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Abstract

Trying to pin down whether changes to the 2.5
and 2.6 scheduler have helped or hurt perfor-
mance, especially on interactive programs, has
been both difficult to quantify and very subjec-
tive. One favored test has been to create your
favorite load and then move your cursor around
and observe how slow or fast it is. Another one
is to drag a window across your desktop and
see how quickly it gets redrawn. And I would
certainly be skewered if I didn’t mention what
is probably the favorite: playing your favorite
music while under load and listening intently
for skips.

Unfortunately, all these measurements are sub-
jective, and even, at times, argumentative.
With scheduler statistics installed, one can ac-
curately measure such things as the amount of
time processes are spending on the processor or
the amount of time they are waiting for the pro-
cessor. This means that on SMP and NUMA
machines, load balancing efforts can be objec-
tively evaluated, and process migration deci-
sions more effectively reviewed. And all of this
can be done with no measurable impact to the
system.

This paper will describe what information can
be captured, use that information to charac-
terize some simple loads, and describe how
that same information may be coordinated with
other system measurements both to character-

ize new loads, and to more clearly identify
scheduler shortcomings.

1 Introduction

As the 2.5 code revisions came out in mid- to
late 2003, the scheduler, like much of the 2.5
release, became more and more stable. True,
there was still work to be done in some areas,
like SMP and NUMA. Although an increas-
ing number of dual-CPU desktops and even
laptops introduced more users to the world
of SMP, it was the high end users with 16,
32, 128, or even more CPUs that really were
stretching the existing SMP and NUMA code.
The increasing load on the existing infrastruc-
ture was causing developers to realize that
code paths they previously thought “impossi-
ble” were really “rarely,” and paths deemed
“infrequent” were unfortunately morphing to
“once or twice a day.”

And an odd thing happened on the way to bet-
ter code for the high end machines. Those
pesky desktop and laptop users got in the way.
With every fix that would demonstrably im-
prove the situation for the big iron, dozens of
desktop and laptop owners would immediately
pick up the new code, try it out, and more of-
ten than not, pronounce it faulty. Why? Be-
causetheir 2-proc SMP machines were used
very differently than the file servers and web
servers that the 128-proc systems had become.
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The testing and measurements that had gone
into verifying the patch did not test the system
the same way the desktop users did. Conse-
quently, these desktop users saw very differ-
ent results, and formed very different opinions
about the correctness and usefulness of these
high-end SMP fixes.

And while their opinions mattered, of course,
addressing their concerns was difficult. They
were using human eyes and ears—notoriously
unreliable biological components known to be
fraught with frequent failure and highly subjec-
tive readouts—to detect problems with code.
These observations needed to be backed up
with numbers somehow.

2 Why is the wiggle so important?

So why weren’t the big iron folks seeing the
same problems as the desktop people if they
were both utilizing the same code? The an-
swer lay in usage patterns. People with laptops
and desktops did not run two dozen instances
of a server daemon that depended on ultra fast
cache and great amounts of parallelism. They
did not have petabytes of disk, and typically
did not have gigabytes of memory either. They
didn’t read terabytes of disk per minute, nor
expect to fully utilize their bus bandwidth on a
regular basis.

These folks browsed the web, sorted mail, and
compiled kernels while, in the background,
they listened to their favorite playlist. While
doing this, they would notice that with the new
scheduler mods, their windows took longer to
redraw. Or their cursor moved more sluggishly
under this relatively heavy load. Or their mu-
sic skipped now and then because their music
player didn’t get back on the CPU soon enough
to catch the next few notes.

That’s not to make light of their complaints;
they were uncovering real problems that exist-

ing testing was inadequate to find. In fact, there
were two main problems that needed to be
solved. One was to close the testing hole by re-
liably repeating the tests that the desktop users
were running, and repeating them on as wide a
variety of hardware as the original patches had
been run on. The other was that even the desk-
top users quibbled among themselves, some-
times, about whether wiggles, skips, and re-
draws had degraded. It was important to find
a way to measure this “wiggle effect” in some
quantifiable, objective way so you could reli-
ably tell whether a new patch worsened it or
improved it.

Server software, for its part, didn’t need mu-
sic to function, didn’t need cursors to point
with, and it sure didn’t care how fast windows
were redrawn. These highly interactive ac-
tivities had no place in server evaluations. It
was typically all aboutthroughput, and plac-
ing stress on some subsystem or another: disk,
memory, or network, typically. Stress on the
scheduler was a given. Even though dozens of
benchmarks exist for measuring the throughput
of high-end machines, producing megabytes or
even gigabytes of analysis and data, there was
no easy way to automate the type of subjective
human observation that desktop users were us-
ing. There was no way to have weekly regres-
sion tests pick it up, nor any way to precisely
duplicate the environment in which these ob-
servations were being made. In short, there
was no way to quantify the observations being
made, so no existing tests could detect regres-
sions in this area.

Previous scheduler modifications had labeled
applications that tended to spend a lot of time
waiting for I/O as “interactive,” and attempted
to give scheduler bonuses to those tasks when
the I/O they had been waiting for completed.
This wassupposedto provide the exact behav-
ior the desktops werenotseeing. The suspicion
was that either these types of applications were
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not being correctly recognized, or they were
not being given sufficient bonuses.

3 Isolating the wiggle

The first part of the solution was recognizing
that the “wiggle effect” comes from tasks not
regaining the CPU fast enough. The second
part was recognizing that the audible stutter
from a music player, or the delay in redraw-
ing a window, were showing the same problem
as wiggling the cursor.

In the case of a cursor, coordinates from a serial
mouse are presented as a stream of input to the
windowing system. If the task that moves the
cursor is not brought to a CPU quickly enough,
there will be a lag between the time the move-
ment is initiated and the time it appears on the
screen. With all the input consumed, the task
again goes to sleep even though a split second
later more input appears as the mouse contin-
ues to move. While this is an efficient way to
handle a serial mouse, it is dependent on hit-
ting the processor quickly enough to guarantee
the input stream doesn’t back up too much. If
the consuming task does not get to run quickly
enough, the cursor will appear to move across
the screen in a staccato fashion, even though
the mouse itself is being moved smoothly.

In the case of a music player, the application
(say,xmms) will read a certain amount of input
from a file, but it will take longer to play it to
the speaker. Even though this is, in general, a
very I/O-intensive task, there are times when
xmmswill go to sleep either waiting for output
to drain to the speaker or input to come from
the file. Waking up too slowly from these self-
imposed interruptions is what causes the music
to pause or stutter.

Slow window redrawing is a case of applica-
tions taking too long after notification to wake
up and redraw. Thismightalso be attributed to

slow interprocess communication or slow sig-
nal delivery, but it should be easy to rule out
these causes if we were to measure the time a
task spent in a queue waiting for a processor.

A patch for scheduler statistics has been avail-
able since 2.5.591. However, it was with the
2.6.0-test5 release in September of 2003 that it
was updated to include code to measure task
latency. The task is given a new timestamp
when it is placed in a run queue, placed on a
processor, or removed from a processor. This
makes it trivial to determine how long the task
spent in the run queue before making it to the
processor. It has the side effect of allowing us
to also measure, on average, how long a task
remains on the processor before relinquishing
it, usually voluntarily. This allows us to easily
characterize the kind of load a benchmark may
place on a system.

Adding statistics counting to the scheduler path
was a dicey task. This is one of the most heav-
ily used paths in the system, and anything that
slows down this path can have a catastrophic
effect on the system as a whole. Consequently,
the statistics patch tries to do what it can to
gather accurate statistics without the use of a
lock.

• Per-CPU counters are used, and incre-
mented only by their respective CPU. This
makes update collisions (and loss of data)
impossible.

• Even so, when possible, these counters are
incremented while a per-CPU runqueue
lock is already acquired.

• Counters are only incremented, so minor
variations from unflushed caches that may
be observed while reading another CPU’s
counters can be safely ignored. (The

1http://oss.software.ibm.com/developerworks/
opensource/linux/patches/?patch_id=730
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counters are declared unsigned long, so
user-level utilities on 32-bit architectures
must take note that the counters could
wrap. While theoretically possible on 64-
bit machines, wrapping is far less likely
than on 32-bit machines.)

Measurements were taken across several dif-
ferent releases using several different bench-
marks to see if any statistical impact could
be found on the benchmarks when scheduler
statistics were utilized. To date, none have
been found.

After the patch is applied, the counters can be
obtained by reading/proc/schedstat . A
full description of the statistics collected can be
found inDocumentation/schedstats.
txt in the kernel source. The patch itself in-
troduces a config option SCHEDSTATS that is
on by default; if it is turned off, all the addi-
tional code is compiled out. There are three
important fields:

timestampN
This line indicates a timestamp, in jiffies,
of when this output was produced. The
statistics are most effectively utilized
when collected at small regular intervals,
since this allows you to more accurately
see how the behavior of a load or bench-
mark may change over its lifetime. Any
process reading this file, however, is sub-
ject to the same scheduler delays it is try-
ing to measure. Consequently, a simple
script like

while true
do

sleep 10
cat /proc/schedstats >> \

/tmp/stat.out
done

may find it collects statistics roughly ev-
ery 10 seconds when the system is lightly
loaded, but every 15-20 seconds or more
when the system is heavily loaded. The
code to note the timestamp is just a few
lines before the data is totaled in the ker-
nel, and on a non-preemptible kernel is an
inexpensive way of identifying the time at
which the snapshot wasactuallytaken.

cpuN n n n n n n n n . . .
These are the values of the counters for
cpu N. The precise meaning of these
counters will vary depending on the ver-
sion of scheduler statistics being utilized.
A few examples of data collected are:

1. number of times some functions
were called

2. number of times certain functions
were called under certain circum-
stances (i.e., were the runqueues un-
balanced? was this processor idle?)

3. total number of milliseconds that
tasks on this processor have used,
not including the current one

4. total number of milliseconds that
tasks that ran here had to wait in
queue

versionN
identifies the version of output being pro-
duced. Since the meaning of fields (and
the number of fields) in thecpuN line,
above, can vary in different versions of
scheduler statistics, this allows tools to be
as flexible or inflexible as desired when
processing input.

A sample of the output from/proc/
schedstat is provided in Appendix A.
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4 What would I use statistics for?

Scheduler statistics can serve three basic pur-
poses. In many cases, they are doing no more
than providing some detailed code path and
profiling data. Knowing, for instance, that
a particular function was called 50,000 times
during a benchmark run may be key if it is ex-
pected to be called a dozen times—or a mil-
lion. Similarly, knowing that 22,000 of those
calls were made while the processor was idle,
or made on just one of eight CPUs, may also
be quite informative. About half the counters
provide this sort of information, and it must be
coupled with a knowledge of what to expect
given your workload in order to detect anoma-
lies.

Another purpose is to provide information be-
yond just counting. There is a counter that
sums the imbalance found when queues are
inspected. Combine this with the number of
times you called this function and you can de-
termine the average imbalance between run-
queues. In most cases you wouldn’t want this
to exceed 1. Truth is, though, that a flurry
of forking or even I/O completions might sud-
denly cause a processor to suddenly find it-
self with significantly more runnable tasks than
other processors. Seeing where these spikes
happen during the test run, and how often they
happen, may help to suggest better “default”
behavior in the scheduler or even tuning in the
benchmark itself.

The last purpose has already been mentioned—
task latency. We already need to note when a
task is queued on a processor and when it ac-
quires a processor. By noting one more thing—
when it leaves the processor—we can also de-
termine what I call therunslice.

The runslice is the amount of time a task
spendson the processor before yielding it. In
contrast, thetimeslicealloted by the scheduler

indicates how long the task may run before it is
forcedoff. Processes are usually given gener-
ous timeslices (100 ms is the default) but typi-
cally don’t use all of them at one shot. A task
may need to put itself to sleep, perhaps to wait
for input, before it has used up that full 100
ms. It will have any unused amount available
to it when the event awakens it, but how long
it spends on the processor can be an impor-
tant characteristic of the system load. If a task
spends only a few milliseconds before giving
up the processor, it may be I/O-bound. By the
same token, if it uses its full timeslice every
time before being kicked off, then it is CPU-
bound.

While many benchmarks are already character-
ized as CPU- or I/O-bound, they are rarely that
way from beginning to end. Seeing this behav-
ior graphed over a period of time can be very
informative to a person trying to tune the sys-
tem or the benchmark.

5 Diagnostic examples

The data that the scheduler statistics collect can
be utilized in several different ways.

5.1 Using the function counts to characterize
behavior

Recently a colleague remarked that he was run-
ning a benchmark that he expected to fully load
a machine; yet profiling was reporting that the
system was in the idle routine 50% of the time.
He increased the load significantly on the ma-
chine and idle time only dropped to 49%. He
couldn’t believe the machine still had spare cy-
cles, so we used the scheduler statistics to de-
termine what was happening.

From the beginning of the benchmark, we cap-
tured the counters in/proc/schedstat ev-
ery 10 seconds with a shell script. When the
benchmark exited, we killed the shell script.
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Figure 1:load_balance() andsched_balance_exec() counts

The two pieces of information that proved most
useful were the number of calls per second
(cps) for load_balance() and sched_
balance_exec() . In Figure 1, you can
see that thecpsfor load_balance() varies
markedly between plateaus of around 4000-
4500, and valleys of 100-200. When the sys-
tem is idle, it callsload_balance() as of-
ten as once a millisecond to try to find work.
When it is busy, it backs off to five times a
second. The graph here is clearly indicating
that this benchmark has at least two periods of
about 100 seconds each out of about 450 sec-
onds total where it is largely idle.

At about the same time that thecpsfor load_
balance() is high, the cps for sched_
balance_exec() is low. This function is
called when tasks issue theexec() system
call, and is used to do some opportunistic re-
balancing. We observed that just as the sys-
tem starts to get busy,sched_balance_
exec() tails off.

The data suggested that this benchmark had a
notable rampup and cooldown period. With

this information in hand, simple observation of
top(1)while running the benchmark confirmed
what the scheduler statistics suggested. The
benchmark had a fairly lengthy single-threaded
setup: creating log files, making directories for
results, and compiling short programs it would
use. It then forked many tasks and set them
all running to actually start the benchmark.
When the test was over, there was again a sin-
gle threaded task that collected the data created
before several tasks organized the data.

5.2 Using latency and runslice information

In another situation, a disk-intensive bench-
mark was doing much worse with a different
version of the scheduler. Figure 2 shows a mea-
surement of the latency from the two runs.

In the “broken” run, the latencies were nearly
twice that of the “working” run. Tasks were
taking longer to reach the CPU in the bro-
ken case. Yet the runslice information shows
comparable (and very short) times spent on the
CPUs. If tasks were running very short periods
of time, but waiting longer to run, what could
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Figure 2: Latency and runslice duration

have been the cause?

Enlightenment was finally attained by viewing
the average imbalance (Figure 3) during each
of the runs. On the average, the imbalance was
twice as great in the broken run as in the work-
ing run. Since the runslice was so small, this
suggested that tasks were becoming runnable
quickly but simply not being balanced often
enough. Some queues were getting quite long
while others (presumably) were staying short.
Additional debugging showed that tasks were
indeed awakening (probably by completed I/O)
quite frequently but most of the balancing was
happening only when one CPU fell idle and
went looking for work. These longer queues
in the broken run were persisting longer than
those in the working run, and tasks stuck in
them were waiting a fraction of a millisecond
longer than before.

6 Conclusion

There is still work to do.

Recent scheduler changes present in Andrew
Morton’s -mm tree will dramatically change
what is important to measure in the sched-
uler. Additionally, these same changes in-
troduce some self-tuning characteristics which
may benefit from statistics describing how of-

Figure 3: Average load imbalances

ten they are retuned.

There is also some evidence that NUMA ma-
chines may benefit from device, task, or mem-
ory affinitization strategies which try to keep
data from crossing NUMA node boundaries.
Scheduler statistics can be used to reliably
demonstrate whether these strategies are being
effective.

Lastly, the data provided by scheduler statis-
tics probably ought to be moved out of /proc
eventually, as there is an ongoing effort to re-
turn /proc to its original task of just listing pro-
cesses.

Scheduler statistics provide a quantifiable
means of measuring scheduler changes. Much
as disk statistics can be used to a variety
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of ends—measuring disk utilization, through-
put rates, and transfer rates, for example—
scheduler statistics can help with analysis of a
variety of situations. The latest revisions go
to lengths to avoid creating “Heisenbugs,” or
bugs which disappear when you try to examine
them closely. Perhaps best of all, developers
need not rely on mice and windowing systems
to measure their test results. Latency num-
bers, in particular, provide a key way of mea-
suring scheduler success, and runslice figures
can help characterize the load that tests create
so that the best set of tests can be chosen to test
a particular feature or system. Cursor wiggles
and audible skips can be set aside until they are
needed again.

Disclaimer

This work represents the view of the author and
does not necessarily represent the views of IBM.

IBM is registered trademark of International Busi-
ness Machines Corporation in the United States
and/or other countries worldwide.

Other company, product, and service names may be
trademarks or service marks of others.

Appendix A

Table 1 is a sample of what/proc/
schedstat might look like for a 2-proc ma-
chine. The actual format and number of coun-
ters will vary between different versions. For
purposes of this example, the last three lines
are artificially folded for readability, but in ac-
tual output, each would be one long line.

This is a brief description of each of the 23
counters for version 4 output. Applications can
check theversion field to make sure they
look for and correctly interpret the counters.
Note that all counters may wrap back to zero,

and applications using these counters should
be prepared to deal with that. Since all coun-
ters start at zero at boot time, the most useful
way to use them is to get periodic snapshots of
the counters, then subtract one set from a pre-
viously obtained one to obtain the delta. All
counters are per-processor.

1. in sched_yield() , number of times
both the active and the expired queue were
empty

2. in sched_yield() , number of times
just the active queue was empty

3. in sched_yield() , number of times
just the expired queue was empty

4. in sched_yield() , number of times
sched_yield() was called

5. inschedule() , number of times the ac-
tive queue had at least one other task on it

6. in schedule() , number of times we
switched to the expired queue and reused
it

7. number of timesschedule() was
called

8. number of times load_balance()
was called at an idle tick

9. number of times load_balance()
was called at a busy tick

10. number of timesload_balance()
was called fromschedule()

11. number of timesload_balance()
was called

12. sum of imbalances discovered (if any)
with each call toload_balance()

13. number of timesload_balance()
was called when we did not find a “bus-
iest” queue
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version 4
timestamp 4295814751
cpu0 8909 9103 612 11869 264585 9821 392921 1065335 406 140662 1206403 62905
1192940 0 13440 13469 0 0 0 0 82278 1497607 264615
cpu1 5138 5328 577 8126 265205 6270 402877 943453 1005 149999 1094457 77670
1074828 0 13469 13440 0 0 0 0 200998 448842 265175
totals 14047 14431 1189 19995 529790 16091 795798 2008788 1411 290661 2300860
140575 2267768 0 26909 26909 0 0 0 0

Table 1: Sample output from/proc/schedstat

14. number of timesload_balance()
was called frombalance_node()

15. number of timespull_task() moved
a task to this cpu

16. number of timespull_task() stole a
task from this cpu

17. number of timespull_task() moved
a task to this cpu from another node (re-
quiresCONFIG_NUMA)

18. number of timespull_task() stole a
task from this cpu for another node (re-
quiresCONFIG_NUMA)

19. number of timesbalance_node()
was called

20. number of timesbalance_node()
was called at an idle tick

21. sum of all time spent running by tasks (in
ms)

22. sum of all time spent waiting by tasks (in
ms)

23. number of tasks (not necessarily unique)
given to the processor

The last three make it possible to find the aver-
age latency on a particular runqueue or, if taken
from the totals fields, the overall system.
Given two points in time, A and B,(22B −
22A)/(23B − 23A) will give you the average

time tasks had to wait after being scheduled to
run but before actually running.

/proc/<pid>/stat

This version of the patch also changes the
stat output of individual tasksto include
the same latency and runslice information de-
scribed above. Three new fields, correspond-
ing to the last three fields described above, are
added to the end of the per-taskstat file, but
apply only for that task rather than a whole pro-
cessor.
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