
Linux Kernel Hotplug CPU Support

Zwane Mwaikambo
FSMLabs

zwane@fsmlabs.com

Ashok Raj
Intel

ashok.raj@intel.com

Rusty Russell
IBM

rusty@rustcorp.com.au

Joel Schopp
IBM

jschopp@austin.ibm.com

Srivatsa Vaddagiri
IBM

vatsa@in.ibm.com

Abstract

During the 2.5 development series, many peo-
ple collaborated on the infrastructure to add
(easy) and remove (hard) CPUs under Linux.
This paper will cover the approaches we used,
tracing back to the initial PowerPC hack with
Anton Blanchard in February 2001, through
the multiple rewrites to inclusion in 2.6.5.

After the brief history lesson, we will de-
scribe the approach we now use, and then the
authors of the various platform-specific code
will describe their implementations in detail:
Zwane Mwaikambo (i386) Srivatsa Vaddagiri
(i386, ppc64), Joel Schopp (ppc64), Ashok Raj
(ia64). We expect an audience of kernel pro-
grammers and people interested in dynamic
cpu configuration in other architectures.

1 The Need for CPU Hotplug

Linux is growing steadily in the mission crit-
ical data-center type installations. Such in-
stallations requires Reliability, Availability and
Serviceability (RAS) features. Modern proces-

sor architectures are providing advanced error
correction and detection techiniques. CPU hot-
plug provides a way to realize these features
in mission critical applications. CPU hotplug
feature adds the following ability to Linux to
compete in the high end applications.

• Dynamic Partitioning

Within a single system multiple Linux
partitions can be running. As workloads
change CPUs can be moved between par-
titions without rebooting and without in-
terrupting the workloads.

• Capacity Upgrade on Demand

Machines can be purchaced with extra
CPUs, without paying for those CPUs
until they are needed. Customers can
at a later date purchase activiation codes
that enable these extra CPUs to match in-
creases in demand, without interrupting
service. These activiation codes can either
be for temporary activation or permanant
activation depending on customer needs.



468 • Linux Symposium 2004 • Volume Two

• Preventive CPU Isolation

Advanced features such as CPU Guard in
PPC64 architectures, and Machine Check
Abort (MCA) features in Itanium® Prod-
uct Family (IPF) permit the hardware to
catch recoverable failures that are symp-
tomatic of a failing CPU and remove that
CPU before an unrecoverable failure oc-
curs. An unused CPU can later be brought
online to replace the failed CPU.

2 The Initial Implementation

In February 2001, Anton Blanchard and
Rusty Russell spent a weekend modifying
the ppc32 kernel to switch CPUs on and
off. Stress tests on a 4-way PPC crash box
showed it to be reasonably stable. The
resulting 60k patch to 2.4.1 was posted
to the linux-kernel on February the 4th:
http://www.uwsg.iu.edu/hypermail

/linux/kernel/0102.0/0751.html .

Now we know that the problem could be
solved, we got distracted by other things. Upon
joining IBM, Rusty had an employer who ac-
tually had a use for hotplugging CPUs, and in
2002 the development started up again.

The 2.4 kernels usedcpu_number_map()
to map from the CPU number given by
smp_processor_id() (between 0 and
NUM_CPUS) to a unique number between
0 and smp_num_cpus . This allows sim-
ple iteration between 0 andsmp_num_cpus
to cover all the CPUs, but this cannot
be maintained easily in the case where
CPU are coming and going. Given my
experience thatcpu_number_map() and
cpu_logical_map() (which are noops on
x86) are a frequent source of errors, Rusty
chose to eliminate them, and introduce a
cpu_online() function which would indi-

cate if the CPU was actually online. Much
of the original patch consisted of removing the
number remapping, and rewriting loops appro-
priately.

This change went into Linus’ tree in 2.5.24,
June 2002, which made the rest of the work
much less intrusive.

In the next month, as we were trying to get
thecpu_up() function used for booting, Li-
nus insisted that we also change the boot order
so that we boot as if we were uni-processor,
and then bring the CPUs up. Unfortunately,
this patch broke Linus’ machine, and he par-
tially reverted it, leaving us with the current
situation where a little initialization is done be-
fore secondary CPUs come online, and nor-
mal __initcall functions are done with all
CPUs enabled. This change also introduced
thecpu_possible() macro, which can be
used to detect whether a CPU could ever be on-
line in the future.

The old boot sequence for architectures was:

1. smp_boot_cpus() was called to ini-
tialize the CPUs, then

2. smp_commence() was called to bring
them online.

In addition, each arch optionally implemented
a “maxcpus” boot argument. This was made
into an arch-independent boot argument, and
the boot sequence became:

1. smp_prepare_cpus(maxcpus)
was called to probe for cpus and set up
cpu_present(cpu) 1, then

1On arch’s that dont fill incpu_present(cpu)
the function fixup_cpu_present_map just uses
whatcpu_possible_map was set during probe. See
the section in IA64 for more details.



Linux Symposium 2004 • Volume Two • 469

2. __cpu_up(cpu) was called for each
CPU wherecpu_present(cpu) was
true, then

3. smp_cpus_done(maxcpus) was
called after every CPU has been brought
up.

At this stage, the CPU notifier chain and the
cpu_up() function existed, but CPU removal
was not in the mainstream kernel. Indeed, sig-
nificant scheduler changes occurred, preemp-
tion went into the kernel, and Rusty was dis-
tracted by the module reworking. The result:
hotplug CPU development floundered outside
the main tree for over a year.

3 The Problem of CPU Removal

The initial CPU removal patch was very sim-
ple: the process scheduled on the dying CPU,
moved interrupts away, setcpu_online()
to false, and then scheduled on every other
CPU to ensure that noone was looking
at the old CPU values. The scheduler’s
can_schedule() macro was changed to re-
turn false if the CPU was offline, so the CPU
would always run the idle task during this time.
Finally, the arch-specificcpu_die() func-
tion actually killed the CPU.

Three things made this approach harder as the
2.5 kernel developed:

1. Ingo Molnar’s O(1) scheduler was in-
cluded. Rather than checking if the
CPU was offline every time we ran
schedule() , we wanted to avoid
touching the highly-optimized code paths.

2. The kernel became preemptible. This
means that scheduling on every CPU is
not sufficient to ensure that noone is us-
ing the old online CPU information.

3. Workqueue and other infrastructure was
introduced which used per-cpu threads,
which had to be cleanly added and re-
moved.

4. More per-CPU statistics were used in
the kernel, which sometimes need to be
merged when a CPU went offline (or each
sum must be for every possible CPU, not
just currently online ones)

5. Sysfs was included, meaning that the in-
terface should be there, instead of in proc,
along with structure for other CPU fea-
tures

Various approaches were discussed and tried:
some architectures (like i386) merely simu-
late CPUs going away, by looping in the idle
thread. This is useful for testing. Others
(like PPC64 and IA64) actually need to re-start
CPUs.

The following were the major design points
which were tested and debated, and the reso-
lution of each:

• How should we handle userspace tasks
bound to a single CPU?

Our original code sent a SIGPWR to tasks
which were bound such that we couldn’t
move them to another CPU. This has
the default behaviour of killing the task,
which is unfortunate if the task merely in-
herited the binding from its parent. The
ideal would be a new signal which would
also be delivered on other reconfiguration
events (like addition of CPUs, memory),
but the Linux ABI does not allow the ad-
dition of new signals.

The final result was to rely on the hotplug
scripts to handle this information, and rely
on userspace to ensure that removing a
CPU was OK before telling the kernel to
switch it off.



470 • Linux Symposium 2004 • Volume Two

• How should we handle kernel threads
bound to a single CPU?

Unlike userspace, kernel threads often
have a correctness requirement that they
run on a particular CPU. Our original
approach used a notifier between mark-
ing the CPU offline, and actually tak-
ing it down; these threads would then
shut themselves down. This two-stage ap-
proach caused other complications, and
the legendary Ingo Molnar recommended
a single-stage takedown, and that the ker-
nel threads could be cleaned up later.
While that simplified things in general,
it involved some new considerations for
such kernel threads.

• Issues Creating And Shutting Down Ker-
nel Threads

In general, the amount of code required
to stop kernel threads proved to be sig-
nificant: barriers and completions at the
very least. The other issue is that most
kernel threads assume they are started at
boot: they don’t expect to be started from
whatever random process which brought
up the CPU.

This lead Rusty to develop the “kthread”
infrastructure, which encapsulated the
logic of starting and stopping threads in
one place. In particular, it uses keventd
(which is always started at boot) to create
the new thread, ensuring that there is no
contamination by forking the userspace
process. Thedaemonize() function at-
tempts to do this, but it’s more certain to
start from a clean slate than to try to fix a
existing one.

• Issues Using keventd for CPU Hotplug

keventd is used as a general purpose
kernel thread for performing some de-
ferred work in a thread context. The

“kthread” infrastructure uses this frame-
work to start and stop threads. In addition
when various kernel code attempts to
call user-space scripts and agents use
call_usermode_helper() . This
function used the keventd thread to spawn
the user space program. This approach
caused a dead lock situation when the
call_usermode_helper() is called
as part of the_cpu_disable() , since
keventd threads are per-CPU threads.
This results in queueing work to keventd
thread via schedule_work() , then
waiting for completion. This results in
blocking the keventd thread. Unless the
work queued gets to run, this keventd
thread would never be woken again. To
avoid this scenario, Rusty introduced the
create_singlethread_workqueue
which now provides a separate thread that
is not bound to any particular CPU.

• How to Avoid Having To Lock Around
Every Access to Online Map

Naturally, we wanted to avoid
locking around every access
to cpu_online_map (via
cpu_online() for example). The
method was one Rusty invented for the
module code: the so-called “bogolock”.
To make a change, we schedule a thread
on every CPU and have them all si-
multaneously disabled interrupts, then
make the change. This code was gener-
alized from the module code, and called
stop_machine_run() . This means
that we only need to disable preemption
to accesscpu_online_map reliably.
If you need to sleep, thecpu_control
semaphore also protects the CPU hotplug
code, so there is a slow-path alternative.

• How to Avoid Doing Too Much Work
With the Machine Stopped

While all CPUs are not taking interrupts,



Linux Symposium 2004 • Volume Two • 471

we don’t want to take too long. The ini-
tial code walked the task list while the ma-
chine was frozen, moving any tasks away
from the dying CPU. Nick Piggin came
up with an improvement which only mi-
grated the tasks on the CPU’s runqueue,
and then ensured no other tasks were mi-
grated to the CPU, which reduced the hold
time by an order of magnitude. Finally
Srivatsa Vaddagiri went one better: by
simply raising the priority of the idle task
with a specialsched_idle_next()
function, we ensure that nothing else runs
on the dying CPU.

The process by which the CPU actually goes
offline is as follows:

1. Takecpu_control semaphore,

2. Check more than one CPU is online (a bug
Anton discovered in the first implementa-
tion!),

3. Check that the CPU which they are taking
down is actually online,

4. Take the target CPU out of the CPU mask
of this process. When the other steps are
finished, they will wake us up, and we
must not migrate back onto the dead CPU!

5. Usestop_machine_run() to freeze
the machine and run the following steps
on the target CPU

6. Take the CPU out ofcpu_online_map
(easier for arch code to do this first).

7. Call the arch-specific __cpu_
disable() which must ensure that
no more hardware interrupts are received
by this CPU (by reprogramming interrupt
controllers, or whatever),

8. If that call fails, we restore thecpu_
online_map . Otherwise we call
sched_idle_next() to ensure that
when we exit the CPU will be idle.

9. At this point, back in the caller, we wait
for the CPU to become idle, then call the
arch-specific__cpu_die() which ac-
tually kills the offline CPU, by setting a
flag which the idle task polls for, or using
an IPI, or some other method.

10. Finally, theCPU_DEADnotifier is called,
which the scheduler uses to migrate tasks
off the dead CPU, the workqueues use to
remove the unneeded thread, etc.

The implementation specifics of each architec-
ture can be found in the following sections.

4 Remaining Issues

The main remaining issue is the interaction
of the NUMA topology and addition of new
CPUs. An architecture can choose a static
NUMA topology which covers all the possible
CPUs, but for logical partitioning this might
not be possible (we might not know in ad-
vance).

• Per-CPU variables are allocated using
__alloc_bootmem_node() at boot,
for performance reasons. Unknown CPUs
are usually assumed to be in the boot
node, which will impact performance.

• sysfs node topology entries need to be up-
dated when a CPU comes online, if the
node association is not known at boot.

• The NUMA topology itself should be up-
dated if it is only known when a CPU
comes online. This is now possible, using
the stop_machine_run() function,



472 • Linux Symposium 2004 • Volume Two

but no architectures, other than PPC64,
currently do this.

• There are likely some tools in use today
that would require minor changes as well.
One such tool identified is the top(1) util-
ity, which has trouble dealing with the
fact that CPU’s available in the system are
not logically contiguous. For e.g in a 4-
way system, if logical cpu2 was offlined,
when cpu0, cpu1, cpu3 were still func-
tional, top would display some error in-
formation. Also the tool does not update
the CPU information and not able to dy-
namically update them when new CPU’s
are added, or removed from the system.

5 i386 Implementation

Commercial i386 hardware available today of-
fer very limited support for CPU Hotplug.
Hence the i386 implementation, as it exists,
is more of a toy for fun and experimentation.
Nevertheless, it was used intensively during
development for exercising various code paths
and, needless to say, it exposed numerous bugs.
Most of these bugs were in arch-independent
code.

Since the hardware does not support physical
hotplugging of CPUs, only logical removal of
a CPU is possible. Once removed from the sys-
tem, a dead CPU does not participate in any
OS activity. Instead, it keeps spinning, wait-
ing for a online command, in the context of
its idle thread. Once it gets the online com-
mand, it breaks out of the spin loop, puts it-
self in cpu_online_map , flushes TLB and
comes alive!

Some important i386 specific issues faced dur-
ing development are described below:

• Boot processor
There are a few interrupt controller con-

figurations, which necessitate that we not
offline the boot processor. Systems may
be running with the I/O APIC disabled
in which case all interrupts are being
serviced by the boot processor via the
i8259A, which cannot be programmed to
direct interrupts to other processors. An-
other being interrupts which may be con-
figured to go via the boot processor’s LVT
(Local Vector Table) such as various timer
interrupt setups.

• smp_call_function
smp_call_function is one tricky function
which haunted us a long time. Since it
deals with sending IPIs to online CPUs
and waiting for acknowledgement, num-
ber of races was found in this function wrt
CPUs coming and going while this func-
tion runs on some CPU. Fortunately, when
CPU offline was made atomic, most of
these race conditions went away. CPU on-
line operation, being still non-atomic, ex-
poses a race wherein an IPI can be sent
to a CPU coming online and the sender
will not wait for it to acknowledge the IPI.
The race was fixed by taking a spinlock
(call_lock ) before putting CPU in the
online_map.

• Interrupt redirection
If I/O APIC is enabled, then its redirec-
tion table entries (RTEs) need to be re-
programmed every time a CPU comes and
goes. This is so that interrupts are deliv-
ered to only online CPUs.

According to Ashok Raj, a safe time to re-
program I/O APIC RTE for any interrupt
is when that interrupt is pending, or when
the interrupt is masked in RTE.

Going by the first option, we would have
to wait for each interrupt to become pend-
ing before reprogramming its RTE. Wait-
ing like this for all interrupts to become



Linux Symposium 2004 • Volume Two • 473

pending may not be a viable solution dur-
ing CPU Hotplug. Hence the method
followed currently is to reprogram RTEs
from the dying CPU and wait for a small
period ( 20 microseconds) with interrupts
enabled to flush out any pending inter-
rupts. This, in practice, has been enough
to avoid lost interrupts.

The right alternative however would be to
mask the interrupt in RTE before repro-
gramming it, but also accounting for the
case where the interrupt might have been
lost during the interval the entry was left
masked. A detailed description of this
method is provided in IA64 implementa-
tion section.

• Disabling Local Timer Ticks
Local timer ticks are local to each CPU
and are not affected by I/O APIC repro-
gramming. Hence when a CPU is brought
down, we have to stop local timer ticks
from hitting the dying CPU. This feature
is not implemented in the current code.
As a consequence, local timer ticks keep
hitting and are discarded in software by
a cpu_is_offline check in its inter-
rupt handler. There are a few solutions un-
der consideration in order to avoid adding
a conditional in the timer interrupt path.
One method was setting up an offline pro-
cessor IDT (Interrupt Descriptor Table)
which would be loaded when the proces-
sor was in the final offline state. The of-
fline IDT would be populated with an en-
try stub which simply returns from the
interrupt. This method would mean that
any interrupts hitting the offline proces-
sor would be blindly discarded, something
which may cause problems if an ACK was
required. So what may be safer and suffi-
cient is simply masking the timer LVT for
that specific cpu and unmasking it again
on the way out of the offline loop.

6 IA64 Implementation

6.1 What is Required to Support CPU Hotplug
in IA64?

IA64 CPU hotplug code was developed once
Rusty had the base infrastructure support
ready. Some of the work that was done to bring
the code to stable state include:

• Remove section identifiers marked with
__init that are required after complet-
ing SMP boot. for e.gcpu_init() ,
do_boot_cpu() used to wakeup a
CPU from SAL_BOOT_RENDEZ mode,
fork_by_hand() used to fork idle
threads for newly added CPUs on the fly.

• Perform a safe interrupt migration from
the CPU being removed to another CPU
without loss of interrupts.

• Handing off the CPU being removed
to SAL_BOOT_RENDEZ mode back to
SAL.

• Handling platform level dependencies
that trigger physical CPU hotplug in a
platform capable of performing it.

6.2 Handling IA64 CPU removal

The arch-specific call_cpu_disable() im-
plements the necessary functionality to offline
a CPU. The different steps taken are:

1. Check if the platform has any restrictions
on this CPU being removed. Returning
an error from _cpu_disable() en-
sures that this CPU is still part of the
cpu_online_map .

2. Turn of local timer interrupt. In IA64
there is a timer interrupt per CPU and not



474 • Linux Symposium 2004 • Volume Two

an external interrupt as in i386 case. It
is required that thetimer_interrupt
does not happen any further. It is possible
there is one pending, hence check if this
interrupt is from an this is an offline CPU,
and ignore the interrupt, but just return
IRQ_HANDLED, so that the local SAPIC
can honour other interrupt vectors now.

3. Ensure that all IRQs bound to this CPU
are now targeted to a different CPU by
programming the RTEs for a new CPU
destination. On return from this step,
there must be no more interrupts sent to
this CPU being removed from any IOS-
APIC.

4. Now the idle thread gets scheduled last,
and waits until the CPU state indicates
that this CPU must be taken down. Then
it hands the CPU to SAL.

6.3 Managing IA64 Interrupts

6.3.1 When Is It Safe to Reprogram an
IOSAPIC?

IOSAPIC RTE entries should not be pro-
grammed when its actively receiving inter-
rupt signals. The recommended method is to
mask the RTE, reprogram for new destination,
and then re-enable the RTE. The/proc/irq
write handlers were calling the set affinity
handlers immediately which can cause loss
of interrupts, including IOAPIC lockups. In
i386 the introduction of IRQ_BALANCE
did this the right way, which is to per-
form the reprograming operation when an in-
terrupt is pending by storing the intend to
change interrupt destinations in a deferred ar-
raypending_irq_balance .

The same concept was extended toia64 as
well for the proc write handlers. With the CPU

hotplug patches, the write to/proc/irq en-
tries are stored in an array and performed when
the interrupt is serviced, rather than calling it
potentially when an interrupt can also be fired.
Due to the delayed nature of these updates,
with CPU hotplug, the new destination CPU
may be offlined before an interrupt fired and
the RTE can be re-programmed. Hence before
setting IRQ destination CPU for an RTE, the
code should check if the new destination pro-
cessor is in thecpu_online_map .

6.3.2 Why Turn Off Interrupt Redirection
Hint With CPU Hotplug?

Interrupt destination in any IOSAPIC RTE
must be re-programmed to a different CPU if
the CPU being removed is a possible interrupt
destination. Since we cannot wait for the in-
terrupt to fire to do the reprogramming, we
must force the interrupt destination in safe way.
IA64 interrupt architecture permits a platform
chipset to perform redirection based on lowest
priority based on a hint in the interrupt vec-
tor (bit 31) provided by the operating system.
If platform interrupt redirection is enabled, it
would imply that we need to reprogram all the
interrupt destinations, because hotplug code in
OS cannot be sure which CPU the chipset is
going to direct this interrupt to. Hence if CON-
FIG_HOTPLUG_CPU is enabled, then we dis-
able platform redirection hint at boot time.

6.3.3 Safely Migrating Interrupt Destina-
tions

The function fixup_irqs() performs all
the necessary tasks for safely migrating in-
terrupts, and reprogramming interrupt destina-
tions for which this CPU being removed was a
destination. The handling of IRQ is managed
in 3 distinct phases.



Linux Symposium 2004 • Volume Two • 475

• migrate_irqs() performs the job of
identifying all IRQs with this CPU as
the interrupt destination. This iteration
also keeps track of IRQs identified in
vectors_in_migration[] for later
processing to cover cases of missed inter-
rupts, since we mask RTEs during repro-
gramming, if the device asserted an inter-
rupt during that time, they get lost.

Clear pending
IRQ cpumask

Pending IRQ
migration not

empty?

Is IRQ on
CPU#?

Next IRQ

Migrate_IRQ
(CPU#)

To
Phase

2

Reprogram RTE

Select new target from
this map if applicable

Irqs_in_migration[irq] = 1

Select new target from
cpu_online_map

Interrupts are
targeted to new

cpu after
reprogramming RTE

Yes

Yes

Yes

No No

Figure 1: Phase1: Migrate IRQ

• ia64_process_pending_intr()
Does normal interrupt style process-
ing. During this phase, we look at the
local APIC interrupt vector register
ivr and process all pending interrupts
on this CPU. For each processed in-
terrupt, we also clear the bits set in
vectors_in_migration[] .

• Phase 3 accounts for cases where a de-
vice possibly attempted to assert an in-
terrupt, but got lost during the window
the RTE was also being re-programmed.
This phase looks at entries not accounted

Ia_64_get_ivr()

Ack Isapic eoi

do_IRQ()

Clear irqs_in_migration[irq]

Valid Vector? To Phase 3No

Yes

Figure 2: Phase2: Processing Pending intr

for in phase 2, and issues interrupt han-
dler callbacks as if an interrupt happened.
It is likely there were no interrupts as-
serted. We rely on the fact that most de-
vice drivers can tolerate calls even if there
was no work to perform due to the fact
that IRQs may be shared.

6.3.4 Managing Platform Interrupt
Sources

IA64 architecture specifies platform interrupt
sources to report corrected platform errors to
the OS. ACPI specifies these sources via the
Platform Interrupt Source Structures. These
are communicated to the OS with data such as
the following.

• Interrupt Type, indicating if the interrupt
is Platform Management Interrupt (PMI),
INIT, or CPEI.

• IOSAPIC vector the OS should program.

• The processor that should receive this in-
terrupt, by specifying the APIC id.



476 • Linux Symposium 2004 • Volume Two

For each IRQ

Irqs_in_migration[irq] set?

Clear irqs_in_migration[irq]

do_IRQ()

Return

No

Yes

Complete

Figure 3: Phase3: Account for Lost Interrupts

• The interrupt line used to signal the inter-
rupts by specifying the global system in-
terrupt.

Some platforms do not support an interrupt
model for retrieving platform errors via CPEI.
Such platforms provide support via specifying
polling tables that list all processors that can
poll for Correctable Platform Errors by using
the Correctable Platform Error Polling (CPEP)
tables.

The issue with both above schemes is that
CPEI specifies just one entry for a destina-
tion processor. This automatically restricts the
target CPU that handles CPEI not removable.
On the other hand with CPEP polling tables,
although the scheme permits specifying more
than one processor, the tables are static and
cannot be expanded dynamically as new pro-
cessors capable of handling polling to be up-
dated.

The motivation for restricting certain proces-
sors was that for some platforms that are asym-
metric, not all CPUs can retrieve the platform
error registers. Hence it is required that only
certain processors are permitted. Most plat-
forms that support interruptible model are sym-
metric in nature. Hence any CPU is capable of
accepting the interrupt for CPEI.

We are working with the ACPI specification
team to try and address this capability to sup-
port platforms supporting CPU hotplug. In the
interim before a specification change permits
either specifying any CPU as a target, or a
method to dynamically update the processors
before a CPU gets removed, the code would
fail removal of a CPU that is a target of CPEI.
In the case of polling, the last processor in the
list would be made non-removable.

6.4 Why Should the CPU be handed off to
SAL?

The Itanium® processor architecture provides
a machine check abort mechanism for report-
ing and recovering from a variety of errors that
can be detected by the processor or chipset.
In the event of global MCA, it is required
that the slave processors perform checkin with
the monarch processor, before which the mas-
ter could call the recovery to resume exe-
cution. SAL would exclude processors in
SAL_BOOT_RENDEZ mode. Hence it is im-
portant that we return the offlined processors to
SAL to avoid processing MCA events on the
offlined processor, as the OS would not have it
in the active map of CPUs.

6.5 Handling Boot CPU Removal

IA64 architecture does not have any direct de-
pendency that would preclude the boot CPU
being removable. There may be some platform
level issues such as the boot CPU is usually the
target of CPEI or some such dependency that



Linux Symposium 2004 • Volume Two • 477

would make the boot CPU from being remov-
able. In the existing IA64 code base, there is
one dependency, that the boot CPU (CPU0) is
the master time keeper. This dependency can
be easily removed by electing a new CPU as
the master timekeeper.

6.6 Recovering the Idle Thread After CPU Re-
moval

Idle threads are created on demand when a new
CPU is added to the OS image. These threads
are special, since when we return the processor
back to SAL, this is done from the context of
the idle thread. These calls don’t return, and
don’t have a natural exit path as other threads.
The simplest thing to do would be to keep these
free idle threads, and just reuse them the next
time we need to create a new idle thread for a
new CPU.

6.7 Why Was cpu_present_map Intro-
duced?

There are several pieces of kernel code that size
resources upfront. Before the advent of CPU
hotplug, the variablecpu_possible_map
also indicated the CPUs physically available in
the system and would eventually be booted via
smp_init() . It is very intrusive to make
all these callers behave dynamically to CPU
hotplug code. There are some issues around
this is use of boot_mem_allocator .
In order to simplify these issues the map
cpu_possible_map was set to all bits indi-
catingNR_CPUS. In order to start only CPUs
that are physically present in the system, the
new map cpu_present_map was added.
On platforms capable of supporting CPU hot-
plug, this map would dynamically change de-
pending on a new CPU being added or re-
moved from the system. In order to accommo-
date systems that don’t directly populatecpu_
present_map the function fixup_cpu_
present_map was introduced to just copy

the bits fromcpu_possible_map to cpu_
present_map .

6.8 ACPI and Platform Issues With CPU hot-
plug

Any platform capable of supporting hot-
pluggable CPUs must provide a mechanism
to initiate hotplug. Platforms supporting
ACPI aware OSs could use ACPI mecha-
nisms to initiate hotplug activity which I
would call Physical CPU hotplug. The CON-
FIG_HOTPLUG_CPU provides the kernel ca-
pability and could still be useful if a CPU can
be taken offline based on say, the number of
correctable error rate.

A typical sequence of operations on a plat-
form supporting a physical CPU is described
below. Each specific platform may have ad-
ditional steps, the following is only a possible
sequence and applies to the ACPI based imple-
mentations as well.

1. Insert the CPU or the module that contains
the CPU into the platform.

2. Platform BIOS does some preparation,
and notifies the OS. The kernel platform
component such as ACPI that registered
to receive the notification, processes this
event.

3. Platform dependent OS component pre-
pares necessary information required to
bring this CPU to the OS image. For ex-
ample, in IA64, the code would initialise
the following data structures before call-
ing thecpu_up() :

• ia64_cpu_to_sapicid[] , in
the case of NUMA also pop-
ulate node_to_cpu_mask and
cpu_to_node_map necessary for
NUMA kernels.



478 • Linux Symposium 2004 • Volume Two

• Populatecpu_present_map so
that kernel now knows about this
new CPU is present in the system.

4. Create the necessary entries such as
/sys/devices/system/cpu/cpu# .

5. Launch the/sbin/hotplug script that
will now invoke the CPU hotplug agent,
which in turn would use the sysfs entry
just created to bring up the new CPU.

7 PPC64 Implementation

7.1 What PPC64 Specific Tasks Occur During
a CPU Removal?

The architecure specific kernel pieces of
a CPU removal focus on three functions
mentioned previously:__cpu_disable() ,
cpu_down() , and__cpu_die() .

In __cpu_disable() all interrupts are dis-
abled and migrated, with the exception of inter-
processor interrupts (IPIs).

1. The process of disabling interrupts starts
off by writing 0 into the processor’s cur-
rent processor priority register (CPPR) to
reject any possible queued interrupts.

2. With the CPPR set to 0 it is safe to remove
ourselves from the global interrupt queue
server, which is done via a Run-Time
Abstraction Service (RTAS) set-indicator
call that is provided by the firmware. This
has the effect of refusing new interrupts
from being added to the processor.

3. After new interrupts are refused the next
step is to set the CPPR back to default
priority, which allows us to recieve IPIs
again.

4. All interrupts are iterated through, check-
ing via an RTAS “get-xive” call if any of
the interrupts are specific to the target pro-
cessor.

5. If an interrupt is specific to the target pro-
cessor it is migrated via an RTAS “set-
xive” call.

6. With the processor removed from the
global interrupt queue server and all inter-
rupts migrated it would be safe to remove
the target processor without affecting the
delivery of interrupts. Success is returned.

During __stopmachine_run() the on-
line attribute of a CPU is set to to 0. On
PPC64 we stop the CPU at this point by call-
ing cpu_die() (not to be confused with
__cpu_die() )

1. Depending on the machine model and
kernel configuration, the idle func-
tion will be default_idle() ,
dedicated_idle() , or
shared_idle() . All three idle
functions checkcpu_is_offline()
and if it is true callcpu_die() .

2. cpu_die first disables IRQs.

3. After disabling IRQs it clears the CPPR.

4. Finally rtas_stop_self() is called,
stopping the processor.

Most architectures use__cpu_die() to stop
the processor. Because on PPC64 we poll for
offline CPUs we only need to wait and confirm
the CPU has been stopped while in this func-
tion.

1. We confirm the CPU has been stopped
by using the RTAS query-cpu-
stopped-state call.



Linux Symposium 2004 • Volume Two • 479

2. Because this call can return busy, and be-
cause the CPU may not yet be stopped we
loop and schedule timeouts.

3. After confirming the CPU is stopped
we do a little extra cleanup by clear-
ing the corresponding entry in the
cpu_callin_map and xProcStart
in the PACA.

7.2 What About Adding CPUs?

The initial structure of PPC64 CPU
bringup required a lot of modification to
be able to add CPUs after the system was
already running. Most of the changes are
trivial and straightforward, but one bears
mentioning.

PPC64 used to number CPUs based on
their physical id. With CPU hotplug it
would have been necessary to reserve a
CPU entry and corresponding structures
for each possible physical CPU. It was
quite possible that the machine could have
more CPUs than the kernel was com-
piled to work with, as many CPUs would
be assigned to other partitions. Further-
more, the number of CPUs in the ma-
chine was not necessarily a static number.
Also, from a usability point of view there
were going to be far too many entries in
/sys/devices/system/cpu/ com-
pared to how many CPUs were actually
online.

The CPU numbering was logically ab-
stracted so that for kernel use there was
a logical number, and when interfacing
to the hardware there was a correspond-
ing physical number. The kernel is able
to read at boot time the maximum num-
ber of CPUs the partition is configured to
be able to grow to. Thus it reserves less
space in structures that must be allocated
at boot time, allows reuse of logical CPUs

for different physical CPUs, and presents
a cleaner directory structure.

7.3 Other Software

While outside the scope of this paper it is
worth mentioning that there is other soft-
ware running on PPC64 platforms to en-
able customers halfway around the world
from the machines they administer to use
their mouse and move CPUs. This soft-
ware is downloadable from IBM, and
should be available on the bonus CD
shipped with new machines.



480 • Linux Symposium 2004 • Volume Two



Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


