
Creating Cross-Compile Friendly Software

Sam Robb
TimeSys

sam.robb@timesys.com

Abstract

Typical OSS packages make assumptions
about their build environment that are not nec-
essarily true when attempting to cross compile
the software. There are two significant con-
tributors to cross compile problems: platform
specific code, and build/host confusion. Sev-
eral examples of problems existing in current
OSS packages are presented for each of these
root causes, along with explanations of how
they can be identified, how they can have been
avoided, and how they can be resolved.

1 Why Cross Compile?

Cross compiling is the process of building soft-
ware on a particular platform (architecture and
operating system), with the intent of producing
executables that will run on an entirely differ-
ent platform. Generally, the platform the soft-
ware is built on is referred to as the “build” sys-
tem, while the platform the executables are run
on is referred to as the “host” system.1

The process of cross compiling software is
somewhat related to, but distinct from, the pro-
cess of porting software to run on a differ-
ent platform. The critical distinction is in the
difference between the build and host system

1Unfortunately, not everyone chooses the same ter-
minology. For example, the Scratchbox documentation
(http://www.scratchbox.org/) uses the terms
“host” and “target” where this paper uses “build” and
“host” to refer to the same concepts.

characteristics. Often times, software that can
be built natively on different platforms will ex-
hibit problems when cross compiling. These
problems arise because the software fails to
distinguish between the build system and the
host system during one or more of the four dis-
tinct stages in the process of cross compiling
software: configuration, compilation, installa-
tion, and verification.

Cross compiling is an absolute necessity for a
very small number of software packages. In
the OSS world, there are several software pack-
ages that are specifically designed with cross
compiling in mind (binutils, gcc, busybox, the
Linux kernel itself, etc.) These packages are
often used to bootstrap a new system, provid-
ing a high-quality, low-cost way of obtaining a
minimal working system with a small amount
of effort. Once a minimal OS and related util-
ities are present on a system, a developer can
then build additional software for the system
as required.

As Linux becomes more prevalent in the em-
bedded market space, there is an increased de-
sire among embedded systems developers for
more cross compile friendly software pack-
ages. While modern embedded systems are of-
ten resource rich in terms of processing power,
I/O capabilities, memory, and disk space when
compared to embedded systems of only a few
years ago, compiling software natively on such
a system still poses problems for an embedded
developer. In extreme cases, compiling a mod-
erately complex software package on an em-

450 • Linux Symposium 2004 • Volume Two

bedded system natively may take hours instead
of minutes.

Embedded developers therefore prefer cross
compiling. Most significantly, it gives the
embedded developer the advantage of work-
ing in a more comfortable, resource-rich
environment—typically on a high-end work-
station or desktop system—where they can
take advantage of superior hardware to reduce
their compile/link/debug cycles. Also impor-
tantly, cross compiling makes it easier to set up
a system by which an entire system can easily
be built from scratch in a reproducible manner.

2 Terminology and Assumptions

Cross compiling is a specialized subset of the
software development world, and as such, em-
ploys its own terminology in an attempt un-
ambiguously identify certain concepts. The
following terms are definitions based on those
provided by the GNU autoconf documentation
2, and used commonly in OSS projects such as
binutils, gcc, etc.

platform - an architecture and OS combina-
tion

build system - the platform that a software
package will beconfiguredandcompiled
on

host system- the platform that a software
package willrun on

target system - the platform that the software
package willproduceoutput for

toolchain - the collection of tools (compiler,
linker, etc.) along with the headers, li-
braries, etc. needed to build software for
a platform

2Available athttp://www.gnu.org/manual/

cross compiler - a toolchain that runs on a
host system, but produces output for a
target system

Typically, the target system is really only of in-
terest to those working on compilers and re-
lated tools, where that extra degree of precision
is needed in order to specify the final binary
format those tools are intended to produce. In
the OSS world, aside from binutils, gcc, and
similar software packages, one can usually ig-
nore the additional possibilities and complica-
tions introduced by variations in the target sys-
tem.

The remainder of this paper will assume the ex-
istence of a cross compiler3 that runs on an un-
specified build system, and is capable of pro-
ducing executables that will run on a different
unspecified host system. The paper ignores the
process of porting software to run on a new
platform, in order to concentrate solely on is-
sues that arise from the process of cross com-
piling the software.

3 Configuration Issues

All but the most simple software packages gen-
erally require some means of configuration.
This is a process by which the software deter-
mines how it should be built—which libraries
it should reference, which headers it may in-
clude, any particular quirks or workarounds in
system calls it needs to deal with, etc.

Configuration is an area ripe for introducing
cross compile problems. It provides software
packages with the unique opportunity to com-
pletely confuse a build by assuming that the
build system and the host system are one and
the same. All cross compile configuration

3Those interested in building their own cross com-
piler may wish to consult the ’Resources’ section at the
end of this paper.

Linux Symposium 2004 • Volume Two • 451

problems are some reflection of this confusion
between the identity of the build and host sys-
tems.

3.1 Avoid using the wrong tools

This particular problem is caused by misiden-
tifying which tools are to be used as part of the
build process. Some software packages expect
to be able to build and execute utility programs
as part of their build process; a good example
of this is the Linux kernel configuration utility.
While the final output of the software package
will need to run on the host system, these util-
ity programs will need to be run on the build
system.

Figure 1 shows an example of this problem. In
this case,CC_FOR_BUILDis set to the same
value asCC, which would be appropriate if it
wasn’t for the fact that earlier in the configura-
tion process,CCwas explicitly set to reference
the cross compiler being used for the build.

compilers to use to create programs
which must be run in the build environment.

-CC_FOR_BUILD = $(CC)
-CXX_FOR_BUILD = $(CXX)
+CC_FOR_BUILD = gcc
+CXX_FOR_BUILD = g++

SUBDIRS = "this is set via configure, \
don’t edit this"

OTHERS =

Figure 1: Using the wrong tools

In this particular instance, there are several
solutions. The most correct, and most ex-
pensive, is to update the makefile templates
to use the proper variables (CC_FOR_BUILD
andCC) in their proper context. Another pos-
sible solution is to override the definition of
CC_FOR_BUILDandCCprior to invoking the
makefile. The solution presented in Figure 1
is a simple, straightforward, get-it-working ap-
proach whereCC_FOR_BUILDis simply set
to an appropriate value for the majority of build

systems.

3.2 Be cautious when executing code on the
build system

As part of the configuration process, many
software packages—particularly those built on
top of autoconf —will try to compile, link,
or even execute code on the host system.

For autoconf based projects, most of the
standard autoconf macros (AC_CHECK_
LIB , AC_CHECK_HEADER, etc.) do a good
job of dealing with cross compile issues. In
some instances, though, these standard macros
fail when trying to test for the presence of an
uncommon header file or library. Developers
typically deal with these case by writing cus-
tom autoconf macros.

If the developer is not cautious, s/he may
produce a custom macro that ends up per-
forming a more extensive check than what
is really needed. Often times, a developer
will create a custom macro that makes use of
the autoconf AC_TRY_RUN macro. This
macro attempts to compile, link, and execute
an arbitrary code fragment. The problem here
is that the conditions being tested for may not
actually require that the resulting binary be ex-
ecuted.

When cross compiling a package that uses cus-
tom macros, this leads to a situation where test
code will compile and link properly (thanks to
the cross compiler), but will then fail to run,
or will run and produce incorrect output. In
either case, it is highly unlikely that the con-
figure script will reach the proper conclusion
about whether or not the header file or library
is actually available.

A simple solution to this problem is to check
and see if the output from the test program
is ever actually used. If not, then the call to
AC_TRY_RUNin the test macro can be re-

452 • Linux Symposium 2004 • Volume Two

placed with a call toAC_TRY_COMPILEor
AC_TRY_LINK, as shown in Figure 2. These
two macros implement checks for the ability to
compile and link the provided code fragment,
respectively.

SKEY_MSG="yes"

AC_MSG_CHECKING([for s/key support])
- AC_TRY_RUN(
+ AC_TRY_LINK(

[
#include <stdio.h>
#include <skey.h>

Figure 2: Avoiding execution when linking
will suffice

3.3 Allow the user to override a ‘detected’ con-
figuration value

In some cases, use ofAC_TRY_RUNis ab-
solutely essential; the automatic configuration
process may need to be able to compile, link,
and execute code in order to determine the
characteristics of the host system. This is a def-
inite stumbling block when trying to configure
a software package for cross compiling.

A good configuration script allows the user
to explicitly identify or override what would
otherwise be an automatically detected value.
For autoconf based projects, this typically
means addingAC_ARG_ENABLEmacros to
your configure.in file that allow the user
to explicitly set the value of questionable
autoconf variables.

In the case of existing software packages, there
may not be an explicit method for setting a
questionable variable. In this case, it may be
possible to set the appropriate variable by hand
before configuring the software package, in or-
der to force the desired outcome. This may
still fail under some circumstances; for exam-
ple, some configuration scripts do not bother to
check to see if the a configuration variable has

been set before attempting to automatically de-
duce its value.

In those cases, the configuration script may
be modified4 to guard the detection code by
checking to see if the variable has already been
assigned a value. If a value has already been
assigned, the configuration script can use the
specified value, and skip executing the detec-
tion code. In other cases, it may be more ap-
propriate to fix the detection code itself so that
it sets the variable to the proper value.

4 Compilation Issues

For the majority of portable software pack-
ages, attempting to cross compile will gener-
ally not uncover any issues with the code it-
self.5 Even though individual source files may
compile when pushed through the cross com-
piler, though, the overall way in which the soft-
ware is built can still exhibit problems.

4.1 Avoid hard-coded tool names

Figure 4 shows a makefile fragment that origi-
nally made an explicit call toar . In a package
that is otherwise cross compile friendly, this is
a particularly annoying occurrence. Depending
on the specifics of the cross compiler, the call
to ar may succeed, but produce an unusable
static library.

Correcting this kind of problem is
straightforward—replace the hard-coded
tool name with a reference to a make variable

4For autoconf based software packages, keep in
mind that theconfigure script is generated by pro-
cessing configure.in . Editing theconfigure
script direclty can be helpful for testing fixes, but
changes will have to be made toconfigure.in as
well to ensure they persist if theconfigure script is
regenerated.

5Provided, of course, that the software has already
been ported to the host platform.

Linux Symposium 2004 • Volume Two • 453

that names the appropriate tool for the system
the binary is intended to run on.

4.2 Avoid decorated tool names

Occaisionally, project makefiles will avoid
hardcoded tool names by defining a variable,
but then attempt to eliminate the an "unneeded"
variable by combining a tool reference with the
default flags that should be passed along to the
tool, as shown in Figure 3.

While the intent was noble, this type of def-
inition makes it difficult for a user to sup-
ply a different definition for a tool. In-
stead of simply setting the value of of the
tool when invoking the makefile (ex,make
AR=ppc7xx-linux-ar), a user now has
to know to define AR in a way that in-
cludes the default arguments (ex,make
AR=’ppc7xx-linux-ar cr’).

Again, correcting this type of problem is
straightforward—split the definition of the tool
reference into a reference to the simple tool
name and a variable that indicates the default
flags that should be passed to the tool.

-AR = @AR@ cq
+AR = @AR@
+ARFLAGS = cq

all: $(OBJS)
-rm -f libsupport.a

- $(AR) libsupport.a $(OBJS)
+ $(AR) $(ARFLAGS) libsupport.a $(OBJS)

@RANLIB@ libsupport.a

Figure 3: Avoiding execution when linking
will suffice

4.3 Avoid hard-coded paths

It is very easy for an otherwise cross compile
friendly software package to mistakenly set up
an absolute include path that looks reasonable.
In many situations, the added include path may

in fact be harmless, particularly if the build sys-
tem and host system have roughly the same OS
version, library versions, etc. However, even
slight differences in structure definitions, enu-
merated constants, etc. between build system
and host system headers can very easily re-
sult in either compilation errors, or in the cross
compiler producing an unusable binary.

Figures 5 and 6 shows a simple and straightfor-
ward solution—remove the hard-coded include
path. If the include path is required, then you
will need to alter it so that it can be specified
relative to the location of the include files ap-
propriate for the host system.

4.4 Avoid assumptions about the build system

While this is nominally a porting issue, some-
times a software package will make what
seems to be a reasonable assumption about the
build system. In particular, software pack-
ages that are intended to run only on a partic-
ular class of operating systems (Linux, POSIX
complaint systems, etc.) may assume that even
if they are cross compiled, they will at least be
cross compiled on a build system that has char-
acteristics similar to the host system.

Figure 7 illustrates this problem. This make-
file fragment assumes that the build system will
have a case-sensitive file system, and that the
file patterns ’*.os ’ and ’*.oS ’ will therefore
refer to a distinct set of files—in this case, files
for inclusion in a static library and files for in-
clusion in a shared library, respectively.

This particular assumption breaks down when
compiling on a case-insensitive file system
like VFAT, NTFS, or HPFS.6 When encoun-
tering this type of problem, there is no easy
workaround—the build logic for the software

6While these file systems are case-insensitive, they
are case preserving, which sometimes helps mask po-
tential case-sensitivity issues.

454 • Linux Symposium 2004 • Volume Two

will need to be altered in order to adjust to the
conditions of the unexpected build system.

In this case, the solution was to replace ’*.oS ’
with ’*.on ’, a file pattern that is distinct from
’*.os ’ on either a case-insensitive or a case-
sensitive file system.

5 Installation Issues

Software installation is sometimes seen as a
simple problem. After all, how hard can it be
to just copy files around and make sure they
all end up in the right place? As with con-
figuration and compilation, though, cross com-
piling software introduces additional complex-
ities when installing software.

5.1 Avoid install -s

Figure 8 shows a makefile fragment that at first
glance looks reasonable; as originally written,
it attempted to install a binary using the de-
tected version of theinstall program avail-
able on the build system.

The problem here is that the originalinstall
command specified the-s option, which in-
structsinstall to strip the binary after in-
stalling it. Because the command uses the build
system’s version ofinstall , this means that
the stripping will be accomplished using the
build system’s version ofstrip . Depending
on the version ofstrip installed on the build
system, this command may appear to succeed,
yet result in a useless binary being installed.

The solution here is to avoid the use of
install -s , and instead explicitly strip
the binary after installation using the version
of strip provided with the cross compile
toolchain that built the binary.

5.2 Avoid hard-coded installation paths

When cross compiling software, it is often con-
venient to treat a directory on the build sys-
tem as the logical root of the host system’s file
system.7 This allows a developer to “install”
the software into this logical root file system
(RFS); often times, the RFS is made available
to the host system via NFS.

Autoconf packages typically use variables to
specify the prefix for installation paths, which
makes installing them into an RFS a simple
matter. As Figure 9 shows, non-autoconf
makefiles may need to be modified to make the
same sort of adjustments to installation paths.

Even if the software package already makes
use ofprefix or a similar variable, it may
overload the meaning of that variable. This
can happen in any type of software package,
autoconf based or not. For example, a
package may use theprefix variable to both
control the installation path, and also generate
#define statements that specify paths to con-
figuration files or other important data. In this
case, it may still be necessary to modify the
makefile to introduce the idea of an installation
prefix, as shown in Figure 10.

5.3 Create the required directory structure

Often times, software packages assume that
they are being installed on an existing, full-
featured system—which implies the existence
of a certain directory structure. A cross com-
piled software package may be installed on the
build system into a location that is lacking part
or all of a normal directory structure. In this
case, the install steps of the software package
must be pessimistic, and assume that it will al-
ways be necessary to create whatever directory

7See the Scratchbox website (http://www.
scratchbox.org) for more information on the hows
and whys of build sandboxing.

Linux Symposium 2004 • Volume Two • 455

structure it requires for the installation to suc-
ceed.

Figure 11 shows a patch for a makefile frag-
ment that originally assumed the pre-existence
of a particular directory structure. Appropriate
calls tomkdir -p are enough to ensure that
the existing directory structure is in place prior
to the install.

6 Verification Issues

There are a number of OSS packages that
very conveniently provide self-test capabilities.
Along with the usual targets in their makefiles,
they include targets that allow the user to build
and run a test suite against the software after it
is built, but before it is installed.

The main problem here is that these test tar-
gets generally run each individual test in the
suite using a “compile, execute, analyze” cy-
cle. Even if the compilation and result analy-
sis steps succeed on the build system, test ex-
ecution will most likely fail if the package has
been cross compiled, since the tests were built
with the host system in mind. If you are for-
tunate, these tests will simply fail; otherwise,
you will not be able to gauge the accuracy of
the tests, as they may be picking up informa-
tion or artifacts from the build system.

A simple solution is to rewrite test targets to
separate test compilation from test execution
and result analysis. Providing a distinct install
or packaging target for the test suite so that it
can be easily moved over to a host system for
execution is an added bonus.

Don’t assume that you can execute self-tests as
part of the normal build cycle (see Figure 12).
If you do include a test target as part of your
default target dependencies, at least make sure
that it is only enabled or run if it knows that it
can execute the tests on the build system.

7 Conclusions

By now, it should be apparent that while there
are any number of subtle ways that cross com-
piling software can fail, they are for the most
part simple problems with simple solutions.

Developers interested in supporting cross com-
piling of software packages they maintain can
use these problems as a guideline of potential
problem areas in their own projects. Detecting
potential cross compile issues is often a sim-
ple matter of examining project source code
and identifying the potential for confusing the
meaning of build and host systems.

Finally—the best possible way to examine a
software package to see if (or how well) it
supports cross compiling is to actually try and
cross compile it. While the truly adventurous
may wish to try and build their own cross com-
piler, there are any number of locations on the
web where an interested developer can obtain
a pre-built toolchain for this purpose. Those
working primarily on an x86 Linux host may
wish to consider using one of the available pre-
built cross compilers that can be found through
the rpmfind (http://www.rpmfind.net)
service. For those interested in building their
own cross compiler, or in researching other
cross compile issues, are a number of resources
(see Table 8) on the net that deal specifically
with cross compile issues. The emphasis of
these resources is generally on embedded sys-
tem development, though much of the infor-
mation available is still applicable when dis-
cussing cross compiling in general.

456 • Linux Symposium 2004 • Volume Two

8 Appendix—Code Examples

The following figures are referred to in the pa-
per, and are collected here (instead of presented
inline) for the sake of providing clarity in the
text. Each figure represents a patch (or a par-
tial patch) for a common OSS package that was
used at TimeSys to work around cross compile
problems. These selections were chosen to il-
lustrate, in a compact fashion, both the prob-
lems described in the text and some possible
solutions.

decompress.o \
bzlib.o

-all: libbz2.a bzip2 bzip2recover test
+all: libbz2.a bzip2 bzip2recover #test

bzip2: libbz2.so bzip2.c
$(CC) $(CFLAGS) -o bzip2 $\^

Figure 12: Avoid making tests part of the de-
fault build target

Linux Symposium 2004 • Volume Two • 457

The CrossGCC Mailing List
http://sources.redhat.com/ml/crossgcc/
A list for discussing embedded (‘cross’) programming using the GNU
tools.

The CrossGCC FAQ http://www.sthoward.com/CrossGCC/

crosstool
http://www.kegel.com/crosstool/
A set of scripts to build gcc and glibc for most architectures supported
by glibc.

Linux from Scratch
http://www.linuxfromscratch.org/
A project that provides you with the steps necessary to build your own
custom Linux system.

Scratchbox
http://www.scratchbox.org/ A cross-compile toolkit for
embedded Linux application development.

Embedded Gentoo

http://www.gentoo.org/proj/en/base/embedded/
index.xml
Gentoo project concerned with cross compiling and embedded
systems.

The GNU configure and build
system

http://www.airs.com/ian/configure/
Document describing the GNU configure and build systems. A bit out
of date (circa 1998), but still very useful.

GNU Autoconf, Automake, and
Libtool

http://sources.redhat.com/autobook/
Online version of the classic book covering GNU autotools.

Table 1: Selected internet resources on cross compiling

458 • Linux Symposium 2004 • Volume Two

libbz2.a: $(OBJS)
rm -f libbz2.a

- ar cq libbz2.a $(OBJS)
- @if (test -f /usr/bin/ranlib -o -f /bin/ranlib -o \
- -f /usr/ccs/bin/ranlib) ; then \
- echo ranlib libbz2.a ; \
- ranlib libbz2.a ; \
- fi
+ $(AR) cq libbz2.a $(OBJS)
+ $(RANLIB) libbz2.a
+ #@if (test -f /usr/bin/ranlib -o -f /bin/ranlib -o \
+ # -f /usr/ccs/bin/ranlib) ; then \
+ # echo ranlib libbz2.a ; \
+ # ranlib libbz2.a ; \
+ #fi

libbz2.so: libbz2.so.$(somajor)

Figure 4: Avoiding hard-coded tool references

export GCC_WARN = -Wall -W -Wstrict-prototypes -Wshadow $(ANAL_WARN)
-export INCDIRS = -I/usr/include/ncurses
-export CC = gcc
+#export INCDIRS = -I/usr/include/ncurses
+#export CC = gcc

export OPT = -O2
export CFLAGS = -D_GNU_SOURCE $(OPT) $(GCC_WARN) -I$(shell pwd) $(INCDIRS)

Figure 5: Avoiding hard-coded include paths

INSTALL = install -o $(BIN_OWNER) -g $(BIN_GROUP)

Additional libs for Gnu Libc
-ifneq ($(wildcard /usr/lib/libcrypt.a),)

LCRYPT = -lcrypt
-endif

all: $(PROGS)

Figure 6: Avoiding tests for hard-coded path names

Bounded pointer thunks are only built for *.ob
elide-bp-thunks = $(addprefix $(bppfx),$(bp-thunks))

-elide-routines.oS += $(filter-out $(static-only-routines),\
+elide-routines.on += $(filter-out $(static-only-routines),\

$(routines) $(aux) $(sysdep_routines)) \
$(elide-bp-thunks)

elide-routines.os += $(static-only-routines) $(elide-bp-thunks)

Figure 7: Avoiding assumptions about the build system

Linux Symposium 2004 • Volume Two • 459

- $(INSTALL) -m 0755 -s ssh $(DESTDIR)$(bindir)/ssh
+ $(INSTALL) -m 0755 ssh $(DESTDIR)$(bindir)/ssh
+ $(STRIP) $(DESTDIR)$(bindir)/ssh

Figure 8: Replacing install -s with an explicit call to strip

NAME = proc

INSTALLATION OPTIONS
-TOPDIR = /usr
+TOPDIR = $(DESTDIR)/usr

HDRDIR = $(TOPDIR)/include/$(NAME)# where to put .h files
LIBDIR = $(TOPDIR)/lib# where to put library files

-SHLIBDIR = /lib# where to put shared library files
+SHLIBDIR = $(DESTDIR)/lib# where to put shared library files

HDROWN = $(OWNERGROUP) # owner of header files
LIBOWN = $(OWNERGROUP) # owner of library files
INSTALL = install

Figure 9: Avoiding hard-coded install paths

Where is include and dir located?
prefix=/

+installdir=/

.c.o:
$(CC) $(CFLAGS) -c $<

@@ -47,28 +48,32 @@
-if [! -d pic]; then mkdir pic; fi

install: lib install-dirs install-data
- -if [-f $(prefix)/lib/$(SHARED_LIB)]; then \
- mkdir -p $(prefix)/lib/backup; \
- mv $(prefix)/lib/$(SHARED_LIB) \
- $(prefix)/lib/backup/$(SHARED_LIB).$$$$; \
+ -if [-f $(installdir)/$(prefix)/lib/$(SHARED_LIB)]; then \
+ mkdir -p $(installdir)/$(prefix)/lib/backup; \
+ mv $(installdir)/$(prefix)/lib/$(SHARED_LIB) \
+ $(installdir)/$(prefix)/lib/backup/$(SHARED_LIB).$$$$; \

fi
- cp $(SHARED_LIB) $(prefix)/lib
- chown $(OWNER) $(prefix)/lib/$(SHARED_LIB)
+ cp $(SHARED_LIB) $(installdir)/$(prefix)/lib
+ chown $(OWNER) $(installdir)/$(prefix)/lib/$(SHARED_LIB)

if [-x /sbin/ldconfig -o -x /etc/ldconfig]; then \
ldconfig; \

Figure 10: Working around the use of an overloaded prefix variable

460 • Linux Symposium 2004 • Volume Two

install-only:
n=‘echo gdbserver | sed ’$(program_transform_name)’‘; \
if [x$$n = x]; then n=gdbserver; else true; fi; \

+ mkdir -p $(bindir); \
+ mkdir -p $(man1dir); \

$(INSTALL_PROGRAM) gdbserver $(bindir)/$$n; \
$(INSTALL_DATA) $(srcdir)/gdbserver.1 $(man1dir)/$$n.1

Figure 11: Creating required directories at install time

Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

