TCP Connection Passing

Werner Almesberger
werner@almesberger.net

Abstract 3. Last but not least, creating compatible

network state in the kernel of the new con-

nection owner, such that it can resume the
communication where the previous owner
left off.

tcpcp is an experimental mechanism that al-
lows cooperating applications to pass owner-
ship of TCP connection endpoints from one

Linux host to another one. tcpcp can be used
between hosts using different architectures and

does not need the other endpoint of the con- prigin (server)

[Application stat
nection to cooperate (or even to know what's \ pplication state
going on). =

) B Peer
i \ (client)
1 Introduction J
N . N Packet routing
When designing systems for load-balancing,] User space

. . . . Destination (server)
process migration, or fail-over, there is even- Kernel

tually the point where one would like to be Kermelstate

able to “move” a socket from one machine to

another one, without losing the connection onrjgyre 1: Passing one end of a TCP connection
that socket, similar to file descriptor passing orerom one host to another.

a single host. Such a move operation usually

involves at least three elements: Figure 1 illustrates this for the case of a client-
server application, where one server passes
. — ownership of a connection to another server.
1. Moving any appllca_ltlon space state re~yq gha|| call the host from which ownership of
lated _to the connection to the new OWNer.y o connection endpoint is taken thwgin, the
.E -g. In the case of a Web SEIVer SeNV-,st to which it is transferred thabestination
ing large static files, the application Statehd the host on the other end of the connection

could simply be the file name and the cur-(WhiCh does not change) theer
rent position in the file. '

Details of moving the application state are be-
2. Making sure that packets belonging to theyond the scope of this paper, and we will only
connection are sent to the new owner ofsketch relatively simple examples. Similarly,
the socket. Normally this also means thatwe will mention a few ways for how the redi-
the previous owner should no longer re-rection in the network can be accomplished,
ceive them. but without going into too much detail.

10 e Linux Symposium 2004 ¢ Volume One

The complexity of the kernel state of a networktheir memory of TCP/IP concepts and termi-
connection, and the difficulty of moving this nology.

state from one host to another, varies greatly

with the transport protocol being used. Amongl.1 There is more than one way to do it

the two major transport protocols of the Inter-

net, UDP [1] and TCP [2], the latter clearly tcpcp is only one of several possible meth-

presents more of a challenge in this regardeds for passing TCP connections among hosts.
Nevertheless, some issues also apply to UDP.Here are some alternatives:

tcpcp (TCP Connection Passing) is a proof ofin some cases, the solution is to avoid pass-
concept implementation of a mechanism thaing the “live” TCP connection, but to termi-
allows applications to transport the kernel statehate the connection between the origin and the
of a TCP endpoint from one host to anotherpeer, and rely on higher protocol layers to re-
while the connection is established, and with-establish a new connection between the des-
out requiring the peer to cooperate in any waytination and the peer. Drawbacks of this ap-
tcpep is not a complete process migration oproach include that those higher layers need to
load-balancing solution, but rather a buildingknow that they have to re-establish the connec-
block that can be integrated into such systemsijon, and that they need to do this within an
tcpcp consists of a kernel patch (at the timeacceptable amount of time. Furthermore, they
of writing for version 2.6.4 of the Linux ker- may only be able to do this at a few specific
nel) that implements the operations for dump-points during a communication.

ing and restoring the TCP connection end-

point, a library with wrapper functions (see The use of HTTP redirection [4] is a simple
Section 3), and a few applications for debug_example of connection passing above the trans-

ging and demonstration. port layer.
The project's home page is dittp:/ Another approach is to introduce an intermedi-
tcpcp.sourceforge.net/ ate layer between the application and the ker-

nel, for the purpose of handling such redirec-
The remainder of this paper is organized as foltion. This approach is fairly common in pro-
lows: this section continues with a descriptioncess migration solutions, such as Mosix [5],
of the context in which connection passing ex-MIGSOCK [6], etc. It requires that the peer

ists. Section 2 explains the connection passhe equipped with the same intermediate layer.
ing operation in detail. Section 3 introduces

the APIs tcpcp provides. The information that1.2 Transparency
defines a TCP connection and its state is de-

scribed in Section 4. Sections 5 and 6 discusshe key feature of tcpep is that the peer can be
congestion control and the limitations TCP im-|eft completely unaware that the connection is

poses on checkpointing. Security implicationspassed from one host to another. In detail, this
of the availability and use of tcpcp are exam-means:

ined in Section 7. We conclude with an outlook
on future direction the work on tcpcp will take

) . s s _ » The peer’s networking stack can be used
in Section 8, and the conclusions in Section 9.

“as is,” without modification and without

The excellent “TCP/IP lllustrated” [3] is rec- requiring non-standard functionality
ommended for readers who wish to refresh . The connection is not interrupted

Linux Symposium 2004 Volume One * 11

« The peer does not have to stop sending 2 Passing the connection

 No contradictory information is sent to the Figure 2 illustrates the connection passing pro-
peer cedure in detail.

» These properties apply to all protocol lay-

ers visible to the peer 1. The application at the origin initiates the

procedure by requesting retrieval of what
we call thelnternal Connection Informa-
tion (ICl) of a socket. The ICI contains
Furthermore, tcpcp allows the connectionto be all the information the kernel needs to re-
passed at any time, without needing to syn- create a TCP connection endpoint
chronize the data stream with the peer.

. 2. As a side-effect of retrieving the IClI,
The kernels of the hosts between which the tcpepisolatesthe connection: all incom-

connection is passed both need to support ing packets are silently discarded, and no

tcpep, and the application(s) on these hosts will packets are sent. This is accomplished

typically have to be modified to perform the by setting up a per-socket filter, and by

connection passing. changing the output function. Isolating
the socket ensures that the state of the con-

1.3 Various uses nection being passed remains stable at ei-
ther end.

Application scenarios in which the functional- 3 The kernel copies all relevant variables,
ity provided by tcpcp could be useful include plus the contents of the out-of-order and
load balancing, process migration, and fail- send/retransmit buffers to the ICL. The
over. out-of-order buffer contains TCP seg-
ments that have not been acknowledged
yet, because an earlier segment is still
missing.

In the case of load balancing, an application
can send connections (and whatever processing
is associated with them) to another host if the
local one gets overloaded. Or, one could have a
host acting as a dispatcher that may perform an
initial dialog and then assigns the connection
to a machine in a farm.

4. After retrieving the ICI, the application
empties the receive buffer. It can either
process this data directly, or send it along
with the other information, for the desti-

For process migration, tcpcp would be in- nation to process.

voked when moving a file descriptor linked to a

socket. If process migration is implemented in 9- The origin sends the ICI and any relevant

the kernel, an interface would have to be added ~ @pplication state to the destination. The

to tcpep to allow calling it in this way. application at the origin keeps the socket
open, to ensure that it stays isolated.

Fail-over is tricker, because there is normally

no prior indication when the origin will be- 6. The destination opens a new socket. It

come unavailable. We discuss the issues aris- may then bind it to a new port (there are

ing from this in more detail in Section 6. other choices, described below).

12 « Linux Symposium 2004 ¢ Volume One

Origin

Destination

10.

Copy kernel state to ICI (3)

Empty receive buffer (4)
Application

4—| Receive |<—|Out0f0rder|<—
|

Isolate connection (2)

/ —>| Send/Retransmit I—P—
Get ICI (1)
Router, switch, ...
| Switch network traffic (8)
| Vars | Send/Retr |Out0f0rder| — Internal Connection Information -——-=-- ---
o Bind port (6)
Set ICI (7)

Network path to peer

<—| Receive |<—|0ut0f0rder|<—
—Pi Send/Retransmit l—b—

ACK

LA

Application

Activate connection (9)

(Re)transmit, or send ACK (10)

Send application state and ICI to new host (5)

— Data flow in networking stack —> Data transfer —> Command

Figure 2: Passing a TCP connection endpoint in ten easy steps.

. The application at the destination now setdNote that, at the end of this procedure, the

the ICI on the socket. The kernel createssocket at the destination is a perfectly normal
and populates the necessary data strucFCP endpoint. In particular, this endpoint can
tures, but does not send any data yet. Thée passed to another host (or back to the origi-
current implementation makes no use ofnal one) with tcpcp.
the out-of-order data.

2.1 Local port selection
Network traffic belonging to the connec-
tion is redirected from the origin to the
destination host. Scenarios for this are de
scribed in more detail below. The applica-
tion at the origin can now close the socket.

The local port at the destination can be selected
in three ways:

* The destination can simply try to use the

. The application at the destination makes a same port as the origin. This is necessary

call toactivatethe connection. if no address translation is performed on
the connection.

If there is data to transmit, the kernel

will do so. If there is no data, an other- « The application can bind the socket before

wise empty ACK segment (like a window setting the ICI. In this case, the port in the

probe) is sent to wake up the peer. ICl is ignored.

Linux Symposium 2004 * Volume One ¢ 13

» The application can also clear the portThe scenario shown in Figure 3 consists of two
information in the ICI, which will cause serversA andB, with interfaces with the IP ad-
the socket to be bound to any availabledressespA andipB, respectively. Each server
port. Compared to binding the socket be-also has a virtual interface with the address
fore setting the ICI, this approach has theipX. ipA, ipB, andipX are on the same subnet,
advantage of using the local port numberand also the gateway machine has an interface
space much more efficiently. on this subnet.

At the gateway, we create a static route as fol-
The choice of the port selection method delows:
pends on how the environment in which tcpcp

operates is structured. Normally, either the firs{ome add ipX gw ipA

or the last method would be used. When the client connects to the addrgs$, it
reaches hosA. We can now pass the connec-
2.2 Switching network traffic tion to hostB, as outlined in Section 2. In Step

8, we change the static route on the gateway as

There are countless ways for redirecting 1PfOllOWs:

packets from one host to another, without h_elproute del ipX
from the transport layer protocol. They in-
clude redirecting part of the link layer, inge-
nious modifications of how link and network One major limitation of this approach is of
layer interact [7], all kinds of tunnels, network course that this routing change affects all con-
address translation (NAT), etc. nections tapX, which is usually undesirable.

_ _ . Nevertheless, this simple setup can be used to
Since many of the techniques are similar t04emonstrate the operation of tcpcp

network-based load balancing, the Linux Vir-
tual Server Project [8] is a good starting point
for exploring these issues. 3 APIs

route add ipX gw ipB

While a comprehensive study of this topic if The API for tcpcp consists of a low-level part

beyond the scope of this paper, we will briefly : :))
sketch an approach using a static route, bet_hat Is based on getting and setting socket op

_ : ions, and a high-level library that provides
cause this is conceptually straightforward an .
.) convenient wrappers for the low-level API.
relatively easy to implement.

We mention only the most important aspects of
both APIs here. They are described in more de-
s [ipA, ipX tail in the documentation that is included with
erver A
ipX tcpcp.
GW [— - - —Client

ipX gw ipA —> ipX gw ipB

3.1 Low-level API

ServerB [— -

The ICI is retrieved by getting th€CP_ICI

socket option. As a side-effect, the connection
Figure 3: Redirecting network traffic using ais isolated, as described in Section 2. The ap-
static route. plication can determine the maximum ICI size

14 « Linux Symposium 2004 ¢ Volume One

for the connection in question by getting thetcpcp_get allocates a buffer for the ICI, and
TCP_MAXICISIZE socket option. retrieves that ICI (isolating the connection as a
side-effect). The amount of data in the ICI can

Example: be queried by callingcpcp_size onit.

_ tcpcp_create sets an ICl on a socket, and
Y‘;'d_ *buf; tcpcp_activate activates the connection.
int ici_size;

size t size = sizeof(int);

4 Describing a TCP endpoint
getsockopt(s,SOL_TCP,TCP_MAXICISIZE,

&ici_size,&size);
buf = malloc(ici_size); In this section, we describe the parameters that
Siz€ = 1c1_siz€, define a TCP connection and its state. tcpcp
getsockopt(s,SOL_TCP,TCP_ICI, . ..
buf &size); collects all the information it needs to re-create
’ ’ a TCP connection endpoint in a data structure
we callinternal Connection Informatio(iCI).

The connection endpoint at the destina_tion isl’he ICl is portable among systems supporting
created by Se“'“g thE_CP—IC_:I socket (?‘ptlo_n, tcpep, irrespective of their CPU architecture.
and the connection is activated by “setting

the TCP_CP_FNsocket option to the value Besides this data, the kernel maintains a large
TCPCP_ACTIVATE number of additional variables that can either
be reset to default values at the destination
(such as congestion control state), or that are
only rarely used and not essential for correct
operation of TCP (such as statistics).

Example:

int sub_function = TCPCP_ACTIVATE;

setsockopt(s,SOL_TCP,TCP_ICI, 4.1 Connection identifier
buf,size);

*oL .

setsockopt(s,SOL_TCP,TCP_CP_FN, Each TCP _connectlon_ln th_e globgl Int_e_rnet or
&sub_function, any private internet [9] is uniquely identified by
sizeof(sub_function)); the IP addresses of the source and destination

host, and the port numbers used at both ends.

3.2 High-level API tcpcp currently only supports IPv4, but can
be extended to support IPv6, should the need

These are the most important functions pro2"'>

vided by the high-level API: _
4.2 Fixed data

void *tcpcp_get(int s); A few parameters of a TCP connection are ne-
int tcpep_size(const void *ici); gotiated during the initial handshake, and re-
int: tcpep_create(const void *ici); main unchanged during the life time of the
int tcpcp_activate(int s); . .

connection. These parameters include whether

IThe use of a multiplexed socket option is admittedly Window scaling, timestamps, or selective ac-
ugly, although convenient during development. knowledgments are used, the number of bits by

Linux Symposium 2004 » Volume One ¢ 15

Connection identifier

ip.v4.ip_src IPv4 address of the host on which the ICI was recorded (source)
ip.v4.ip_dst IPv4 address of the peer (destination)
tcp_sport Port at the source host

tcp_dport Port at the destination host

Fixed at connection setup

tcp_flags TCP flags (window scale, SACK, ECN, etc.)
snd_wscale Send window scale

rcv_wscale Receive window scale

snd_mss Maximum Segment Size at the source host
rcv_mss MSS at the destination host

Connection state

state TCP connection state (e.g. ESTABLISHED)
Sequence numbers

snd_nxt Sequence number of next new byte to send
rcv_nxt Sequence number of next new byte expected to receive
Windows (flow-control)

snd_wnd Window received from peer

rcv_wnd Window advertised to peer

Timestamps

ts_gen Current value of the timestamp generator
ts_recent Most recently received timestamp

Table 1: TCP variables recorded in tcpcp’s Internal Connection Information (ICl) structure.

which the window is shifted, and the maximum either coincide withsnd_nxt andrcv_nxt
segment sizes (MSS). in the state we set up, or they can be calculated

) by examining the send buffer.
These parameters are used mainly for sanity

checks, and to determine whether the destina-

tion host is able to handle the connection. The4 4 Windows (flow-control)
received MSS continues of course to limit the

segment size.

The (flow-control) window determines how
much more data can be sent or received with-

_out overrunning the receiver’s buffer.
The sequence numbers are used to synchronize

all aspects of a TCP connection. The window the origin received from the peer

is also the window we can use after re-creating
Only the sequence numbers we expect to segq endpoint.

in the network, in either direction, are needed

when re-creating the endpoint. The kernel use¥he window the origin advertised to the peer
several variables that are derived from these salefines the minimum receive buffer size at the
guence numbers. The values of these variabledestination.

4.3 Sequence numbers

16 « Linux Symposium 2004 ¢ Volume One

4.5 Timestamps tcpcp currently ignores both buffers: the out-
of-order buffer is copied into the ICI, but not
TCP can use timestamps to detect old segmen%’sSeOI when'settlng up the new socket, Any .data
) . In the receive buffer is left for the application
with wrapped sequence numbers [10]. This
L : to read and process.
mechanism is calleBrotect Against Wrapped

Sequence numbefBAWS). 4.7 Send buff
.7 Send buffer

Linux uses a global countertcp time_

stamp) to generate local timestamps. If a1he send and retransmit buffer contains data
moved connection were to use the counter afat is no longer accessible through the socket
the new host, local round-trip-time calculation op| and that cannot be discarded. It is there-

may be confused when receiving timestamiore placed in the ICI, and used to populate the
replies from the previous connection, and thesond puffer at the destination.

peer's PAWS algorithm will discard segments
if timestamps appear to have jumped back i

. n4.8 Selective acknowledgments
time.

Just turning off timestamps when moving theln Section 5 of [11], the use of inbound SACK

connection is not an acceptable solution, eveinformation is left optional. tcpcp takes advan-
though [10] seems to allow TCP to just stoptage of this, and neither preserves SACK infor-
sending timestamps, because doing so woulghation collected from inbound segments, nor
bring back the problem PAWS tries to solvethe history of SACK information sent to the

in the first place, and it would also reduce thepeer.

accuracy of round-trip-time estimates, possibly

degrading the throughput of the connection. Outbound SACKs convey information about
the receiver’s out-of-order queue. Fortunately,

A more satisfying solution is to synchroniza-[11] declares this information as purely advi-
tion the local timestamp generator. This issory. In particular, if reception of data has been
accomplished by introducing a per-connectioracknowledged with a SACK, this does not im-
timestamp offset that is added to the valueply that the receiver has to remember having

of tcp_time_stamp . This calculation is done so. First, it can request retransmission of
hidden in the macrép_time_stamp(tp) , this data, and second, when constructing new
which justbecomep_time_stamp ifthe SACKs, the receiver is encouraged to include
kernel is configured without tcpcp. information from previous SACKs, but is un-

der no obligation to do so.
The addition of the timestamp offset is the only '9at

major change tcpcp requires in the existingTherefore, while [11] discourages losing
TCP/IP stack. SACK information, doing so does not violate
its requirements.

4.6 Receive buffers Losing SACK information may temporarily

degrade the throughput of the TCP connec-
There are two buffers at the receiving side:ition. This is currently of little concern, be-
the buffer containing segments received out-ofcause tcpcp forces the connection into slow
order (see Section 2), and the buffer with datastart, which has even more drastic performance
that is ready for retrieval by the application. implications.

Linux Symposium 2004 Volume One * 17

] High-speed LAN

4.9 Other data T Characteristics are identical

— Reuse congestion control state

ered once tcpcp implements more sophisticated

SACK recovery may need to be reconsid- \
congestion control.

The TCP connection state is currently always
ESTABLISHED. It may be useful to also al-
low passing connections in earlier states, e.g. Characteristics may differ
SYN_RCVD. This is for further study. . l T Gotoslowsstart

Congestion control data and statistics are cur-
rently omitted. The new connection starts with .

slow-start, to allow TCP to discover the char- ~ ---
acteristics of the new path to the peer. '

5 Congestion control ’

Figure 4: Depending on the structure of the
Most of the complexity of TCP is in its conges- network, the congestion control state of the
tion control. tcpcp currently avoids touching original connection may or may not be reused.
congestion control almost entirely, by setting
the destination to slow start. 6 Checkpointing

This is a highly conservative approach that is

appropriate if knowing the characteristics oftcpcp is primarily designed for scenarios,
the path between the origin and the peer doewhere the old and the new connection owner
not give us any information on the characteris-are both functional during the process of con-
tics of the path between the destination and th@ection passing.

peer, as shown in the lower part of Figure 4. o .)
A similar usage scenario would if the node

However, if the characteristics of the two pathsowning the connection occasionally retrieves
can be expected to be very similar, e.qg. if the(“*checkpoints”) the momentary state of the

hosts passing the connection are on the san@nnection, and after failure of the connection

LAN, better performance could be achieved byowner, another node would then use the check-
allowing tcpcp to resume the connection at orpoint data to resurrect the connection.

nearly at full speed. _ o)
While apparently similar to connection pass-

Re-establishing congestion control state is foing, checkpointing presents several problems
further study. To avoid abuse, such an operawhich we discuss in this section. Note that this
tion can be made available only to sufficientlyis speculative and that the current implementa-
trusted applications. tion of tcpcp does not support any of the exten-

18 e Linux Symposium 2004 ¢ Volume One

sions discussed here. is probably to tightly synchronize clock
on the old and the new connection owner,
and to make a conservative estimate of the
number of ticks of the local timestamp
clock that have passed since taking the
checkpoint. This assumes that the times-
tamp clock ticks roughly in real time.

We consider the send and receive flow of the
TCP connection separately, and we assume that
sequence numbers can be directly translated to
application state (e.g. when transferring a file,
application state consists only of the actual file
position, which can be trivially mapped to and
from TCP sequence numbers). Furthermore,
we assume the connection to be in ESTAB-Since new data in the segment sent after res-

LISHED state at both ends. urrecting the connection cannot exceed the re-
ceiver's window, the only possible outcomes
6.1 Outbound data are that the segment contains either new data,

or only old data. In either case, the receiver

One or more of the following events may occurWIII acknowledge the segment.

between the last checkpoint and the momen{jpon reception of an acknowledgment, either
the connection is resurrected: in response to the retransmitted segment, or
from a packet in flight at the time when the con-
« the sender may have enqueued more dat&ection was resurrected, the sender knows how
far the connection state has advanced since the
 the receiver may have acknowledgedcheckpoint was taken.

more data
If the sequence number from the acknowl-

« the receiver may have retrieved more datagdgment is belowsnd_nxt , no special ac-
thereby growing its window tion is necessary. If the sequence number is
abovesnd_nxt , the sender would exception-

Assuming that no additional data has been re"-leIy treat this as a valid acknowledgment.

ceived from the peer, the new sender can simag 3 possible performance improvement, the
ply re-tr.ansmlt the last segment. (Alternatively,sender may notify the application once a new
tcp_xmit_probe_skb might be useful for - sequence number has been received, and the

the same purpose.) In this case, the followingyppjication could then skip over unnecessary
protocol violations can occur: data.

« The sequence number may have wrapped-2 Inbound data
This can be avoided by making sure
that a checkpoint is never older than theThe main problem with checkpointing of in-
Maximum Segment Lifetime (MSE)and coming data is that TCP will acknowledge data
that less tharR?! bytes are sent between that has not yet been retrieved by the applica-
checkpoints. tion. Therefore, checkpointing would have to
delay outbound acknowledgments until the ap-

* Ifusing PAWS, the timestamp may be be-yjication has actually retrieved them, and has

low the last timestamp sent by the old

sender. The best solution for avoiding this 3Note that this exceptional condition does not neces-
sarily have to occur with the first acknowledgment re-

2[2] specifies a MSL of two minutes. ceived.

Linux Symposium 2004 * Volume One < 19

checkpointed the resulting state change. straints of the local system (such as buffer

. size limits and kernel capabilities).
To intercept all types of ACKSs,tcp_

transmit_skb would have to be changed
to sendtp->copied_seq instead oftp->
rcv_nxt . Furthermore, a new API function
would be needed to trigger an explicit acknowl-
edgment after the data has been stored or pro-
cessed.

2. Many manipulations possible through
tcpcp can be shown to be available
through other means if the application has
the CAP_NET_RAWapability. There-
fore, establishing a new TCP connection
with tcpcp also requires this capability.

Putting acknowledges under application con- ~ This can be relaxed on a host-wide basis.

trol would change their timing. This may upset

the round-trip time estimation of the peer, and

it may also cause it to falsely assume change®.2 Retrieval of sensitive kernel data

in the congestion level along the path.

Getting TCP_ICI may retrieve information
7 Security from the kernel that one would like to hide
from unprivileged applications, e.g. details
_ about the state of the TCP ISN generator. Since
tcpep bypasses various sets of access and COfye equally unprivilegedCP_INFO already
sistency checks normally performed when setyives access to most TCP connection meta-

ting up TCP connections. This section anaata, tcpep does not create any new vulnera-
lyzes the overall security impact of tcpcp. bilities.

7.1 Two lines of defense 7.3 Local denial of service

When setting TCP_ICI, the kemel has rlc)SettingTCP_ICI could be used to introduce

means of verifying that th nnection infor- .)
€ans ot ve fy g t at the connectio 0 inconsistent data in the TCP stack, or the ker-
mation actually originates from a compatible ") .)
nel in general. Preventing this relies on the cor-

system. Users may therefore manipulate con- .
. . .rectness and completeness of the sanity checks
nection state, copy connection state from arbi-)
: mentioned before.

trary other systems, or even synthesize connec-

tion state according to their wishes. tcpcp protcpcp can be used to accumulate stale data in

vides two mechanisms to protect against intenthe kernel. However, this is not very different

tional or accidental mis-uses: from e.g. creating a large number of unused
sockets, or letting buffers fill up in TCP con-

o _ nections, and therefore poses no new security
1. tcpep only takes as little information as ihreat.

possible from the user, and re-generates

as much of the state related to the TCPcpcp can be used to shutdown connections be-
connection (such as neighbour and destifonging to third party applications, provided
nation data) as possible from local infor- that the usual access restrictions grant access to
mation. Furthermore, it performs a num- copies of their socket descriptors. This is sim-
ber of sanity checks on the ICI, to ensureilar to executingshutdown on such sockets,

its integrity, and compatibility with con- and is therefore believed to pose no new threat.

20 ¢ Linux Symposium 2004 * Volume One

7.4 Restricted state transitions 8 Future work

tcpep could be used to advance TCP connecl0 allow faster connection passing among

tion state past boundaries imposed by internd©Sts that share the same, or a very similar path
or external control mechanisms. In particular,©0 the peer, tcpep should try to avoid going to

conspiring applications may create TCP conSlow start. To do so, it will have to pass more

nections without ever exchanging SYN pack_congestion control information, and integrate it

ets, bypassing SYN-filtering firewalls. Since Properly at the destination.

SYN-filtering firewalls can already be avoided Although not strictly part of tcpep, the redirec-

by pri_/ileg_ed a_pplications, sites depending Nion apparatus for the network should be fur-
SYN-filtering firewalls should therefore use ther extended, in particular to allow individual

the d?fau“ s¢€ t_}lng of thCp.’ which makes ItSconnections to be redirected at that point too,
use also a privileged operation. and to include some middleware that coordi-

nates the redirecting with the changes at the
7.5 Attacks on remote hosts hosts passing the connection.

It would be very interesting if connection pass-
The ability to setTCP_ICI makes it easy ing could also be used for checkpointing. The
to commit all kinds of of protocol violations. analysis in Section 6 suggests that at least lim-
While tcpcp may simplify implementing such ited checkpointing capabilities should be feasi-
attacks, this type of abuses has always beeple without interfering with regular TCP oper-
possible for privileged users, and thereforeation.
tcpcp poses no new security threat to systems

properly resistant against network attacks. ~ 1Nhe inner workings of TCP are complex and
easily disturbed. It is therefore important to

However, if a site allows systems where onlysubject tcpcp to thorough testing, in particu-
trusted users may be able to communicate witlar in transient states, such as during recovery
otherwise shielded systems with known remoté&rom lost segments. The umlisim simulator [12]
TCP vulnerabilities, tcpcp could be used for at-allows to generate such conditions in a deter-
tacks. Such sites should use the default seininistic way, and will be used for these tests.
ting, which makes settingCP_ICI a privi-

leged operation.)
g P 9 Conclusion

7.6 Security summar) _)
y Y tcpcp is a proof of concept implementation that

successfully demonstrates that an endpoint of
To summarize, the author believes that the dea TCP connection can be passed from one host
sign of tcpcp does not open any new exploits ifto another without involving the host at the op-
tcpcep is used in its default configuration. posite end of the TCP connection. tcpcp also

_) shows that this can be accomplished with a rel-
Obviously, some subtleties have probably bee’&tively small amount of kernel changes.
overlooked, and there may be bugs inadver-

tently leading to vulnerabilities. Therefore, tcpcp in its present form is suitable for exper-
tcpcp should receive public scrutiny before bedimental use as a building block for load bal-
ing considered fit for regular use. ancing and process migration solutions. Future

Linux Symposium 2004 * Volume One * 21

work will focus on improving the performance [9] RFC1918; Rekhter, Yakov; Moskowitz,
of tcpcp, on validating its correctness, and on
exploring checkpointing capabilities.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

RFC768; Postel, JoitJser Datagram
Protocol, IETF, August 1980.

RFC793; Postel, Jofmransmission
Control Protoco] IETF, September 1981.

Stevens, W. Richardl.CP/IP lllustrated,
Volume 1 — The Protocals
Addison-Wesley, 1994,

RFC2616; Fielding, Roy T.; Gettys,
James; Mogul, Jeffrey C.; Frystyk
Nielsen, Henrik; Masinter, Larry; Leach,
Paul J.; Berners-Lee, Tinllypertext
Transfer Protocol — HTTP/1,1ETF,

June 1999.

Bar, Moshe OpenMosixProceedings of
the 10th International Linux System
Technology Conference
(Linux-Kongress 2003), pp. 94-102,
October 2003.

Kuntz, Bryan; Rajan, Karthik.
MIGSOCK — Migratable TCP Socket in
Linux, CMU, M.Sc. Thesis, February
2002.http://www-2.cs.cmu.edu/
~softagents/migsock/MIGSOCK.

pdf

Leite, Fabio Olivé Load-Balancing HA
Clusters with No Single Point of Failure
Proceedings of the 9th International
Linux System Technology Conference
(Linux-Kongress 2002), pp. 122-131,
September 200Attp://www.
linux-kongress.org/2002/
papers/Ik2002-leite.html

Linux Virtual Server Projecthttp://
www.linuxvirtualserver.org/

[10]

[11]

[12]

Robert G.; Karrenberg, Daniel; de Groot,
Geert Jan; Lear, ElioAddress

Allocation for Private InternetdETF,
February 1996.

RFC1323; Jacobson, Van; Braden, Bob;
Borman, DaveTCP Extensions for High
PerformancelETF, May 1992.

RFC2018; Mathis, Matt; Mahdauvi,
Jamshid; Floyd, Sally; Romanow, Allyn.
TCP Selective Acknowledgement
Options IETF, October 1996.

Almesberger, WernetJML Simulator
Proceedings of the Ottawa Linux
Symposium 2003, July 2003.
http://archive.linuxsymposium.
org/ols2003/Proceedings/
All-Reprints/
Reprint-Almesberger-OLS2003.

pdf

22 Linux Symposium 2004 ¢ Volume One

Proceedings of the
Linux Symposium

Volume One

July 21st-24th, 2004
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. HuttonSteamballoon, Inc.
Stephanie Donovar,inux Symposium
C. Craig Rossl.inux Symposium

Review Committee

Jes Sorensefild Open Source, Inc.
Matt DomschDell

Gerrit HuizengalBM

Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel

Val Henson Sun Microsystems
Jamal Hadi SalimiZnyx

Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team
John W. LockhartRed Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

