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Abstract

This paper will describe the changes needed to
the Linux memory management system to cope
with adding or removing RAM from a running
system. In addition to support for physically
adding or removing DIMMs, there is an ever-
increasing number of virtualized environments
such as UML or the IBM pSeries™ Hypervi-
sor which can transition RAM between virtual
system images, based on need. This paper will
describe techniques common to all supported
platforms, as well as challenges for specific ar-
chitectures.

1 Introduction

As Free Software Operating Systems continue
to expand their scope of use, so do the de-
mands placed upon them. One area of con-
tinuing growth for Linux is the adaptation to
incessantly changing hardware configurations
at runtime. While initially confined to com-
monly removed devices such as keyboards,
digital cameras or hard disks, Linux has re-
cently begun to grow to include the capability
to hot-plug integral system components. This
paper describes the changes necessary to en-
able Linux to adapt to dynamic changes in one
of the most critical system resource—system

RAM.

2 Motivation

The underlying reason for wanting to change
the amount of RAM is very simple: availabil-
ity. The systems that support memory hot-plug
operations are designed to fulfill mission crit-
ical roles; significant enough that the cost of
a reboot cycle for the sole purpose of adding
or replacing system RAM is simply too expen-
sive. For example, some large ppc64 machines
have been reported to take well over thirty min-
utes for a simple reboot. Therefore, the down-
time necessary for an upgrade may compro-
mise the five nine uptime requirement critical
to high-end system customers [1].

However, memory hotplug is not just impor-
tant for big-iron. The availability of high
speed, commodity hardware has prompted a
resurgence of research into virtual machine
monitors—layers of software such as Xen
[2], VMWare [3], and conceptually even User
Mode Linux that allow for multiple operating
system instances to be run in isolated, virtual
domains. As computing hardware density has
increased, so has the possibility of splitting up
that computing power into more manageable
pieces. The capability for an operating sys-
tem to expand or contract the range of physical
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memory resources available presents the pos-
sibility for virtual machine implementations to
balance memory requirements and improve the
management of memory availability between
domains1. This author currently leases a small
User Mode Linux partition for small Internet
tasks such as DNS and low-traffic web serving.
Similar configurations with an approximately
100 MHz processor and 64 MB of RAM are
not uncommon. Imagine, in the case of an acci-
dental Slashdotting, how useful radically grow-
ing such a machine could be.

3 Linux’s Hotplug Shortcomings

Before being able to handle the full wrath of
Slashdot. we have to consider Linux’s cur-
rent design. Linux only has two data structures
that absolutely limit the amount of RAM that
Linux can handle: the page allocator bitmaps,
andmem_map[] (on contiguous memory sys-
tems). The page allocator bitmaps are very
simple in concept, have a bit set one way when
a page is available, and the opposite when it
has been allocated. Since there needs to be one
bit available for each page, it obviously has to
scale with the size of the system’s total RAM.
The bitmap memory consumption is approxi-
mately 1 bit of memory for each page of sys-
tem RAM.

4 Resizingmem_map[]

Themem_map[] structure is a bit more com-
plicated. Conceptually, it is an array, with one
struct page for each physical page which
the system contains. These structures contain
bookkeeping information such as flags indicat-
ing page usage and locking structures. The
complexity with thestruct page s is asso-
ciated when their size. They have a size of

1err, I could write a lot about this, so I won’t go any
further

40 bytes each on i386 (in the 2.6.5 kernel).
On a system with 4096 byte hardware pages,
this implies that about 1% of the total sys-
tem memory will be consumed bystruct
page s alone. This use of 1% of the system
memory is not a problem in and of itself. But,
it does other problems.

The Linux page allocator has a limitation on
the maximum amounts of memory that it can
allocate to a single request. On i386, this
is 4MB, while on ppc64, it is 16MB. It is
easy to calculate that anything larger than a
4GB i386 system will be unable to allocate
its mem_map[] with the normal page alloca-
tor. Normally, this problem withmem_mapis
avoided by using a boot-time allocator which
does not have the same restrictions as the allo-
cator used at runtime. However, memory hot-
plug requires the ability to grow the amount of
mem_map[] used at runtime. It is not feasible
to use the same approach as the page allocator
bitmaps because, in contrast, they are kept to
small-enough sizes to not impinge on the max-
imum size allocation limits.

4.1 mem_map[] preallocation

A very simple way around the runtime alloca-
tor limitations might be to allocate sufficient
memory formmem_map[] at boot-time to ac-
count for any amount of RAM that could pos-
sibly be added to the system. But, this ap-
proach quickly breaks down in at least one im-
portant case. Themem_map[] must be allo-
cated in low memory, an area on i386 which
is approximately 896MB in total size. This
is very important memory which is commonly
exhausted [4],[5],[6]. Consider an 8GB system
which could be expanded to 64GB in the fu-
ture. Its normalmem_map[] use would be
around 84MB, an acceptable 10% use of low
memory. However, hadmem_map[] been
preallocated to handle a total capacity of 64GB
of system memory, it would use an astound-
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ing 71% of low memory, giving any 8GB sys-
tem all of the low memory problems associated
with much larger systems.

Preallocation also has the disadvantage of im-
posing limitations possibly making the user
decide how large they expect the system to
be, either when the kernel is compiled, or
when it is booted. Perhaps the administra-
tor of the above 8GB machine knows that it
will never get any larger than 16GB. Does that
make the low memory usage more acceptable?
It would likely solve the immediate problem,
however, such limitations and user interven-
tion are becoming increasingly unacceptable
to Linux vendors, as they drastically increase
possible user configurations, and support costs
along with it.

4.2 Breakingmem_map[] up

Instead of preallocation, another solution is
to break upmem_map[] . Instead of need-
ing massive amounts of memory, smaller ones
could be used to piece togethermem_map[]
from more manageable allocations Interest-
ingly, there is already precedent in the Linux
kernel for such an approach. The discontigu-
ous memory support code tries to solve a dif-
ferent problem (large holes in the physical ad-
dress space), but a similar solution was needed.
In fact, there has been code released to use the
current discontigmem support in Linux to im-
plement memory hotplug. But, this has sev-
eral disadvantages. Most importantly, it re-
quires hijacking the NUMA code for use with
memory hotplug. This would exclude the use
of NUMA and memory hotplug on the same
system, which is likely an unacceptable com-
promise due to the vast performance benefits
demonstrated from using the Linux NUMA
code for its intended use [6].

Using the NUMA code for memory hotplug is
a very tempting proposition because in addi-

tion to splitting upmem_map[] the NUMA
support also handles discontiguous memory.
Discontiguous memory simply means that the
system does not lay out all of its physical mem-
ory in a single block, rather there are holes.
Handling these holes with memory hotplug is
very important, otherwise the only memory
that could be added or removed would be on
the end.

Although an approch similar to this “node hot-
plug” approach will be needed when adding or
removing entire NUMA nodes, using it on a
regular SMP hotplug system could be disas-
trous. Each discontiguous area is represented
by several data structures but each has at least
onestructzone . This structure is the basic
unit which Linux uses to pool memory. When
the amounts of memory reach certain low lev-
els, Linux will respond by trying to free or
swap memory. Artificially creating too many
zones causes these events to be triggered much
too early, degrading system performance and
under-utilizing available RAM.

5 CONFIG_NONLINEAR

The solution to both themem_map[] and dis-
contiguous memory problems comes in a sin-
gle package: nonlinear memory. First imple-
mented by Daniel Phillips in April of 2002 as
an alternative to discontiguous memory, non-
linear solves a similar set of problems.

Laying outmem_map[] as an array has sev-
eral advantages. One of the most important
is the ability to quickly determine the physi-
cal address of any arbitrarystruct page .
Sincemem_map[N] represents the Nth page
of physical memory, the physical address of the
memory represented by thatstruct page
can be determined by simple pointer arith-
metic:

Oncemem_map[] is broken up these simple
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physical_address = (&mem_map[N] - &mem_map[0]) * sizeof(struct page)

struct page N = mem_map[(physical_address / sizeof(struct page)]

Figure 1: Physical Address Calculations

calculations are no longer possible, thus an-
other approach is required. The nonlinear ap-
proach is to use a set of two lookup tables, each
one complementing the above operations: one
for convertingstruct page to physical ad-
dresses, the other for doing the opposite. While
it would be possible to have a table with an en-
try for every single page, that approach wastes
far too much memory. As a result, nonlinear
handles pages in uniformly sized sections, each
of which has its ownmem_map[] and an asso-
ciated physical address range. Linux has some
interesting conventions about how addresses
are represented, and this has serious implica-
tions for how the nonlinear code functions.

5.1 Physical Address Representations

There are, in fact, at least three different ways
to represent a physical address in Linux: a
physical address, astruct page , and a
page frame number (pfn). A pfn is traditionally
just the physical address divided by the size
of a physical page (theN in the above in Fig-
ure 1). Many parts of the kernel prefer to use
a pfn as opposed to astruct page pointer
to keep track of pages because pfn’s are eas-
ier to work with, being conceptually just array
indexes. The page allocator bitmaps discussed
above are just such a part of the kernel. To al-
locate or free a page, the page allocator toggles
a bit at an index in one of the bitmaps. That
index is based on a pfn, not astruct page
or a physical address.

Being so easily transposed, that decision does
not seem horribly important. But it does cause
a serious problem for memory hotplug. Con-

sider a system with 100 1GB DIMM slots
that support hotplug. When the system is first
booted, only one of these DIMM slots is pop-
ulated. Later on, the owner decides to hotplug
another DIMM, but puts it in slot 100 instead
of slot 2. Now, nonlinear has a bit of a problem:
the new DIMM happens to appear at a physical
address 100 times higher address than the first
DIMM. The mem_map[] for the new DIMM
is split up properly, but the allocator bitmap’s
length is directly tied to the pfn, and thus the
physical address of the memory.

Having already stated that the allocator bitmap
stays at manageable sizes, this still does not
seem like much of an issue. However, the
physical address of that new memorycould
have an even greater range than 100 GB; it has
the capability to have many, many terabytes of
range, based on the hardware. Keeping allo-
cator bitmaps for terabytes of memory could
conceivably consume all system memory on a
small machine, which is quite unacceptable.
Nonlinear offers a solution to this by intro-
ducing a new way to represent a physical ad-
dress: a fourth addressing scheme. With three
addressing schemes already existing, a fourth
seems almost comical, until its small scope is
considered. The new scheme is isolated to use
inside of a small set of core allocator functions
a single place in the memory hotplug code it-
self. A simple lookup table converts these new
“linear” pfns into the more familiar physical
pfns.
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5.2 Issues withCONFIG_NONLINEAR

Although it greatly simplifies several issues,
nonlinear is not without its problems. Firstly,
it does require the consultation of a small num-
ber of lookup tables during critical sections of
code. Random access of these tables is likely to
cause cache overhead. The more finely grained
the units of hotplug, the larger these tables will
grow, and the worse the cache effects.

Another concern arises with the size of the
nonlinear tables themselves. While they allow
pfns andmem_map[] to have nonlinear rela-
tionships, the nonlinear structures themselves
remain normal, everyday, linear arrays. If
hardware is encountered with sufficiently small
hotplug units, and sufficiently large ranges of
physical addresses, an alternate scheme to the
arrays may be required. However, it is the au-
thors’ desire to keep the implementation sim-
ple, until such a need is actually demonstrated.

6 Memory Removal

While memory addition is a relatively black-
and-white problem, memory removal has many
more shades of gray. There are many differ-
ent ways to use memory, and each of them has
specific challenges forunusing it. We will first
discuss the kinds of memory that Linux has
which are relevant to memory removal, along
with strategies to go about unusing them.

6.1 “Easy” User Memory

Unusing memory is a matter of either mov-
ing data or simply throwing it away. The eas-
iest, most straightforward kind of memory to
remove is that whose contents can just be dis-
carded. The two most common manifestations
of this are clean page cache pages and swapped
pages. Page cache pages are either dirty (con-
taining information which has not been writ-

ten to disk) or clean pages, which are simply a
copy of something thatis present on the disk.
Memory removal logic that encounters a clean
page cache page is free to have it discarded,
just as the low memory reclaim code does to-
day. The same is true of swapped pages; a page
of RAM which has been written to disk is safe
to discard. (Note: there is usually a brief pe-
riod between when a page is written to disk,
and when it is actually removed from memory.)
Any page thatcanbe swapped is also an easy
candidate for memory removal, because it can
easily be turned into a swapped page with ex-
isting code.

6.2 Swappable User Memory

Another type of memory which is very simi-
lar to the two types above is something which
is only used by user programs, but is for
some reason not a candidate for swapping.
This at least includes pages which have been
mlock() ’d (which is a system call to prevent
swapping). Instead of discarding these pages
out of RAM, they must instead be moved. The
algorithm to accomplish this should be very
similar to the algorithm for a complete page
swapping: freeze writes to the page, move the
page’s contents to another place in memory,
change all references to the page, and re-enable
writing. Notice that this is the same process as
a complete swap cycle except that the writes to
the disk are removed.

6.3 Kernel Memory

Now comes the hard part. Up until now, we
have discussed memory which is being used
by user programs. There is also memory that
Linux sets aside for its own use and this comes
in many more varieties than that used by user
programs. The techniques for dealing with this
memory are largely still theoretical, and do not
have existing implementations.
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Remember how the Linux page allocator can
only keep track of pages in powers of two? The
Linux slab cache was designed to make up for
that [6], [7]. It has the ability to take those pow-
ers of two pages, and chop them up into smaller
pieces. There are some fixed-size groups for
common allocations like 1024, 1532, or 8192
bytes, but there are also caches for certain
kinds of data structures. Some of these caches
have the ability to attempt to shrink themselves
when the system needs some memory back, but
even that is relatively worthless for memory
hotplug.

6.4 Removing Slab Cache Pages

The problem is that the slab cache’s shrinking
mechanism does not concentrate on shrinking
any particular memory, it just concentrates on
shrinking, period. Plus, there’s currently no
mechanism to tellwhichslab a particular page
belongs to. It could just as easily be a simply
discarded dcache entry as it could be a com-
pletely immovable entry like apte_chain .
Linux will need mechanisms to allow the slab
cache shrinking to be much more surgical.

However, there will always be slab cache mem-
ory which is not covered by any of the shrink-
ing code, like for generickmalloc() alloca-
tions. The slab cache could also make efforts
to keep these “mystery” allocations away from
those for which it knows how to handle.

While the record-keeping for some slab-cache
pages is sparse, there is memory with even
more mysterious origins. Some is allocated
early in the boot process, while other uses pull
pages directly out of the allocator never to be
seen again. If hot-removal of these areas is re-
quired, then a different approach must be em-
ployed: direct replacement. Instead of simply
reducing the usage of an area of memory until
it is unused, a one-to-one replacement of this
memory is required. With the judicious use of

page tables, the best that can be done is to pre-
serve the virtual address of these areas. While
this is acceptable for most use, it is not without
its pitfalls.

6.5 Removing DMA Memory

One unacceptable place to change the phys-
ical address of some data is for a device’s
DMA buffer. Modern disk controllers and net-
work devices can transfer their data directly
into the system’s memory without the CPU’s
direct involvement. However, since the CPU
is not involved, the devices lack access to the
CPU’s virtual memory architecture. For this
reason, all DMA-capable devices’ transfers are
based on the physical address of the memory
to which they are transferring. Every user of
DMA in Linux will either need to be guar-
anteed to not be affected by memory replace-
ment, or to be notified of such a replacement
so that it can take corrective action. It should
be noted, however, that the virtualization layer
on ppc64 can properly handle this remapping
in its IOMMU. Other architectures with IOM-
MUs should be able to employ similar tech-
niques.

6.6 Removal and the Page Allocator

The Linux page allocator works by keeping
lists of groups of pages in sizes that are pow-
ers of two times the size of a page. It keeps a
list of groups that are available for each power
of two. However, when a request for a page
is made, the only real information provided is
for thesizerequired, there is no component for
specifically specifying which particular mem-
ory is required.

The first thing to consider before removing
memory is to make sure that no other part
of the system is using that piece of memory.
Thankfully, that’s exactly what a normal al-
location does: make sure that it is alone in
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its use of the page. So, making the page al-
locator support memory removal will simply
involve walking the same lists that store the
page groups. But, instead of simply taking the
first available pages, it will be more finicky,
only “allocating” pages that are among those
about to be removed. In addition, the allocator
should have checks in thefree_pages()
path to look for pages which were selected for
removal.

1. Inform allocator to catch any pages in the
area being removed.

2. Go into allocator, and remove any pages
in that area.

3. Trigger page reclaim mechanisms to trig-
gerfree() s, and hopefully unuse all tar-
get pages.

4. If not complete, goto 3.

6.7 Page Groupings

As described above, the page allocator is the
basis for all memory allocations. However,
when it comes time to remove memory a fixed
size block of memory is what is removed.
These blocks correspond to the sections de-
fined in the the implementation of nonlinear
memory. When removing a section of mem-
ory, the code performing the remove opera-
tion will first try to essentially allocate all the
pages in the section. To remove the section,
all pages within the section must be made free
of use by some mechanism as described above.
However, it should be noted that some pages
will not be able to be made available for re-
moval. For example, pages in use for kernel
allocations, DMA or via the slab-cache. Since
the page allocator makes no attempt to group
pages based on usage, it is possible in a worst
case situation that every section contains one
in-use page that can not be removed. Ideally,

we would like to group pages based on their us-
age to allow the maximum number of sections
to be removed.

Currently, the definition of zones provides
some level of grouping on specific architec-
tures. For example, on i386, three zones are
defined: DMA, NORMAL and HIGHMEM.
With such definitions, one would expect most
non-removable pages to be allocated out of the
DMA and NORMAL zones. In addition, one
would expect most HIGHMEM allocations to
be associated with userspace pages and thus
removable. Of course, when the page allo-
cator is under memory pressure it is possible
that zone preferences will be ignored and allo-
cations may come from an alternate zone. It
should also be noted that on some architec-
tures, such as ppc64, only one zone (DMA) is
defined. Hence, zones can not provide group-
ing of pages on every architecture. It ap-
pears that zones do provide some level of page
grouping, but possibly not sufficient for mem-
ory hotplug.

Ideally, we would like to experiment with
teaching the page allocator about the use of
pages it is handing out. A simple thought
would be to introduce the concept of sections
to the allocator. Allocations of a specific type
are directed to a section that is primarily used
for allocations of that same type. For example,
when allocations for use within the kernel are
needed the allocator will attempt to allocate the
page from a section that contains other inter-
nal kernel allocations. If no such pages can be
found, then a new section is marked for internal
kernel allocations. In this way pages which can
not be easily freed are grouped together rather
than spread throughout the system. In this way
the page allocator’s use of sections would be
analogous to the slab caches use of pages.
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7 Conclusion

The prevalence of hotplug-capable Linux sys-
tems is only expanding. Support for these sys-
tems will make Linux more flexible and will
make additional capabilities available to other
parts of the system.
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