
Run-time testing of LSB Applications

Stuart Anderson
Free Standards Group

anderson@freestandards.org

Matt Elder
University of South Caroilina

happymutant@sc.rr.com

Abstract

The dynamic application test tool is capable
of checking API usage at run-time. The LSB
defines only a subset of all possible parame-
ter values to be valid. This tool is capable of
checking these value while the application is
running.

This paper will explain how this tool works,
and highlight some of the more interesting im-
plementation details such as how we managed
to generate most of the code automatically,
based on the interface descriptions contained
in the LSB database.

Results to date will be presented, along with
future plans and possible uses for this tool.

1 Introduction

The Linux Standard Base (LSB) Project be-
gan in 1998, when the Linux community came
together and decided to take action to pre-
vent GNU/Linux based operating systems from
fragmenting in the same way UNIX operating
systems did in the 1980s and 1990s. The LSB
defines the Application Binary Interface (ABI)
for the core part of a GNU/Linux system. As
an ABI, the LSB defines the interface between
the operating system and the applications. A
complete set of tests for an ABI must be capa-
ble of measuring the interface from both sides.

Almost from the beginning, testing has been

a cornerstone of the project. The LSB was
originally organized around 3 components: the
written specification, a sample implementa-
tion, and the test suites. The written specifica-
tion is the ultimate definition of the LSB. Both
the sample implementation, and the test suites
yield to the authority of the written specifica-
tion.

The sample implementation (SI) is a minimal
subset of a GNU/Linux system that provides a
runtime that implements the LSB, and as little
else as possible. The SI is neither intended to
be a minimal distribution, nor the basis for a
distribution. Instead, it is used as both a proof
of concept and a testing tool. Applications
which are seeking certification are required to
prove they execute correctly using the SI and
two other distributions. The SI is also used to
validate the runtime test suites.

The third component is testing. One of the
things that strengthens the LSB is its ability to
measure, and thus prove, conformance to the
standard. Testing is achieved with an array of
different test suites, each of which measures a
different aspect of the specification.

LSB Runtime

• cmdchk

This test suite is a simple existence test
that ensures the required LSB commands
and utilities are found on an LSB con-
forming system.



42 • Linux Symposium 2004 • Volume One

• libchk

This test suite checks the libraries re-
quired by the LSB to ensure they con-
tain the interfaces and symbol versions as
specified by the LSB.

• runtimetests

This test suite measures the behavior of
the interfaces provided by the GNU/Linux
system. This is the largest of the test
suites, and is actually broken down into
several components, which are referred to
collectively as the runtime tests. These
tests are derived from the test suites used
by the Open Group for UNIX branding.

LSB Packaging

• pkgchk

This test examines an RPM format pack-
age to ensure it conforms to the LSB.

• pkginstchk

This test suite is used to ensure that the
package management tool provided by a
GNU/Linux system will correctly install
LSB conforming packages. This suite is
still in early stages of development.

LSB Application

• appchk

This test performs a static analysis of an
application to ensure that it only uses
libraries and interfaces specified by the
LSB.

• dynchk

This test is used to measure an applica-
tions use of the LSB interfaces during its
execution, and is the subject of this paper.

2 The database

The LSB Specification contains over 6600 in-
terfaces, each of which is associated with a li-
brary and a header file, and may have parame-
ters. Because of the size and complexity of the
data describing these interfaces, a database is
used to maintain this information.

It is impractical to try and keep the specifica-
tion, test suites and development libraries and
headers synchronized for this much data. In-
stead, portions of the specification and tests,
and all of the development headers and li-
braries are generated from the database. This
ensures that as changes are made to the
database, the changes are propagated to the
other parts of the project as well.

Some of the relevant data components in this
DB are Libraries, Headers, Interfaces, and
Types. There are also secondary components
and relations between all of the components. A
short description of some of these is needed be-
fore moving on to how the dynchk test is con-
structed.

2.1 Library

The LSB specifies 17 shared libraries, which
contains the 6600 interfaces. The interfaces
in each library are grouped into logical units
called a LibGroup. The LibGroups help to or-
ganize the interfaces, which is very useful in
the written specification, but isn’t used much
elsewhere.

2.2 Interface

An Interface represents a globally visible sym-
bol, such as a function, or piece of data. Inter-
faces have a Type, which is either the type of
the global data or the return type of the func-
tion. If the Interface is a function, then it will
have zero or more Parameters, which form a



Linux Symposium 2004 • Volume One • 43

LibGroup LibGroup

Library

InterfaceInterfaceInterface

LibGroup 

Figure 1: Relationship between Library, Lib-
Group and Interface

Interface

Type Parameter Parameter Parameter

Type Type Type

Figure 2: Relationship between Interface, Type
and Parameter

set of Types ordered by their position in the pa-
rameter list.

2.3 Type

As mentioned above, the database contains
enough information to be able to generate
header files which are a part of the LSB de-
velopment tools. This means that the database
must be able to represent Clanguage types. The
Type and TypeMember tables provide these.
These tables are used recursively. If a Type is
defined in terms of another type, then it will
have a base type that points to that other type.

For structs and unions, the TypeMemeber table

Tid Ttype Tname Tbasetype
1 Intrinsic int 0
2 Pointer int * 1

Table 1: Example of recursion in Type table for
int *

struct foo {
int a;
int *b;

}

Figure 3: Sample struct

is used to hold the ordered list of members. En-
tries in the TypeMember table point back to the
Type table to describe the type of each member.
For enums, the TypeMember table is also used
to hold the ordered list of values.

Tid Ttype Tname Tbasetype
1 Intrinsic int 0
2 Pointer int * 1
3 Struct foo 0

Table 2: Contents of Type table

The structure shown in Figure 3 is represented
by the entries in the Type table in Table 2 and
the TypeMember table in Table 3.

2.4 Header

Headers, like Libraries, have their contents ar-
ranged into logical groupings known a Header-
Groups. Unlike Libraries, these HeaderGroups
are ordered so that the proper sequence of
definitions within a header file can be main-
tained. HeaderGroups contain Constant defi-
nitions (i.e. #define statements) and Type def-
initions. If you examine a few well designed
header files, you will notice a pattern of a com-
ment followed by related constant definitions
and type definitions. The entire header file can
be viewed as a repeating sequence of this pat-



44 • Linux Symposium 2004 • Volume One

Tmid TMname TMtypeid TMposition TMmemberof
10 a 1 0 3
11 b 2 1 3

Table 3: Contents of TypeMember

Function
Declarations

HeaderGroup 1
Constants

Types

HeaderGroup 2
Constants

Types

HeaderGroup 3
Constants

Types

Figure 4: Organization of Headers

tern. This pattern is the basis for the Header-
Group concept.

2.5 TypeType

One last construct in our database should be
mentioned. While we are able to repre-
sent a syntactic description of interfaces and
types in the database, this is not enough to
automatically generate meaningful test cases.
We need to add some semantic information
that better describes how the types in struc-
tures and parameters are used. As an exam-
ple,struct sockaddr contains a member,
sa_family , of type unsigned short. The

compiler will of course ensure that only val-
ues between 0 and216 − 1 will be used, but
only a few of those values have any meaning
in this context. By adding the semantic infor-
mation that this member holds a socket fam-
ily value, the test generator can cause the value
found insa_family to be tested against the
legal socket families values (AF_INET , AF_
INET6 , etc), instead of just ensuring the value
falls between 0 and216−1, which is really just
a noop test.

Example TypeType entries

• RWaddress

An address from the process space that
must be both readable and writable.

• Rdaddress

An address from the process space that
must be at least readable.

• filedescriptor

A small integer value greater than or equal
to 0, and less than the maximum file de-
scriptor for the process.

• pathname

The name of a file or directory that should
be compared against the Filesystem Hier-
archy Standard.

2.6 Using this data

As mentioned above, the data in the database is
used to generate different portions of the LSB
project. This strategy was adopted to ensure



Linux Symposium 2004 • Volume One • 45

these different parts would always be in sync,
without having to depend on human interven-
tion.

The written specification contains tables of in-
terfaces, and data definitions (constants and
types). These are all generated from the
database.

The LSB development environment1 consists
of stub libraries and header files that contain
only the interfaces defined by the LSB. This
development environment helps catch the use
of non-LSB interfaces during the development
or porting of an application instead of being
surprised by later test results. Both the stub
libraries and headers are produced by scripts
pulling data from the database.

Some of the test suites described previously
have components which are generated from the
database.Cmdchk and libchk have lists of
commands and interfaces respectively which
are extracted from the database. The static ap-
plication test tool,appchk , also has a list of
interfaces that comes from the database. The
dynamic application test tool,dynchk , has the
majority of its code generated from informa-
tion in the database.

3 The Dynamic Checker

The static application checker simply examines
an executable file to determine if it is using
interfaces beyond those allowed by the LSB.
This is very useful to determine if an appli-
cation has been built correctly. However, is
unable to determine if the interfaces are used
correctly when the application is executed. A
different kind of test is required to be able to
perform this level of checking. This new test
must interact with the application while it is

1See the May Issue ofLinux Journalfor more infor-
mation on the LSB Development Environment.

running, without interfering with the execution
of the application.

This new test has two major components: a
mechanism for hooking itself into an applica-
tion, and a collection of functions to perform
the tests for all of the interfaces. These compo-
nents can mostly be developed independently
of each other.

3.1 The Mechanism

The mechanism for interacting with the appli-
cation must be transparent and noninterfering
to the application. We considered the approach
used by 3 different tools: abc, ltrace, and fake-
root.

• abc —This tool was the inspiration for
our new dynamic checker.abc was de-
veloped as part of the SVR4 ABI test
tools. abc works by modifying the tar-
get application. The application’s exe-
cutable is modified to load a different ver-
sion of the shared libraries and to call a
different version of each interface. This
is accomplished by changing the strings
in the symbol table andDT_NEEDED
records. For example,libc.so.1 is
changed toLiBc.So.1 , andfread()
is changed toFrEaD() . The test set
is then located in/usr/lib/LiBc.
So.1 , which in turns loads the original
/usr/lib/libc.so.1 . This mecha-
nism works, but the requirement to mod-
ify the executable file is undesirable.

• ltrace —This tool is similar to
strace , except that it traces calls
into shared libraries instead of calls into
the kernel. ltrace uses the ptrace
interface to control the application’s
process. With this approach, the test sets
are located in a separate program and are
invoked by stopping the application upon



46 • Linux Symposium 2004 • Volume One

entry to the interface being tested. This
approach has two drawbacks: first, the
code required to decode the process stack
and extract the parameters is unique to
each architecture, and second, the tests
themselves are more complicated to write
since the parameters have to be fetched
from the application’s process.

• fakeroot —This tool is used to cre-
ate an environment where an unprivileged
process appears to have root privileges.
fakeroot usesLD_PRELOADto load
an additional shared library before any of
the shared libraries specified by theDT_
NEEDEDrecords in the executable. This
extra library contains a replacement func-
tion for each file manipulation function.
The functions in this library will be se-
lected by the dynamic linker instead of the
normal functions found in the regular li-
braries. The test sets themselves will per-
form tests of the parameters, and then call
the original version of the functions.

We chose to use theLD_PRELOADmecha-
nism because we felt it was the simplest to use.
Based on this mechanism, a sample test case
looks like Figure 5.

One problem that must be avoided when us-
ing this mechanism is recursion. If the above
function just calledread() at the end, it
would end up calling itself again. Instead, the
RTLD_NEXTflag passed todlsym() tells the
dynamic linker to look up the symbol on one
of the libraries loaded after the current library.
This will get the original version of the func-
tion.

3.2 Test set organization

The test set functions are organized into 3 lay-
ers. The top layer contains the functions that
are test stubs for the LSB interfaces. These

functions are implemented by calling the func-
tions in layers 2 and 3. An example of a func-
tion in the first layer was given in Figure 5.

The second layer contains the functions that
test data structures and types which are passed
in as parameters. These functions are also im-
plemented by calling the functions in layer 3
and other functions in layer 2. A function in
the second layer looks like Figure 6.

The third layer contains functions that test the
types which have been annotated with addi-
tional semantic information. These functions
often have to perform nontrivial operations to
test the assertion required for these supplemen-
tal types. Figure 7 is an example of a layer 3
function.

Presently, there are 3056 functions in layer 1
(tests forlibstdc++ are not yet being gen-
erated), 106 functions in layer 2, and just a few
in layer 3. We estimate that the total number of
functions in layer 3 upon completion of the test
tool will be on the order of several dozen. The
functions in the first two layers are automati-
cally generated based on the information in the
database. Functions in layer 3 are hand coded.

3.3 Automatic generation of the tests

In Table 4, is a summary of the size of the test
tool so far. As work progresses, these num-
bers will only get larger. Most of the code in
the test is very repetitive, and prone to errors
when edited manually. The ability to automate
the process of creating this code is highly de-
sirable.

Let’s take another look at the sample function
from layer 1. This time, however, lets replace
some of the code with a description of the in-
formation it represents. See Figure 8 for this
parameterized version.

All of the occurrences of the stringread are



Linux Symposium 2004 • Volume One • 47

ssize_t read (int arg0, void *arg1, size_t arg2) {
if (!funcptr)

funcptr = dlsym(RTLD_NEXT, "read");
validate_filedescriptor(arg0, "read");
validate_RWaddress(arg1, "read");
validate_size_t(arg2, "read");
return funcptr(arg0, arg1, arg2);

}

Figure 5: Test case for read() function

void validate_struct_sockaddr_in(struct sockaddr_in *input,
char *name) {

validate_socketfamily(input->sin_family,name);
validate_socketport(input->sin_port,name);
validate_IPv4Address((input->sin_addr), name);

}

Figure 6: Test case for validatingstruct sockaddr_in

Module Files Lines of Code
libc 752 19305
libdl 5 125
libgcc_s 13 262
libGL 450 11046
libICE 49 1135
libm 281 6568
libncurses 266 6609
libpam 13 335
libpthread 82 2060
libSM 37 865
libX11 668 16112
libXext 113 2673
libXt 288 7213
libz 39 973
structs 106 1581

Table 4: Summary of generated code

actually just the function name, and could have
been replaced also.

The same thing can be done for the sample
function from layer 2 as is seen in Figure 9.

These two examples, now represent templates
that can be used to create the functions for lay-
ers 1 and 2. From the previous description of
the database, you can see that there is enough
information available to be able to instantiate
these templates for each interfaces, and struc-
ture used by the LSB.

The automation is implemented by 2 perl
scripts:gen_lib.pl andgen_tests.pl .
These scripts generate the code for layers 1 and
2 respectively.

Overall, these scripts work well, but we have
run into a few interesting situations along the
way.

3.4 Handling the exceptions

So far, we have come up with an overall archi-
tecture for the test tool, selected a mechanism
that allows us to hook the tests into the running
application, discovered the pattern in the test
functions so that we could create a template for



48 • Linux Symposium 2004 • Volume One

void validate_filedescriptor(const int fd, const char *name) {
if (fd >= lsb_sysconf(_SC_OPEN_MAX))

ERROR("fd too big");
else if (fd < 0)

ERROR("fd negative");
}

Figure 7: Test case for validating a filedescriptor

return-type read (list of parameters) {
if (!funcptr)

funcptr = dlsym(RTLD_NEXT, "read");
validate_parameter1 type(arg0, "read");
validate_parameter2 type(arg1, "read");
validate_parameter3 type(arg2, "read");
return funcptr(arg0, arg1, arg2);

}

Figure 8: Parameterized test case for a function

automatically generating the code, and imple-
mented the scripts to generate all of the tests
cases. The only problem is that now we run
into the real world, where things don’t always
follow the rules.

Here are a few of the interesting situations we
have encountered

• Variadic Functions

Of the 725 functions in libc, 25 of them
take a variable number of parameters.
This causes problems in the generation of
the code for the test case, but most impor-
tantly it affects our ability to know how
to process the arguments. These func-
tion have to be written by hand to han-
dle the special needs of these functions.
For the functions in theexec , printf
andscanf families, the test cases can be
implemented by calling the varargs form
of the function (execl() can be imple-
mented usingexecv() ).

• open()

In addition to the problems of being a
variadic function, the third parameter to
open() and open64() is only valid
if the O_CREATflag is set in the sec-
ond parameter to these functions. This
simple exception requires a small amount
of manual intervention, so these function
have to be maintained by hand.

• memory allocation

One of the recursion problems we ran into
is that memory will be allocated within
the dlsym() function call, so the im-
plementation of one test case ends up in-
voking the test case for one of the mem-
ory allocation routines, which by default
would calldlsym() , creating the recur-
sion. This cycle had to be broken by hav-
ing the test cases for these routines call
libc private interfaces to memory alloca-
tion.

• changing memory map



Linux Symposium 2004 • Volume One • 49

void validate_struct_structure name(struct structure name
*input, char *name) {

validate_type of member 1(input->name of member 1, name);
validate_type of member 2(input->name of member 2, name);
validate_type of member 3((input->name of member 3), name);

}

Figure 9: Parameterized test case for a struct

Pointers are validated by making sure they
contain an address that is valid for the pro-
cess./proc/self/maps is read to ob-
tain the memory map of the current pro-
cess. These results are cached, for perfor-
mance reasons, but usually, the memory
map of the process will change over time.
Both the stack and the heap will grow,
resulting in valid pointers being checked
against a cached copy of the memory map.
In the event a pointer is found to be in-
valid, the memory map is re-read, and the
pointer checked again. Themmap() and
munmap() test cases are also maintained
by hand so that they can also cause the
memory map to be re-read.

• hidden ioctl()s

By design, the LSB specifies interfaces
at the highest possible level. One exam-
ple of this, is the use of the termio func-
tions, instead of specifying the underly-
ing ioctl() interface. It turns out that
this tool catches the underlyingioctl()
calls anyway, and flags it as an error. The
solution is for the termio functions the set
a flag indicating that theioctl() test
case should skip its tests.

• Optionally NULL parameters

Many interfaces have parameters which
may be NULL. This triggerred lots of
warnings for many programs. The solu-
tion was to add a flag that indicated that
the Parameter may be NULL, and to not

try to validate the pointer, or the data be-
ing pointed to.

No doubt, there will be more interesting situ-
ations to have to deal with before this tool is
completed.

4 Results

As of the deadline for this paper, results are
preliminary, but encouraging. The tool is ini-
tially being tested against simple commands
such as ls and vi, and some X Windows clients
such as xclock and xterm. The tool is correctly
inserting itself into the application under test,
and we are getting some interesting results that
will be examined more closely.

One example is vi passes a NULL to
__strtol_internal several times during
startup.

The tool was designed to work across all archi-
tectures. At present, it has been built and tested
on only the IA32 and IA64 architectures. No
significant problems are anticipate on other ar-
chitectures.

Additional results and experience will be pre-
sented at the conference.



50 • Linux Symposium 2004 • Volume One

5 Future Work

There is still much work to be done. Some of
the outstanding tasks are highlighted here.

• AdditionalTypeTypes

Semantic information needs to be added
for additional parameters and structures.
The additional layer 3 tests that corre-
spond to this information must also be im-
plemented.

• Architecture-specific interfaces

As we found in the LSB, there are some
interfaces, and types that are unique to one
or more architectures. These need to be
handled properly so they are not part of
the tests when built on an architecture for
which they don’t apply.

• Unions

Although Unions are represented in the
database in the same way as structures,
the database does not contain enough in-
formation to describe how to interpret or
test the contents of a union. Test cases that
involve unions may have to be written by
hand.

• Additional libraries

The information in the database for the
graphics libraries and forlibstdc++ is
incomplete, therefore, it is not possible to
generate all of the test cases for those li-
braries. Once the data is complete, the test
cases will also be complete.



Proceedings of the
Linux Symposium

Volume One

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


