
Page-Flip Technology for use within the Linux
Networking Stack

John A. Ronciak
Intel Corporation

john.ronciak@intel.com

Jesse Brandeburg
Intel Corporation

jesse.brandeburg@intel.com

Ganesh Venkatesan
Intel Corporation

ganesh.venkatesan@intel.com

Abstract

Today’s received network data is copied from
kernel-space to user-space once the protocol
headers have been processed. What is needed
is to provide ahardware (NIC) to user-space
zero-copy path. This paper discusses a page-
flip technique where a page isflipped from
kernel memory into user-space via page-table
manipulation. Gigabit Ethernet was used to
produce this zero-copy receive path within the
Linux stack which can then be extrapolated to
10 Gigabit Ethernet environments where the
need is more critical. Prior experience in the
industry with page-flip methodologies is cited.

The performance of the stack and the over-
all system is presented along with the testing
methodology and tools used to generate the
performance data. All data was collected us-
ing a modified TCP/IP stack in a 2.6.x kernel.
The stack modifications are described in detail.
Also discussed is what hardware and software
features are required to achieve page-flipping.

The issues involving page-flipping are de-
scribed in detail. Also discussed are problems
related to this technology concerning the Vir-
tual Memory Manager (VMM) and processor
cache. Another issue that is discussed is what

would be needed in an API or code changes to
enable user-space applications.

The consequences and possible benefits of this
technology are called out within the conclu-
sions of this study. Also described are the pos-
sible next steps needed to make this technology
viable for general use. As faster networks like
10 Gigabit Ethernet become more common-
place for servers and desktops, understanding
and developing zero-copy receive mechanisms
within the Linux kernel and networking stack
is becoming more critical.

Introduction

Data arriving at a network port undergoes two
copy operations (a) from the device memory
to kernel memory as a DMA by the device
into host memory and (b) from kernel memory
to application memory, copied by the proces-
sor. Techniques that avoid the second copy are
designated zero-copy; no additional copy op-
erations are involved once the data is copied
into host memory. Avoiding the second copy
can potentially improve throughput and reduce
CPU utilization. This has been demonstrated
in [Hurd] [Duke] and [Gallatin]. Several tech-
niques have been discussed in the literature for



462 • Linux Symposium 2004 • Volume Two

avoiding the second copy namely page flip-
ping, direct data placement (DDP) and remote
DMA (RDMA).

Significant performance benefits were demon-
strated with the zero copy implementation in
the transmit path. We investigate the effective-
ness of the page flipping on newer platforms
(faster processor(s) and faster memory). Ad-
ditional motivation for this experiment and pa-
per came from a discussion on the netdev (and
linux-kernel) mailing list where David Miller
mentioned his idea of

On receive side, clever RX buffer
flipping tricks are the way to go
and require no protocol changes
and nothing gross like TOE or
weird buffer ownership protocols
like RDMA requires.1

Approaches

Our initial approach consisted of attempting to
modify the 2.4 kernel to support direct modifi-
cation of PTE’s in user and kernel space. This
method was based on the assumption that any
PTE could represent any location in memory
which we later found out not to be true. Our
findings indicated that we needed to rely more
upon the OS abstraction layers to complete our
page-flip implementation. This had the side
benefit of making our changes less x86 spe-
cific as well. Eventually we settled upon a 2.6
based kernel and effectively implemented our
original idea but instead just install a new page
into the application space in much the same
way as the swapper does. The biggest hurdles
came from understanding how the Linux mem-
ory manager and its various kernel structures
work and relate to each other.

1http://marc.theaimsgroup.com/
?l=linux-netdev&w=2&r=1&s=TCP+
offloading+interface&q=b

For our final experiments we used 2.6.4 or
newer kernels with what eventually amounted
to small changes to the kernel to support page
flipped PAGE_SIZE data.

The kernel code consisted of these changes
(see patch at the end of this document):

1. Driver modifications to support header
and data portions of a packet in separate
buffers, where the data buffer is always
aligned to a PAGE_SIZE boundary.

2. Add a flag to the skb structure to indi-
cate to the stack that the hardware and
driver prepared a zero copy capable re-
ceive structure.

3. Modifications to the skb_copy_
datagram_iovec() function to
support calling the newflip_page_
mapping() function when zero copy
capable skbs are received.

4. A newflip_page_mapping() func-
tion that executes the installation of the
driver page into the user’s receive data
space. This routine handles fixing up per-
missions.

5. A modification was made to the skb free
routines to handle a frags[i] where the
.page member was zero after that page had
changed ownership to user space.

Experiment

Our test platform consisted of a pre-release
system with a dual 2.4 GHz Intel® Pentium® 4
processor supporting Hyper-Threading Tech-
nology, and 512 megabytes of RAM. This ma-
chine had a network card that supported split-
ting the header and data portions of a packet
into different buffers, and validating the IP,
TCP and Ethernet checksums.



Linux Symposium 2004 • Volume Two • 463

Assumptions

For this experiment we made some assump-
tions to simplify and to work with the hardware
that we had available.

• Our application had to allocate a re-
ceive data area in multiples of 4K bytes,
and that memory had to be PAGE_SIZE
aligned.

• We modified the freely available nttcp-
1.47 to use valloc instead of malloc, re-
sulting in PAGE_SIZE aligned memory
starting addresses.

• Our network used Maximum Transmis-
sion Units (MTU) to allow for 4KB or
8KB of data to be packaged in every
packet.

• Upon splitting of the packet into header
and data portions, this resulted in an
aligned data block

• The 2.6.4 kernel was configured for stan-
dard 4KB PAGE_SIZE and debugging op-
tions were turned off.

Methodologies

After making the required code changes and
debugging, we measured the performance of
the new “page flip” code against the “copy
once” method of receiving data.

These measurements consisted of two major
test runs, one where the application never
touched the data (notouch) being received, and
the other where the application did a compar-
ison of the data to an expected result (touch),
effectively forcing the data into the cache and
also validating that data was not corrupted in
any way through this process.

Figure 1: 1.8 GHz comparison

For every instance of the test, three runs were
done and the results were averaged for each
data point.

Oprofile was used to record the hot-spots for
each run.

CPU utilization and network utilization were
measured with sar from the sysstat package.
NOTE: Our initial results were skewed by a
version of sar that incorrectly measured CPU
and network utilization (showing more than
1Gb/s transferred in a single direction), be
aware that some versions of sar that shipped
with your distribution may need to be updated.

Results of Performance Analysis

It is apparent from the touch graphs in Fig-
ure 1 that the page flip slightly reduces CPU
on slower processors. However, the touch
throughput decreases as well, with a decrease
in efficiency (Mbits/CPU = eff) for the 4148
MTU from 6.52 (original) to 6.48 (page-flip).
The decrease in efficiency is even smaller for
8244 MTUs, where the efficiency went from
6.86 to 6.85. The difference in CPU from the
8244 to the 4148 MTU case is most likely due
to header processing as the data throughput is
very similar.

The difference between Figure 1 and Figure 2
is simply the processor’s speed being adjusted



464 • Linux Symposium 2004 • Volume Two

Figure 2: 2.4 GHz comparison

in the bios using a multiplier change. The re-
sults from Figure 2 show that the faster pro-
cessor is more efficient overall, but that even if
there is a slight increase in throughput for the
page-flip case, the efficiency is still less than
if the copy was being done. The efficiency
for the 4148 MTU touch data case went from
8.59 to 8.45. For the 8244 byte MTU the effi-
ciency goes from 9.02 to 8.93, even though the
throughput goes up.

Surprises and Unexpected Results

We expected that the copy may actually have
some beneficial side effects, and our data
shows that it does. Especially as processor
clock rate increases, the copy becomes less
costly in CPU-utilization, while the page flip
maintains a constant load which is heavier than
the copy was initially.

Oprofile analysis indicated that the locks asso-
ciated with the page-flip code cause the major-
ity of the stalls in this code path.

Oprofile also showed that the stall associated
with the TLB (translation look-aside buffer)
flush was very painful.

Conclusions

We had several surprises along the way, but
feel confident that at least with our current code
base, we can conclude that using a page-flip
methodology to receive network data is less ef-
ficient than simply doing a copy. The major
contributors to this counterintuitive result seem
to be cache issues (especially obvious in the
“touched data” tests), and a heavier cost asso-
ciated with the work necessary to prepare and
complete the page-flip.

There may be environments such as embedded
systems and slower processors where page-
flipping will help significantly in decreasing
CPU utilization or increasing performance.

Our feeling is that page flipping will not scale
in CPU utilization as well as a plain copy does.

There is much room however for optimization
of the page-flip code path, which will be fol-
lowed up with the community. Our expecta-
tion is that this optimization will be fighting an
uphill battle just to achieve parity with a copy,
and then will mostly likely not be able to keep
up with speed advances in the processor.

Also, we had to remind ourselves that the cache
warming cost must be paid somewhere along
all receive paths. Using page-flip methods only
moves the cost of the cache miss to the applica-
tion instead of taking the cost of the miss in the
kernel. If the application is waiting impatiently
for data, its likely that the cache will be seeded
with the data and the application will get all of
its data out of cache and have very fast access
at that point.

Current issues

The current patch has several outstanding is-
sues that we worked around.



Linux Symposium 2004 • Volume Two • 465

1. There isn’t much (if any) commercially
available hardware that supports header
split receives.

2. Ideally hardware (as mentioned by David
Miller) would be able to have flow identi-
fication and fillPAGE_SIZEbuckets with
data. This would eliminate the require-
ment for specific MTU sizes.

3. The current code has a bug when a net-
work data consumer causes aclone_
skb() to occur. If a page-flipped page
pointer nr_frags[].page is refer-
enced in the skb being cloned, then a zero
pointer is read and the system faults. This
is due to the ownership of the page chang-
ing from kernel space to user space before
the clone is completed. It is not immedi-
ately clear if this is an easily surmount-
able problem, but is easy to work around
for our tests.

4. The assumptions we made to enable test-
ing this new code path, like specifying
MTU, recompiling the application, etc,
create such strict requirements that the
usefulness of this code outside of an aca-
demic environment is severely limited.

Future directions possible

It is likely that on a system with lots of context
switching going on (high load) that the page-
flip would be more beneficial. Testing in these
environments would provide useful results.

If tested on other architectures besides x86,
such as x86-64, IA64 and PPC this code may
yield significantly different results.

We did create a driver patch (Appendix B) for
the currently available e1000 driver and hard-
ware that prepares packets (using a copy) for
processing through the page-flip modified net-
work stack to the user application. We saw that

the copy necessary in the driver to do this made
the differences between “driver with copy fol-
lowed by a flip in the stack” and a “driver with
a copy followed by another copy in the stack”
almost nonexistent. We believe this is because
of the cache warming done by the Appendix B
driver as it prepares the flip capable structure.
Making this code behave more like the flip ca-
pable hardware (possibly with a cache flush)
would be very useful to increase the amount
of experimentation that could be done with the
non-hardware specific kernel patches.

References

[Hurd] Dana Hurd Zero-copy interfacing to
TCP/IP Dr. Dobbs Journal Sep 1995

[Duke] Trapeze Project: http:
//www.cs.duke.edu/ari/trapeze/
slides/freenix/sld001.htm

[Gallatin] Drew Gallatinhttp://people.
freebsd.org/~ken/zero_copy/

Appendix A Kernel Patch

This patch will be available athttp:
//www.aracnet.com/~micro/flip/
flip_2_6_4.patch.bz2

Appendix B mock zero copy e1000
patch

This patch will be available athttp:
//www.aracnet.com/~micro/flip/
e1000_flip.patch.bz2



466 • Linux Symposium 2004 • Volume Two



Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


