. run a suite of tests [selection: during initial
start-up, periodically during normal operation,
or at the request of an authorized administra-
tor] to demonstrate the correct operation of the
4.2.4 TSF Protection security assumptions provided by the abstract
machine that underlies the TS¥This require-

Protection of the TSF specifies the require/MeNt is sometimes fulfilled by Power-On Self
ments for maintaining the integrity of the TSF €St (POST) procedures, but given the diver-
and its data, particularly the protection of con-Sity Of platforms that were included in the cer-
figuration data. The TSF will need to perform lification, we decided that a userspace admin-
the appropriate testing to demonstrate the sectgtrative tool, AMTU, would be the simpler ap-

rity assumptions about the underlying abstracPrach- AMTU can be run by an administrator
machine upon which the TSF relies. In addi-2t @ny time and ensures that the hardware en-
tion, the TSF must be demonstrated to be com{rced security protection is still in effect. To
plete and tamperproof. this end, the tool runs a simple check for mem-
ory errors, checks for enforcement of mem-
While in operation, the kernel software andory separation, checks the correct operation of
data are protected by the hardware memoryetwork and disk 1/0O controllers, and verifies
protection mechanisms. The memory and pro _ , _
4Controlled Access Protection Profile available
cess management components of the kernel eg- - http:/Awww.radium.csc.milltpep/
sure that user processes cannot access kerm@lary/protection_profiles/CAPP-1.d.

storage or storage belonging to other processesdf

Linux Symposium 2004 ¢ Volume Two * 503

that privileged instructions cannot be executecevents is performed at the kernel level. Unlike
when the hardware is in user mode. some existing implementations, the audit dae-
mon does not perform any filtering itself. This

The source code for AMTU is avail- gliminates a serious performance bottleneck.

able at http://www-124.ibm.com/

developerworks/projects/amtu . The set of filter primitives provided by LAuUS is
fairly rich, and primitives can be combined us-
ing boolean operations. For instance, it is pos-

4.2.6 Security Audit sible to audit open(2) calls made by a setuid

application, while ignoring all other open(2)

calls, or to restrict auditing to certain files. The

Auditing systems collect information about e .
events related to security-relevant activities.eal?’.'Cemf.'catlon RF.)M contains the evaluated
udit configuration files.

Security-relevant activities are defined as thos&

events that are governed by the security polat startup, auditd reads its configuration and
icy. The resulting audit records can be examthe set of filter expressions from one or more

ined to determine which security-relevant ac+ijes, |oads the filters to the kernel, and starts
tivity took place and which user is responS|bIeauditing_

for them. No fully CAPP-compliant audit sub-

system was available for Linux, so we imple-Auditd then proceeds to listen for audit events

mented this feature to achieve the certificationgenerated by the kernel. It retrieves and writes

The audit subsystem developed for the evaluaall records directly to disk. Because of the

tion is called Linux Audit System or LAuS. CAPP requirement that audit records must
never be lost, this process is more complex than
it might seem. auditd constantly monitors disk

LAuS Conceptual Overview The Linux usage and can be configured to respond in dif-
Audit System (LAuS) consists of three primary ferent ways if free disk space drops below cer-
components: a kernel module responsible fofain thresholds. Possible reactions to low disk
intercepting system calls and recording releSPace include notifying the administrator, sus-
vant events, an audit daemon (auditd) that rePending all audited processes, or shutting down
trieves the records generated by the kernel antie system immediately. Both the thresholds
writes them to disk, and a number of com-and auditd’s reactions can be configured by the
mand line utilities for displaying, querying and administrator.

archiving the audit trail. See Figure 1. LAUS supports different output modes to pro-

The interface between kernel and user spac¥de aflexible way to configure data collection.
uses a character device named /dev/audit. ThEN€ simplest approach simply writes the audit
audit daemon uses /0O Control operationdrail to a single file in append mode, similar to
(ioctls) on this device to configure the auditthe way syslogd works.

module, and it retrieves audit records from it

. In “bin mode,” audit writes data to a number of
using the read() system call.

fixed sized files (bins), switches to the next file
external command to archive the full bin. Fi-
°The LAuS Design Document is available at nally, there is a so-called “stream mode” that

ftp://ftp.suse.com/pub/projects/ lets you pipe the audit trail directly into an ex-
security/laus/doc/LAuS-Design.pdf

504 e Linux Symposium 2004 ¢ Volume Two

system calls ;

i audit.o
rtnetlin kernel module
(kernel)

(user land) \L

user land audit events [auditd J

— ¢

augrep \
. J
(\/
aucat
N / audit trail

Figure 1: LAuS Conceptual Overview

ternal command,; this can be useful if you wanttially anticipated. The rest of this section deals
to forward the trail to a central storage server. with the questions surrounding the audit kernel

" module.
Auditing can be enabled globally or on a per-

process basis; in the latter case, all the child
processes are audited as well. The only proaggitional Design Constraints In addition

cesses always exempt from auditing are inito making our audit implementation compliant
and the audit daemon itself. with the CAPP requirements, we had to deal

User land utilities were created to parse and'v ith several constraints which are worth not-
read the audit log files. aucat 'cats’ the file,'ng'

transforming all of the audit records to a hu-pne was to minimize performance overhead.
man readable format. augrep ‘greps’ the audijn the case where auditing was compiled into
records and allows the administrator to seleCihe kernel, but not configured by the adminis-
tively review the records. augrep allows thetrator, we wanted it to have zero performance
administrator to select audit records based Ofinpact if possible. Our kernel developers spent
type, time (range), user, syscall, program (byguite a lot of time on additional kernel tuning,
name or PID) that generated the event, or anynaking sure the kernel performed and scaled
combination of these attributes. well. Breaking this was not an option.

Even though the user land utilities are far fromye also wanted to have a performance over-
trivial, the kernel portion of LAUS proved far head as small as possible for the audited case,

LAUS is a lot more complex than we had ini- Thjs gefinitely took second place to correctness

Linux Symposium 2004 ¢ Volume Two * 505

and CAPP compliance. tem calls for ptrace. This intercept happens
) o . . very early in the platform-specific assembler
A third objective was entirely non-technical, code before the system-call function itself is
but played a crucial role in choosing an ap-jinygked. The assembly code retrieves a set of
proach to intercepting system calls. We wanteq|aqs associated with the calling process, and
our modifications to the core kernel as small agnacks theT TRACESYSbit. If that bit is set,
possible; most of the code should be inside & j;mps to a separate code branch dealing with

loadable module. ptracing. The same test is performed when re-

The rationale behind this was to minimize tU"ning from a system call.

the probability of introducing bugs (except, of |y our audit implementation, we simply

course, t_)ugs in the audit code itself), and tQyefined an additional task flag named
ease maintenance. PTAUDITED, and extended the bit test

The latter point was a fairly important item in in the sysf[em-call entry an_d exit che to test
the context of the SLES 8 kernel, which in- for both bits at the same time. This gave us

cludes well above 1,500 additional patches apgystem-call intercept with zero performance

plied on top of the mainline kernel. Updating overhead in the normal, non-audited code path.

SLES 8 to a new mainline kernel version WaSgee Figure 2 for a picture showing the flow of
a bit of an adventure, so we wanted to aVO'dcontroI when auditing a system call.

adding audit patches to the kernel that changed
lots of files all over the place.

Defining which system calls to audit By

Where to intercept system calls There are &, the most important part of auditing con-

basically three ways to intercept system call<<€MSs system calls. As mentioned above, CAPP
on a 2.4 Linux kernel. requires auditing all security-relevant system

calls. We needed to determine which system
The first approach is to create wrappers forcalls are security relevant and which aren't.

those system calls you wish to track, and re- ,
place the original function pointers in the sys- 1€ obvious ones are those that change the

tem call table with those of the new wrapperState of a process, the file system, or other sys-
functions. This sounds simple enough and€m resources. These includes calls such as se-
would also satisfy our requirements for zerotUid: Open, close, and setting the system’s host
performance impact in the non-audit case, an#@me or clock. An audit implementation also

a minimally intrusive kernel patch. Unfortu- N€€ds to cover less obvious operations, such

nately, this approach doesn’t work on all archi-&S Pinding a socket to a port, attaching shared
tectures. memory segments, and performing ioctls.

The next approach is to add hooks to all kerMost system calls are fairly straightforward to

nel functions that must be audited. The mahandle, and much of the information on sys-

jor drawback to this approach is that the kernef€m calls and the arguments they take can be
patch would touch lots of files in the kernel, encoded statlgally in tabl'es. Some‘calls, such
which we wanted to avoid. as msgrcv, which comes in two versions on the
i386 platform for historical reasons, were diffi-
The third approach, which we chose, was tocult to handle. 64-bit platforms usually require
hook into the code path that intercepts sysan additional table as they support a 32-bit sys-

506 ¢ Linux Symposium 2004 ¢ Volume Two

Event: Event:
System Call Netlink

\/

Audit Hooks

v

Filtering

T~

Filter table Kernel Buffer

\

(kernel)

(user land)

¢

Device File

read(),
configure

\

Binary log

Daemon

Figure 2: Auditing a System Call

tem call interface in addition to their native 64- The ioctl system call takes an open file descrip-
bit interface. tor, which must refer to something controlled

_ by the driver (for example, a terminal, a device
However, some of the operations we wanted t(?ile, or a socket), an integer number specify-

audit proved a little more elusive; these WEr€ng the request, and an opaque pointer to some

the ioctl system call and network configuration .p;nk of memory. Exactly what to do with this

changes. piece of memory depends on the driver that is
being talked to, and the integer passed as the

e) _ request ID.
Auditing ioctls The ioctl system call is the

dirty little back alley of UNIX-like operating Unfortunately for us, the Linux kernel supports
systems. If a driver for a piece of hardware,well over a thousand ioctls, and while many
a network protocol or a file system needs toof them are rather obscure, they do change the
expose some driver-specific mechanism or tunsystem’s state and are thus subject to auditing.
able parameters to user-space applications, tHeis obvious that compiling and maintaining a
most common method for doing so is to definelist of 1000 ioctls and their arguments was not
one or more ioctls. an option.

Linux Symposium 2004 ¢ Volume Two * 507

Most ioctl numbers nowadays encode suffi-ply recording all sendmsg and recvmsg calls
cient information on whether the operationon netlink sockets, but that is far from optimal.
passes data into the kernel, retrieves data, ddn the one hand, a send or receive operation
both, and the size of the argument. Thereforegn a netlink socket can include more than one
writing audit records for these is straightfor- request. On the other hand, the outcome of a
ward. However, there is still a fair number of netlink call is not returned through the system-
ioctls that do not follow this convention. call return value, but in a separate netlink mes-
)) _ sage generated by the kernel and queued to that
What is far worse is that ioctl number_s are notgycket. Simply logging the raw netlink data
unique—frequent users of strace will proba-gent and received would require quite a bit of
bly know that the TCGETS ioctl uses the same jjjt.in intelligence on the part of the user land

number as some obscure sound card operatiogypjications that are supposed to display this
But this is not the only conflict. data.

However, the most difficult aspect of auditing g instead, we decided to tap into the netlink
ioctls is that it isn’t sufficient to simply gener- layer directly, where a data blob sent to a
ate audit records for these calls; you must als@iatjink socket is broken up into separate re-
be able to display the information of each audityests, and each request is processed in return.

record to the user. This allowed us to record each netlink request
separately, and place the outcome of the oper-

The way we solved this problem was entirely>=F"" .)
ation into the same audit record as the original

non-technical. Our target of evaluation clearly
stated that the super user account remains Sp[ee_quest.
cial. The super user can do everything, from
loading unsupported modules not covered b
the certification, to disabling the audit subsys
tem altogether.

}ll'he Login User ID An aspect of auditing
that is worth mentioning is how to deal with
the CAPP requirement that each record identi-

Instead of trying to handle each and every ioctffies the user performing the operation.

in the audit module, we went through all ioctls . . ,
g The obvious solution (which would be to use

available in our to-be-certified configuration | D iated with th I
and categorized them. The ones we needed ttge real user i associatedwith the cafling pro-
cess) is not sufficient, as setuid applications

audit were those that were security relevant in h h IDs at will. Tracki I
some way, but did not require administrative®2" change these 1Ds al will.— fracking a

privilege; the list we came up with this way was U|t<.j|.t.cha{1ge§, antd thﬁ]rebi/hallowlpg lthe aulglt
much smaller than the original list and moreUHHES 10 PIECe together he original user

manageable. from this mosaic, is not practical either. It IS
not uncommon for some processes on a dedi-
cated server to run for hundreds of days, so the

-] _ amount of data to look at would be prohibitive.
Auditing network configuration Another

aspect that proved to be a challenge was trackFhe only viable solution in this case is to at-
ing network configuration changes, becaus¢ach a “login uid” to each process. The login
only a fraction of those are done through ioctluid remained constant across all other changes
calls. Most network configuration changesof real, effective, and saved user IDs, and was
are performed by passing data to a netlinknherited by all child processes. Of course, this
socket. These changes can be audited by simequired changes to PAM so that this uid would

508 e Linux Symposium 2004 ¢ Volume Two

be set on login. file, which can be mapped by other processes
as well.

Such an attack on the audit module is not re-
ally practical, because proper timing is proba-

mzlalj(_)r problerrq with tr;le appr(()jacrkl]_t(r)] _syrs]_te(;nbly quite hard, and any attempt to perform this
call intercept that we chose and which In Rind-o o \ould most likely leave a trail in the au-

S|glz)t| madetlr'[] 6}[less than op'ﬂmal chmcc(aj. tThtedit file. But even the theoretical possibility of
problem 1S that our approach requires data %ircumventing the audit subsystem is unaccept-
be copied twice. To understand why this is a

able in terms of CAPP compliance.
problem, let’s look at the open(2) system call, P

which takes a path name as an argument. Thishe cases described above can be detected
path name is passed into the kernel functiorand dealt with by the audit module. Deal-
as a pointer to a string (essentially a chunk ofng with these problems, however, incurs ad-
memory) in the address space of the user praditional complexity and performance loss (es-
cess. In order to operate on this string, the kerpecially in the case of multithreaded applica-
nel must copy itto a buffer in the kernel addressions). Needless to say, the added complex-
space, possibly paging in memory as it goes. ity engendered a considerable number of bugs.
. _ For this reason, these additional checks can be
When entering the kernel, the audit module "Cturned off by the administrator. These checks

'%re turned off in the evaluated configuration of

cides whether to create an audit record for th'%udit and the associated risk. considered min-

call. If it does decide to create an audit recordimal, is documented in the Vulnerability As-

it sets up an audit record containing the SYSsessment.

tem call number and a copy of all arguments,
including the path.

Nightmare on Audit Street There is one

The system call proceeds as normal, and th8USE Linux Server 9 SUSE Linux Server
kernel functionsys_open retrieves the path 9 will include an updated version of the LAUS
name from user space a second time, and cakernel patches. In many respects, the updated
ries out the requested operation based on thisAuS module will work in the same way as the
data. SLES 8 version did, with the major exception

_ _ being the way system calls are intercepted.
The problem is that the memory in user space

may have changed in the meantime, so that th&/hen planning audit for SUSE Linux Server 9,
record written by the audit module does notwe considered two options.

correspond to what was actually performed by _] _
the operating system. The first option was a solution we had already

looked at for SLES 8 and abandoned, namely
There are several ways this can happen. G&dding hooks to all system call functions rele-
course, the calling process itself cannot modvant for CAPP. This is the approach we chose
ify this memory, as it is currently executing for SUSE Linux Server 9, mainly in order to
the system call. However, memory can beavoid having to jump through all those extra
shared between processes in a variety of way$ioops in an attempt to prevent the race con-
Threads can share the entire address spacdifions described in the previous section. One
processes can attach to the same shared mepieasant side effect of this approach is that it
ory segment; memory can be mapped from also eliminated a lot of platform-specific code.

Linux Symposium 2004 ¢ Volume Two * 509

The second option we considered was to adéruture Directions This is not to say that it is
audit support as an LSM module, or extend-not possible to write an audit implementation
ing an existing LSM module such as SELinux.leveraging some features of the LSM frame-
The security framework in the 2.6 kernel goeswork. In fact, we hope to have a common audit
a long way toward intercepting all security- implementation in the mainstream kernel one
relevant operations. Adding audit hooks inday. It would greatly help acceptance by the
this place is appealing, because it would meakernel community if that solution did not add
no additional performance cost (the securityanother set of hooks into many performance-
hooks do come with a certain performancecritical functions.

penalty already) and no additional maintenance

problems (because the audit patch would not

have to touch multiple kernel files).

The main reason why we did not choose this> Evaluation Roadmap

approach was that the security hooks provide a
more abstracted view than we had chosen for

LAuS in SLES 8. Security hooks do not €or- pgtarming a security evaluation should never
respond directly to system calls, but rather reppa 5 gne-time accomplishment. To maintain

resent the security check necessary to validatg, security level achieved, the security cer-

whether an operation is permitted. There is ificate must be maintained. In the case of
fine distinction between “user X attempted t0| inux the intent is to go a step further: to

perf(?‘rm operation Y, and the outcome was Z'jnrease. step-by-step, the assurance level and
and “user X attempted an operation on objeChe gecyrity functionality until Linux achieves

A that caused us to perform security check By, o highest assurance level of any commer-

and the outcome of this check was C." In par-;j5| gperating system product, while offering
ticular, we are neither aware of the operationyq richest set of security functions. The first
that triggered the security check, nor of its fl-step was accomplished in July 2003, when
nal outcome, because the operation can still fail o obtained an EAL2+ evaluation for ’SUSE
even if security clearance is given. SLES 8 as-is. This paper documented the re-
Moreover, a single system call may requiresﬂtsggzﬁ;ecorﬁ_ st?_p, V\flherSeL\IIEvg gkg‘;'g?d a
several security checks, such as renaming & certiication tor n

file, where we need permission to remove the/2nuary 2004. Linux, like its commercial com-
file from the source directory and permissionP€ltors, has now been successiully evaluated
to add it to the destination directory for compliance with the requirements of the US

government-defined CAPP. As a further step,
Changing LAuUS to use the security hooksLinux is currently in evaluation for compliance
would have meant rewriting much more codewith the requirements of the EAL4 level. This
than we wanted to, including the filtering codeincludes the development of a low-level de-
and much of the user-land applications. Wesign of the Linux kernel (the evaluation will be
also would have had to modify considerablebased on the 2.6 version of the kernel) as well
parts of the documentation required for recerti-as a more sophisticated vulnerability analysis
fication. being performed. The experience gathered in
the EAL2 and the EAL3 evaluations have given
us the confidence that compliance with EAL4
can be achieved in fairly short order.

510 ¢ Linux Symposium 2004 * Volume Two

6 Value of Certification PAM modules and admin utilities, including
io_setup , readahead , set_thread_
f£rea , pam_wheel , pam_securetty , and
|9thers.

The value of certification can be considere
from two perspectives: business and technica

In order for Linux to be adopted by the com- .
mercial and government markets, it faces stiﬂ‘7 Conclusion
competition from entrenched incumbents. All
of the incumbent products have been evaluatedchieving the EAL2 and EAL3/CAPP certifi-
using the Common Criteria. In addition, the cations was significant because it proved that
U.S government instituted a national securityLinux is indeed certifiable. The certification
community policy against procuring unevalu-opened the market up to include U.S. govern-
ated products (NSTISSP No. 11). There isment agencies and commercial entities that re-
a high probability that other governments andquire certification. Future evaluations of Linux
commercial entities will do the same. distributions can be made easier by Linux

. . o ~adoption of a CAPP-compliant audit subsys-
While there is much skepticism surroundingiem.

the technical value of certification, certification

is very much in line with the “many eyes” phi-

losophy. For commercial products, certifica-8 Legal Statement
tion is often the only time the code is reviewed

by people outside (_)f the development tea_mfl'his document represents the views of the authors
The assurance requirements of Common Criteand does not necessarily represent the view of IBM.
ria add to the number of trained eyes looking at

the design and source of a project using definetBM, iSeries, pSeries, xSeries, and zSeries are reg-
and rigorous procedures. During the course Oilst(_ared trademqus_of Interrjational Business Ma-

the EAL3 evaluation, we found and fixed SeV_chlnes Corporation in the United States, other coun-
eral bugs, created lots of documentation, and{'es: o both.

shipped an integrated CAPP-compliant audiiynix is a registered trademark of The Open Group

system. We noticed an anomaly on the iSeries the United States and other countries.

platform while testing the Abstract Machine

Testing Utility. Analysis of this anomaly by Other company, product, or service names may be
the ppc64 development team led to the discovtrademarks or service marks of others.

ery of a memory separation bug on the iSeries

platform® Many PAM module bugs were iden-

tified and fixed in SLES 8, including a double

free bug inpam_pwcheck .” Man pages were

created for several undocumented system calls,

6paul Mackerras fix to “Make kernel RAM user-
inaccessible on iSeries™http://www.kernel.
org/diff/diffview.cgi?file=/pub/
linux/kernel/v2.4/patch-2.4.23.bz2;z=
290

"http://www.atsec.com/01/index.php?
id=03-0002-01&news=28 Patches are available
from klaus@atsec.com

Proceedings of the
Linux Symposium

Volume Two

July 21st—24th, 2004
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. HuttonSteamballoon, Inc.
Stephanie Donovar,inux Symposium
C. Craig Rossl.inux Symposium

Review Committee

Jes Sorensefild Open Source, Inc.
Matt DomschDell

Gerrit HuizengalBM

Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel

Val Henson Sun Microsystems
Jamal Hadi SalimiZnyx

Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team
John W. LockhartRed Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

