Linux AlIO Performance and Robustness for
Enterprise Workloads

Suparna BhattacharydBM (suparna@in.ibom.com)
John Tran,|BM (jbtran@ca.ibm.com)
Mike Sullivan,|BM (mksully@us.ibm.com)
Chris Mason SUSE(mason@suse.com)

1 Abstract improve the performance of certain kinds of
I/O intensive applications like databases, web-

In this paper we address some of the issyedervers and streaming-content servers. The

identified during the development and stabi-US¢€ of AlO also tends to help such applic_a—
lization of Asynchronous I/O (AIO) on Linux tions adapt and scale more smoothly to varying

26 loads.

We start by describing improvements made t®@.1 Overview of kernel AlO in Linux 2.6
optimize the throughput of streaming buffered
filesystem AIO for microbenchmark runs. the | jnux 2.6 kernel implements in-kernel

Ne>_<t, we discuss_certain tricky issugs in e”'support for AlO. A low-level native AIO sys-

suring data integrity between AIO Direct /O o ¢4l interface is provided that can be in-
(DIO) and buﬁered /0, and take a deeper look,qqq directly by applications or used by li-
at synchronized I/0 guarantees, concurrenfary implementations to build POSIX/SUS
/O, write-ordering issues and the Improve-gemantics. All discussion hereafter in this pa-

ments resulting from radix-tree based write-ner hertains to the native kernel AIO interfaces.
back changes in the Linux VFS.

_ _ _ _ Applications can submit one or more
We then investigate the results of using Linux,q requests asynchronously using the
2.6 filesystem AIO on the performance met-;, submit() system call, and ob-

rics for certain enterprise database workloadsg,;, completion notification using the
which are expected to benefit from AIO, and;, getevents() system call. Each
mention a few tips on optimizing AlO for such |;5 request specifies the operation (typically

workloads. Finally, we briefly discuss the is- read/write), the file descriptor and the pa-
sues around workloads that need to combing, aters for the operation (e.g., file offset

asynchronous disk I/O and network 1/O. buffer). 1/0 requests are associated with the
completion queue (ioctx) they were submitted
2 Introduction against. The results of I/O are reported as

completion events on this queue, and reaped

) o usingio_getevents()
AIO enables a single application thread to

overlap processing with 1/0 operations for bet-The design of AlO for the Linux 2.6 kernel has
ter utilization of CPU and devices. AIO can been discussed in [1], including the motivation

64 ¢ Linux Symposium 2004 * Volume One

behind certain architectural choices, for exam-used by regular and retry-based AIO could
ple: be non-optimal for streaming AIO requests,
and we describe the modifications that ad-

» Sharing a common code path for AIO anddress this finding. A different set of prob-
regular I/O lems that has seen some development ac-

. tivity are the races, exposures and poten-

) A retry-based mo_del for AI_O continua- data-integrity concerns between direct and
tions across blocking points in the_case Ofbuffered I/0, which become especially tricky
buffered filesystem AIO (currently imple- i, 4,0 yresence of AIO. Some of these issues

mented as a set of patches to the LINUX 2.6, i ateq Andrew Morton's modified page-
kerne1l) where worker threads tal_<e on t_he\Nriteback design for the VFS using tagged
_caller_s address space for executing retrieSadix-tree lookups, and we discuss the implica-
Involving access to user-space buffers. tions for the AIOO_SYNGwrite implementa-
tion. In general, disk-based filesystem AIO re-
guirements for database workloads have been a

The retrv-based model all AIO Ejuiding consideration in resolving some of the
€ retry-based model allows an reQUES}yade-offs encountered, and we present some

to be executed as a series of non-blocking It'initial performance results for such workloads.

_eratlons. Each iteration retries the rema'_n'LastIy, we touch upon potential approaches to
ing part of the request from where the last it-

} SO . allow processing of disk-based AlO and com-
eration left off, re-issuing the corresponding

AIO filesystem operation with modified argu- munications I/O within a single event loop.
ments representing the remaining 1/0. The re-

tries are “kicked” via a special AlO waitqueue 3 Streaming AlO reads

callback routineaio_wake_function() ,

which replace_s the : default waitqueue entry3.1 Basic retry pattern for single AlO read
used for blocking waits.

2.2 Background on retry-based AIO

The high-level retry infrastructure is respon-The retry-based design for buffered filesystem
sible for running the iterations in the addressAlO read works by converting each blocking
space context of the caller, and ensures thawait for read completion on a page intoetry
only one retry instance is active at a giventimeexit The design queues an asynchronous no-
This relieves the fops themselves from havingification callback and returns the number of

to deal with potential races of that sort. bytes for which the read has completed so far
without blocking. Then, when the page be-
2.3 Overview of the rest of the paper comes up-to-date, the callback kicks off a retry

continuation in task context. This retry contin-
In subsequent sections of this paper, we dedation invokes the same filesystem read opera-
scribe our experiences in addressing several igion again using the caller’s address space, but
sues identified during the optimization and stathis time with arguments modified to reflect the
bilization efforts related to the kernel AIO im- remaining part of the read request.
plementation for Linux 2.6, mainly in the area

of disk- or filesystem-based AIO. For example, given a 16KB read request start-

ing at offset 0, where the first 4KB is already
We observe, for example, how I/O patternsin cache, one might see the following sequence
generated by the common VFS code pathsf retries (in the absence of readahead):

Linux Symposium 2004 * Volume One * 65

first time: whereol, 02, o3, ... refer to the ran-
fop->aio_read(fd, 0, 16384) = 4096 ; .

and when read completes for the second page: dom offsets where these reads are issued:
fop->aio_read(fd, 4096, 12288) = 4096

and when read completes for the third page:

fop->aio_read(fd, 8192, 8192) = 4096 first time:
and when read completes for the fourth page: fop->aio_read(fd, o1, 16384) = -EIOCBRETRY,
fop->aio_read(fd, 12288, 4096) = 4096 after issuing readahead for 64KB
as the readahead logic sees the first page
of the read
. fop->aio_read(fd, 02, 16384) = -EIOCBRETRY,
3.2 Impact of readahead on single AlIO read after issuing readahead for 8KB (notice

the shrinkage of the readahead window
because of non-sequentiality seen by the

Usually, however, the readahead logic attempts readahead logic)

. fop->ai d(fd, 03, 16384) = -EIOCBRETRY,
to batch read requests in advance. Hence, more™ e teseta 5 o) = o

I/O would be seen to have completed at each window, turning off readahead and issuing
. . . 4KB read in the slow path
retry. The logic attempts to predict the optimal 1, >4i0 read(fd, 04, 16384) = -EIOCBRETRY,

readahead window based on state it maintains after issuing 4KB read in the slow path
about the sequentiality of past read requests on

the same file descriptor. Thus, given a maxi-2and when read completes for ol
. . fop->aio_read(fd, ol, 16384) = 16384
mum readahead window size of 128KB, the S€zang when read completes for 02

guence of retries would appear to be more like fop->aio_read(fd, 02, 16384) = 8192
nd when read completes for 03

. al
the following example, which results in signif- fop->aio_read(fd, 03, 16384) = 4096

i i . and when read completes for o4
ICantIy |mproved throughput. fop->aio_read(fd, 03, 16384) = 4096

first time:
fop->aio_read(fd, 0, 16384) = 4096,
after issuing readahead

for 128KB/2 = 64KB In steady state, this amounts to a maximally-
and when read completes for the above 1/O: . .
fop->aio_read(fd, 4096, 12288) = 12288 shrunk readahead window with 4KB reads at

random offsets being issued serially one at a

_ _ time on a slow path, causing seek storms and
Notice that care is taken to ensure that readagriving throughputs down severely.

heads are not repeated during retries.

3.4 Upfront readahead for improved stream-
3.3 Impact of readahead on streaming AIO ing AIO read throughputs
reads

. To address this issue, we made the readahead
In the case of streaming AlO reads, a sequencggic aware of the sequentiality of all pages in a

of AIO read requests is issued on the sam@jngle read request upfront—before submitting

file descriptor, where subsequent reads are sulhe next read request. This resulted in a more

complete (contrast this with a sequence of syn-

chronous reads).
) fop->aio_read(fd, ol, 16384) = -EIOCBRETRY,

. N after issuing readahead for 64KB
Interestingly, we encountered a significant as the readahead logic sees all the 4
i iNn- pages for the read
throughput degradation as a regult of the in fopoa, rend(fd. 02 16384) = -EIOCBRETRY,
terplay of readahead and streaming AlO reads. ater issuing readahead for 20KB, as the
H readahead logic sees all 4 pages of the
To see why, consider the retry sequence for = (the remahead window shrinks 1o

streaming random AIO read requests of 16KB, 4+1=5 pages)

66 ¢ Linux Symposium 2004 * Volume One

fop->aio_read(fd, 03, 16384) = -EIOCBRETRY,
after issuing readahead for 20KB, as the

alone, limited to the maximum readahead set-
ting for the device.

readahead logic sees all 4 pages of the
read (the readahead window is maintained
at 4+1=5 pages) 3.6 Streaming AIO read microbenchmark
. comparisons
and when read completes for ol
fop->aio_read(fd, ol, 16384) = 16384
and when read completes for 02
fop->aio_read(fd, 02, 16384) = 16384
and when read completes for 03
fop->aio_read(fd, 03, 16384) = 16384

We explored streaming AIO throughput im-
provements with the retry-based AIO imple-
mentation and optimizations discussed above,
using a custom microbenchmark called aio-
stress [2]. aio-stress issues a stream of AIO
3.5 Upfront readahead and sendfile regres- '€dUeSts to one or more files, where one can
sions vary several parameters including 1/O unit size,
total 1/0 size, depth of iocbs submitted at a

At first sight it appears that upfront readaheadime, number of concurrent threads, and type
is a reasonable change for all situations, sinc@nd pattern of 1/O operations, and reports the
it immediately passes to the readahead logi€Verall throughput attained.

the entire size of the request. However, it hasl.he hardware included a 4-way 700MHz
the unintended, potential side-effect of losingp . \tiu® 111 machine with 512MB of RAM

pipelining benefits for really large reads, OroP-40d a 1MB L2 cache. The disk subsystem

erati(_)ns like sendfile which_involve POSt Pro- s for the I/O tests consisted of an Adaptec
cessing l/O on the contents just read. One WA\ 1Cc7896/97 Ultra2 SCSI controller connected

tof ad;:lress th'ds ;]S t((’j Cl'phthe maximum SI;eto a disk enclosure with six 9GB disks, one
o up ront_ readanea to_t € maximum readays \ypich was configured as an ext3 filesystem
head setting for the device. To see why eve

: SR "With a block size of 4KB for testing.
that may not suffice for certain situations, let

us take a look at the following sequence forThe runs compared aio-stress throughputs for
a webserver that uses non-blocking sendfile tgtreaming random buffered 1/0 reads (i.e.,
serve a large (2GB) file. without O_DIRECT), with and without the
previously described changes. All the runs
were for the case where the file was not al-
ready cached in memory. The above graph
summarizes how the results varied across in-
dividual request sizes of 4KB to 64KB, where
I/O was targeted to a single file of size 1GB,
the depth of iocbs outstanding at a time being
64KB. A third run was performed to find out
how the results compared with equivalent runs
This confuses the readahead logic about thasing AIO-DIO.

I/O pattern which appears to be 0-128K, 8K— _

132K, 16K—140K instead of clear sequentiality Vith the changes applied, the results showed

from 0-2GB that is really appropriate. an approximate 2x improvement across all
block sizes, bringing throughputs to levels that

To avoid such unanticipated issues, upfrontmatch the corresponding results using AlO-
readahead required a special case for AIMIO.

sendfile(fd, 0, 2GB, fd2) = 8192,
tells readahead about up to 128KB
of the read

sendfile(fd, 8192, 2GB - 8192, fd2) = 8192,
tells readahead about 8KB - 132KB
of the read

sendfile(fd, 16384, 2GB - 16384, fd2) = 8192,
tells readahead about 16KB-140KB
of the read

Linux Symposium 2004 * Volume One ¢ 67

lock ordering ofi_sem first and theni_
alloc_sem) while allowing for filesystem-
0 : : : : : : specific implementations of the DIO and file-

Streaming AlO read results with aio-stress of blocks by a truncate while DIO was in
Ll p— FgAlg(non—céched)é.s.zvénilla ‘ progress. The semaphore was implemented

R FSAI -cached) 2.6.2 Patched . . .
S 50| x AGDIOZESVanlla o held in shared mode by DIO and in exclusive
5 T mode by truncate.
< 15 . . 7
2 0l V,,.fttii'?i“”] Note that handling the new locking rules (i.e.,
=

0 10 20 30 40 50 60 70 . . .
request size (KB) write interfaces had to be handled with some
care.

Figure 1. Comparisons of streaming random

AlG read throughputs 4.2 AlO-DIO specific races

4 AIO DIO vs cached I/O integrity ~ The inclusion of AIO in Linux 2.6 added some
issues tricky scenarios to the above-described prob-
lems because of the potential races inherent in
returning without waiting for 1/0 completion.
The interplay of AIO-DIO writes and truncate

o was a particular worry as it could lead to cor-
Stephen Tweedie discovered several races b?uption of file data; for example, blocks could

tween DIO and buffered /O to the same file 4ot geallocated and reallocated to a new file
[3]. These races could lead to potential staleyyhjle an AIO-DIO write to the file was still in

data exposures and even data-integrity ISSUegrqgress. To avoid this, AIO-DIO had to return
Most instances were related to situations Whelith i alloc sem held. and only release it
in-core meta-data updates were visible before,q pa?t of 110 completion post-processing. No-

actual instantiation or resetting of corresponds;ce that this also had implications for AIO can-
ing data blocks on disk. Problems could alsozgation.

arise when meta-data updates were not visible
to other code paths that could simultaneouslyile size updates for AIO-DIO file extends
update meta-data as well. The races mainly afeould expose unwritten blocks if they hap-
fected sparse files due to the lack of atomicitypened before 1/0 completed asynchronously.
between the file flush in the DIO paths and ac-The case involving fallback to buffered 1/0
tual data block accesses. was particularly non-trivial if a single request

)] spanned allocated and sparse regions of a
The solution that Stephen Tweedie camejje gpecifically, part of the I/O could have
up with, and which Badari Pulavarty re- heen initiated via DIO then continued asyn-

ported to Linux 2.6, involved protecting block ¢ ronoysy, while the fallback to buffered 1/0
lookups and meta-data updates with the inodgccyrred and signaled 1/0 completion to the

semaphore(sem) in DIO paths forbothread yppjication. The application may thus have
and write, atomically with the file flush. Over- (o ;sed its I/O buffer, overwriting it with other

writing of sparse blocks in the DIO write path qa13 and potentially causing file data corrup-
was modified to fall back to buffered writes. (ion if writeout to disk had still been pending.

Finally, an additional semaphore élloc_
sem) was introduced to lock out deallocation It might appear that some of these problems

4.1 DIO vs buffered races

68 ¢ Linux Symposium 2004 ¢ Volume One

could be avoided if I/O schedulers guaranteedhize previously-issued writes to disk by invok-
the ordering of 1/0 requests issued to the samang fsync(), which writes back data from the
disk block. However, this isn’t a simple propo- page cache to disk and waits for writeout to
sition in the current architecture, especially incomplete before returning.

generalizing the design to all possible cases,

including network block devices. The use of5.1 Concurrent DIO writes

I/O barriers would be necessary and the costs

may not be justified for these special-case situp|0 writes formerly held the inode semaphore
ations. in exclusive mode until write completion. This

: . _helped ensure atomicity of DIO writes and
Instead, a pragmatic approach was taken in or-

) . protected against potential file data corruption
der to address this based on the assumptlorP g P P

S : i
. races with truncate. However, it also meant that

that true asynchronous behaviour was reall

meaningful in practice, mainly when perform-

ultiple threads or processes submitting par-
ing 1/0O to already-allocated file blocks. For

allel DIOs to different parts of the same file

. . effectively became serialized synchronously.

example, databases typically preallocate file y y y
at the time of creation, so that AIO writes

7f the same behaviour were extended to AIO
during normal operation and in performance-

(i.e., having the_sem held through 1/0O com-
critical paths do not extend the file or encounteP 0N for AIO-DIO writes), it would signif-
sparse regions. Thus, for the sake of correct-

icantly degrade throughput of streaming AIO
: writes as subsequent write submissions would
ness, synchronous behaviour may be tOIerabIBlock until completion of the previous request
for AIO writes involving sparse regions or file '
extends. This compromise simplified the han4yjth the fixes described in the previous sec-
dIlng of the scenarios described earlier. Alo-tion, such synchronous serialization is avoid-
DIO file extends now wait for I/O to complete aple without loss of correctness, as the inode
and update the file size. AIO-DIO writes span-semaphore needs to be held only when looking
ning allocated and sparse regions now wait fop the blocks to write, and not while actual I/O
previously- issued DIO for that request to com-is in progress on the data blocks. This could al-
plete before falling back to buffered I/O. low concurrent DIO writes on different parts of
a file to proceed simultaneously, and efficient
5 Concurrent /O with synchro- throughputs for streaming AlO-DIO writes.

nized write guarantees 5.2 ConcurrentO_SYNuffered writes

An application opts for synchronized writes In the original writeback design in the Linux
(by using theO_SYNCoption on file open) VFS, per-address space lists were maintained

when the I/O must be committed to disk be-for dirty pages and pages under writeback for
fore the write request completes. In the cas@ 9iven file. Synchronized write was imple-
of DIO, writes directly go to disk anyway. For mented by tra_versmg these Ilsts_ 'Fo issue erte-
buffered 1/0, data is first copied into the page®Uts for the dirty pages and waiting for write-
cache and later written out to disk: if synchro-Pack to complete on the pages on the writeback

nized I/O is specified then the request returndiSt: The inode semaphore had to be held all

only after the writeout is complete. through to avoid possibilities of livelocking on
these lists as further writes streamed into the
An application might also choose to synchro-same file. While this helped maintain atomicity

Linux Symposium 2004 * Volume One ¢ 69

of writes, it meant that parall€® SYNGwrites shared mode for background writers. It in-
to different parts of the file were effectively volved navigating issues with busy-waits in
serialized synchronously. Further, dependencbackground writers and the code was begin-
oni_sem -protected state in the address spacaing to get complicated and potentially fragile.

lists across I/O waits made it difficult to retry- _
enable this code path for AIO support. This was one of the problems that flnal_ly
prompted Andrew Morton to change the entire

In order to allow concurrer® SYNGwritesto VFS writeback code to use radix-tree walks in-
be active on a file, the range of pages to bestead of the per-address space pagelists. The
written back and waited on could instead bemain advantage was that avoiding the need
obtained directly through a radix-tree lookupfor movement across lists during state changes
for the range of offsets in the file that was be-(e.g., when re-dirtying a page if its buffers were
ing written out by the request [4]. This would locked for I/O by another process) reduced the
avoid traversal of the page lists and hence thehances of pages getting missed from consid-
need to hold_sem across the I/O waits. Such eration without the added serialization of entire
an approach would also make it possible towritebacks.

completeO_SYNGwrites as a sequence of non-

blocking retry iterations across the range of

bytes in a given request. 6 Tagged radix-tree based write-
back

5.3 Data-integrity guarantees

Background writeout threads cannot block onFor the radix-tree walk writeback design to per-
the inode semaphore like O_SYNC/fsync writ-form as well as the address space lists-based
ers. Hence, with the per-address space listapproach, an efficient way to get to the pages
writeback model, some juggling involving of interest in the radix trees is required. This
movement across multiple lists was requireds especially so when there are many pages in
to avoid livelocks. The implementation had the pagecache but only a few are dirty or under
to make sure that pages which by chance gowriteback. Andrew Morton solved this prob-
picked up for processing by background write-lem by implementing tagged radix-tree lookup
outs didn’t slip from consideration when wait- support to enable lookup of dirty or writeback
ing for writeback to complete for a synchro- pages in O(log64(n)) time [6].
nized write request. The latter would be partic-) _)
ularly relevant for ensuring synchronized-write S was achieved by adding tag bits for each
slot to each radix-tree node.

guarantees that impacted data integrity for aps e. If anode is
plications. However, as Daniel McNeil's anal- {299ed, then the corresponding slots on all the

ysis would indicate [5], getting this right re- Nodes above it in the tree are tagged. Thus,
quired the writeback code to write and wait !0 S€arch for a particular tag, one would keep
upon I/O and dirty pages which were initiated 90INg down sub-trees under slots which have

by other processes, and that turned out to bH'€ 1&g bit set until the tagged leaf nodes are
fairly tricky. accessed. A tagged gang lookup function is

used for in-order searches for dirty or write-
One solution that was explored was per-back pages within a specified range. These
address space serialization of writeback to enlookups are used to replace the per-address-
sure exclusivity to synchronous writers andspace page lists altogether.

70 e Linux Symposium 2004 * Volume One

To synchronize writes to disk, a tagged radix-write operation again using the caller’s address
tree gang lookup of dirty pages in the byte-space, but this time with arguments modified to
range corresponding to the write request is perreflect the remaining part of the write request.
formed and the resulting pages are written out. _

Next, pages under writeback in the byte-rangé'S Writeouts for the range would have already
are obtained through a tagged radix-tree ganBe?” |ssu§d the first tlme_ before _the loop to
lookup of writeback pages, and we wait forwa_'t for writeback completlon., the implemen-
writeback to complete on these pages (withouf2tion takes care not to re-dirty pages or re-

having to hold the inode semaphore across thi§SUeé Writeouts during subsequent retries of
waits). Observe how this logic lends itself to beAlO Write. Instead, when the code detects that

broken up into a series of non-blocking retry it- It 1S being called in a retry context, it simply

erations proceeding in-order through the rangef.a"s through directly to the step involving wait-
on-writeback for the remaining range as speci-

The same logic can also be used for a wholdied by the modified arguments.

file sync, by specifying a byte-range that spans

the entire file. 7.2 Filtered waitqueues to avoid retry storms
with hashed wait queues

Background writers also use tagged radix-tree

gang lookups of dirty pages. Instead of alwayscode that is in a retry-exit path (i.e., the return

scanning a file from its first dirty page, the in- hath following a blocking point where a retry is

dex where the last batch of writeout terminateogueued) should in general take care not to call

is tracked so the next batch of writeouts can bgqtines that could wakeup the newly-queued
started after that point. retry.

One thing that we had to watch for was calls
to unlock_page() in the retry-exit path.

This could cause a redundant wakeup if an
The tagged radix-tree walk writeback approachysync wait-on-page writeback was just queued
greatly simplifies the design of AIO support for for that page. The redundant wakeup would
synchronized writes, as mentioned in the previgrise if the kernel used the same waitqueue
ous section, on unlock as well as writeback completion for
a page, with the expectation that the waiter
7.1 Basic retry pattern for synchronized AIO \yoyld check for the condition it was waiting
writes for and go back to sleep if it hadn’t occurred. In
) the AlO case, however, a wakeup of the newly-
The retry-based design for buffered AIO_ q,eyed callback in the same code path could
SYNCwrites works by converting each block- hstentially trigger a retry storm, as retries kept

ing wait for writeback completion of a page riggering themselves over and over again for
into aretry exit The conversion point queues the wrong condition.

an asynchronous notification callback and re-

turns to the caller of the filesystem’s AIO The interplay of unlock page() and
write operation the number of bytes for whichwait_on_page_writeback() with
writeback has completed so far without block-hashed waitqueues can get quite tricky for
ing. Then, when writeback completes for thatretries. For example, consider what happens
page, the callback kicks off a retry continuationwhen the following sequence in retryable code
in task context which invokes the same AlOis executed at the same time for 2 pages,

7 Streaming AlO writes

Linux Symposium 2004 Volume One * 71

and py, which happen to hash to the same Streaming AIO O_SYNC write results with aio-stress
waitqueue (Table 1). 8 T FSAI02.6.2 Vanila ¥
16 *-- FSAIO 2.6.2 Patched ol

14 |
12 1 e
10 | X

- AO-DIO 262 Vanilla ="

lock_page(p)
check condition and process

unlock_page(p)
if (wait_on_page_writeback_wq(p)
== -EIOCBQUEUED)
return bytes done

aio-stress throughput (MB/s)

o N A O
T

0 1‘0 éO f;O 4‘0 50 (;O 70

. request size (KB)

The above code could keep cycling between

spurious retries opx andpy until 1/0 is done, Figure 2: Comparisons of streaming random

wasting precious CPU time! AIO write throughputs.

If we can ensure specificity of the wakeup with

hashed waitqueues then this problem can be) o

avoided. William Lee Irwin's implementation POCK sizes, bringing throughputs to levels that
of filtered wakeup support in the recent Linux Match the corresponding results using AlO-
2.6 kernels [7] achieves just that. The Wakeu;P'O'

routine specifies a key to match before invok-
ing the wakeup function for an entry in the
waitqueue, thereby limiting wakeups to those
entries which have a matching key. For page
waitqueues, the key is computed as a function

of the page and the condition (unlock or write-| arge database systems leveraging AlO can
back completion) for the wakeup. show marked performance improvements com-
pared to those systems that use synchronous
7.3 Streaming AIO write microbenchmark |/O alone. We use IBM DB2® Universal
comparisons Database™ V8 running an online transaction
processing (OLTP) workload to illustrate the

The following graph compares aio-stressperformance improvement of AlO on raw de-
throughputs for streaming random bufferedyices and on filesystems.

I/O O_SYNCwrites, with and without the

previously-described changes. The compariz ; pgo page cleaners

son was performed on the same setup used for

the streaming AlO read results discussed ear-))
lier. The graph summarizes how the results var® DB2 page cleaner is a process responsible
ied across individual request sizes of 4KB tofor flushing dirty buffer pool pages to disk.
64KB, where I/0 was targeted to a single ﬁ|elt_5|mulates AlO by executing asynchronously
of size 1GB and the depth of iocbs outstandWith respect to the agent processes. The num-
ing at a time was 64KB. A third run was per- ber of page c_Ieaners and their behavior can be
formed to determine how the results compareduned according to the demands of the system.

with equivalent runs using AIO-DIO. The agents, freed from cleaning pages them-
selves, can dedicate their resources (e.g., pro-

With the changes applied, the results showedessor cycles) towards processing transactions,
an approximate 2x improvement across althereby improving throughput.

AlO performance analysis for
database workloads

72 Linux Symposium 2004 * Volume One

CPU1 CPU2
lock_page(px)

unlock_page(px)

lock_page(py)
wait_on_page_writeback wq(px)

unlock_page(py) -> wakes up pl

triggering
< a retry
lock_page(px) wait_on_page_writeback_wq(py)
unlock_page(py) ---- wakes up py --- causes retry ---->

Table 1: Retry storm livelock with redundant wakeups on hashed wait queues

8.2 AIO performance analysis for raw devices page cleaner using AlO, than when it was
configured with 55 page cleaners using syn-
chronous I/O.

Two experiments were conducted to measure - .

the performance benefits of AIO on raw de- | Configuration Relative

vices for an update-intensive OLTP database , Throughput

workload. The workload used was derived 1 page cleaner with AIO 133

) o 55 page cleaners without AIQ 122

from a TPC[8] benchmark, but is in no way

comparable to any TPC results. For the first exTable 2: Database performance with and with-

periment, the database was configured with oneut AlO.

page cleaner using the native Linux AlO inter-

face. For the second experiment, the databas&nalyzing the I/O write patterns (see Table 3),

was configured with 55 page cleaners all usingve see that one page cleaner using AIO was

the synchronous I/O interface. These experisufficient to keep the buffer pools clean un-

ments showed that a database, properly corder a very heavy load, but that 55 page clean-

figured in terms of the number of page clean-ers using synchronous /O were not, as in-

ers with AlO, can out-perform a properly con- dicated by the 30% agent writes. This data

figured database using synchronous I/0O pagsuggests that more page cleaners should have

cleaning. been configured to improve the performance of

) . _ the case with synchronous 1/0. However, ad-
For both experiments, the system configurationyisional page cleaners consumed more mem-

consisted of DB2 V8 running on a 2-way AMD oy requiring a reduction in bufferpool size
theron system with L_|nux 2.6.1installed. The 54 thereby decreasing throughput. For the
disk subsystem consisted of two FASIT 700gt configuration, 55 cleaners was the optimal

storage servers, each with eight disk enclon,mper hefore memory constraints arose.
sures. The disks were configured as RAID-0

arrays with a stripe size of 256KB.

8.3 AIO performance analysis for filesystems

Table 2 shows the relative database perfor-

mance with and without AlO. Higher numbers This section examines the performance im-
are better. The results show that the databaggrovements of AIO when used in conjunction
performed 9% better when configured with onewith filesystems. This experiment was per-

Linux Symposium 2004 * Volume One * 73

Configuration Page cleaner Agent Configuration Commercial Processing

writes (%) | writes (%) Scores
1 page cleaner with 100 0 Synchronous I/O 100
AIO AlO (Buffered) 113.7
55 page cleaners with- 70 30 DIO 111.9
out AlIO

_ ~ Table 4: Database performance on filesystems
Table 3: DB2 write patterns for raw device with and without AlO.

configurations.

buffer pool pages, resulting in less time pro-
formed using the same OLTP benchmark as icessing transactions.

the previous section.

Configuration Page cleaner Agent
The test system consisted of two 1GHz AMD writes (%) | writes (%)
Opteron processors, 4GB of RAM and two [Synchronous I/Q 37 63
QLogic 2310 FC controllers. Attached to the | AlO (buffered) 100 0
server was a single FAStT900 storage server [PO 49 o1

and two disk enclosures with a total of 28 15Krap|e 5: DB2 write patterns for filesystem con-
RPM 18GB drives. The Linux kernel used figurations.

for the examination was 2.6.0+mm21, which in-

cludes the AIO filesystem support patches [9] o
discussed in this paper. 8.4 Optimizing AIO for database workloads

The database tables were spread across mulfyatabases typically use AIO for streaming
ple ext2 filesystem partitions. Database 10g%yatches of random, synchronized write re-
were stored on a single raw partition. quests to disk (where the writes are directed
0 preallocated disk blocks). This has been
ound to improve the performance of OLTP
workloads, as it helps bring down the num-
ber of dedicated threads or processes needed
for flushing updated pages, and results in re-
Test 1. Synchronous (Buffered) 1/0. duced memory footprint and better CPU uti-
lization and scaling.

Three separate tests were performed, utilizinj
different 1/0 methods for the database pag
cleaners.

Test 2. Asynchronous (Buffered) I/0.

The size of individual write requests is deter-
mined by the page size used by the database.
For example, a DB2 UDB installation might
The results are shown in Table 4 as relause a database page size of 8KB.

tive commercial processing scores using syn-

chronous /0 as the baseline (i.e., higher is bet?'S ObServed in previous sections, the use of
ter). AlO helps reduce the number of database page

cleaner processes required to keep the buffer-
Looking at the efficiency of the page clean-pool clean. To keep the disk queues maximally
ers (see Table 5), we see that the use of AlQutilized and limit contention, it may be prefer-
is more successful in keeping the buffer poolsable to have requests to a given disk streamed
clean. In the synchronous I/0O and DIO casesput from a single page cleaner. Typically a
the agents needed to spend more time cleaningget of of disks could be serviced by each page

Test 3. Direct I/0.

74 » Linux Symposium 2004 ¢ Volume One

cleaner if and when multiple page cleaner®.1 AIO poll interface
need to be used.

Databases might also use AIO for reads, for ex\nother alternative is to add support for
ample, for prefetching data to service queriesPOlling an event on a given file descriptor
This usually helps improve the performance ofthrough the AlO interfaces. ThIIS function, re-
decision support workloads. The /O patternférmed to as AIO poli, can be issued through
generated in these cases is that of streaminig—Submit() just like other AIO opera-
batches of large AIO reads, with sizes typicallyons, and specifies the file descriptor and
determined by the file allocation extent sizetN® eventset to wait for. When the event
used by the database (e.g., a DB2 installatioQCCUrs, notification is reported througd_
might use a database extent size of 256KB)Jetevents()

For installations using buffered AlO reads, tun-1,o retry-based design of AIO poll works by
ing the readahead setting for the corresponding e rting the blocking wait for the event into
devices to be more than the extent size woul retry exit

help improve performance of streaming AlO

reads (recall the discussion in Section 3.5). The generic synchronous polling code fits

nicely into the AIO retry design, so most of the

. : original polling code can be used unchanged.

9 Addressing AIO workloads in- Th?—:- privgte dgta area of the iocb can be Ssed
volving both disk and communi- to hold polling-specific data structures, and a
cations I/0 few special cases can be added to the generic

polling entry points. This allows the AIO poll

. o . case to proceed without additional memory al-
Certain applications need to handle both d'Sk]ocationg y

based AIO and communications I/O. For com-
munications 1/O, the epoll interface—which _ o

provides support for efficient scalable event>-2 AlO operations for communications I/O
polling in Linux 2.6—could be used as ap-

propriate, possibly in conjunction witl® A third option is to add support for AIO op-
NONBLOCKsoocket 1/0. Disk-based AIO on erations for communications I/O. For exam-
the other hand, uses the native AIO ABI ple, AIO support for pipes has been imple-
getevents for completion notification. This mented by converting the blocking wait for
makes it difficult to combine both types of I/O 1/O on pipes to aetry exit The generic pipe
processing within a single event loop, evencode was also structured such that conversion
when such a model is a natural way to progranto AlO retries was quite simple, the only signif-
the application, as in implementations of theicant change was using the curremt wait
application on other operating systems. context instead of a locally defined waitqueue,

o __ and returning early if no data was available.
How do we address this issue? One option is to

extend epoll to enable it to poll for notification However, AlO pipe testing did show signifi-
of AIO completion events, so that AIO comple- cantly more context switches then the 2.4 AIO
tion status can then be reaped in a non-blockingipe implementation, and this was coupled
manner. This involves mixing both epoll and with much lower performance. The AIO core
AlO API programming models, which is not functions were relying on workqueues to do
ideal. most of the retries, and this resulted in constant

Linux Symposium 2004 » Volume One ¢ 75

switching between the workqueue threads anthis was the hardest part of supporting AIO—
user processes. modifiying code that was originally designed

_ only for synchronous I/O.
The solution was to change the AIO core

to do retries inio_submit() and inio_ Interestingly, this also meant that AIO ap-
getevents() . This allowed the process to peared to magnify some problems early. For
do some of its own work while it is scheduled example, issues with hashed waitqueues that
in. Also, retries were switched to a delayedled to the filtered wakeup patches, and reada-
workqueue, so that bursts of retries would trig-head window collapses with large random
ger fewer context switches. reads which precipitated improvements to the
, , ~ readahead code from Ramachandra Pai. Ul-
While delayed wakeups helped with pipeimately, many of the core improvements that
workloads, it also caused I/O stalls in f”eSyS'heIped AIO have had positive benefits in al-

tem AIO workloads. This was because a deyqing improved concurrency for some of the
layed wakeup was being used even when a US&Unchronous 1/0 paths.

process was waiting im_getevents()

When user processes are actively waiting fotn terms of benchmarking and optimizing
events, it proved best to trigger the workerLinux AlIO performance, there is room for
thread immediately. more exhaustive work. Requirements for AIO

_ fsync support are currently under considera-
General AlO support for network operationsyion There is also a need for more widely used

has been considered but notimplemented so 18,0 applications, especially those that take ad-
because of lack of supporting study that preyantaged of AIO support for buffered 1/O or
dicts a significant benefit over what epoll andyying out additional requirements like network
non-blocking 1/0 can provide, except for the |5 peyond epoll or AIO poll. Finally, investi-
scope for enabling potential zero-copy imple-gations into API changes to help enable more
mentations. This is a potential area for futureggicient POSIX AIO implementations based
research. on kernel AIO support may be a worthwhile
endeavor.

10 Conclusions

11 Acknowledgements
Our experience over the last year with AlO de-

velopment, stabilization and performance im-
provements brought us to design and impleWe would like to thank the many people

mentation issues that went far beyond the inion the linux-aio@kvack.org and
tial concern of converting key I/O blocking linux-kernel@vger.kernel.org
points to be asynchronous. mailing lists who provided us with valu-

) able comments and suggestions during our
AIO uncovered scenarios and 1/O patterns tha&evelopment efforts.

were unlikely or less significant with syn-

chronous I/O alone. For example, the issues w&Ve would especially like to acknowledge the
discussed around streaming AIO performancémportant contributions of Andrew Morton,
with readahead and concurrent synchronize@®aniel McNeil, Badari Pulavarty, Stephen
writes, as well as DIO vs buffered I/O com- Tweedie, and William Lee Irwin towards sev-
plexities in the presence of AlO. In retrospect,eral pieces of work discussed in this paper.

76 < Linux Symposium 2004 * Volume One

This paper and the work it describes wouldn’tReferences

have been possible without the efforts of Janet

Morgan in many different ways, starting from [1] Suparna Bhattacharya, Badari
review, test and debugging feedback to joining Pulavarthy, Steven Pratt, and Janet

the midnight oil camp to help with modifica- Morgan. Asynchronous i/o support for
tions and improvements to the text during the linux 2.5. InProceedings of the Linux
final stages of the paper. SymposiumLinux Symposium, Ottawa,

July 2003 http://archive.
linuxsymposium.org/ols2003/
Proceedings/All-Reprints/
Reprint-Pulavarty-OLS2003.pdf

We also thank Brian Twitchell, Steve Pratt,
Gerrit Huizenga, Wayne Young, and John
Lumby from IBM for their help and discus-

sions along the way.

[2] Chris Mason. aio-stress
microbenchmark.
ftp://ftp.suse.com/pub/people/
mason/utils/aio-stress.c

This work was a part of the Linux Scalabil-
ity Effort (LSE) on SourceForge, and further
information about Linux 2.6 AIO is available
at the LSE AIO web page [10]. All the ex-
ternal AlO patches including AlO support for 3]
buffered filesystem 1/O, AlO poll and AlO sup-

port for pipes are available at [9].

Stephen C. Tweedie. Posting on dio races
in 2.4.http://marc.theaimsgroup.
com/?I=linux-fsdevel&m=
105597840711609&w=2 .

12 Legal Statement [4] Andrew Morton. O_sync speedup patch.

http:
This work represents the view of the authors and Ilwww.kernel.org/pub/linux/
does not necessarily represent the view of IBM. kernel/people/akpm/patches/2.

6/2.6.0/2.6.0-mm21/broken-out/

IBM, DB2 and DB2 Universal Database are reg-
O_SYNC-speedup-2.patch

istered trademarks of International Business Ma-
chines Corporation in the United States and/or other

countries [5] Daniel McNeil. Posting on synchronized

writeback races.
Linux is a registered trademark of Linus Torvalds. http://marc.theaimsgroup.com/
?l=linux-aio&m=

Pe_ntium is a trademark of _Intel Corporation in the 107671729611002&wW=2 .

United States, other countries, or both.

[6] Andrew Morton. Posting on in-order
tagged radix tree walk based vfs
writeback.
http://marc.theaimsgroup.com/

13 Disclaimer ?l=bk-commits-head&m=

108184544016117&w=2 .

Other company, product, and service names may be
trademarks or service marks of others.

The benchmarks discussed in this paper were con-[7] William Lee Irwin. Filtered wakeup
ducted for research purposes only, under laboratory patch.http://marc.theaimsgroup.

conditions. Results will not be realized in all com- com/?l=bk-commits-head&m=
puting environments. 108459430513660&wW=2 .

Linux Symposium 2004 Volume One * 77

[8] Transaction processing performance
council. http://'www.tpc.org

[9] Suparna Bhattacharya (with
contributions from Andrew Morton &
Chris Mason). Additional 2.6 Linux
Kernel Asynchronous I/O patches.
http:

Ilwww.kernel.org/pub/linux/
kernel/people/suparna/aio

[10] LSE team. Kernel Asynchronous I/O
(AlO) Support for Linux.http:
/lse.sf.net/io/aio.html

78 « Linux Symposium 2004 * Volume One

Proceedings of the
Linux Symposium

Volume One

July 21st-24th, 2004
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. HuttonSteamballoon, Inc.
Stephanie Donovar,inux Symposium
C. Craig Rossl.inux Symposium

Review Committee

Jes Sorensefild Open Source, Inc.
Matt DomschDell

Gerrit HuizengalBM

Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel

Val Henson Sun Microsystems
Jamal Hadi SalimiZnyx

Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team
John W. LockhartRed Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

