
Carrier Grade Server Features in the Linux Kernel
Towards Linux-based Telecom Plarforms

Ibrahim Haddad
Ericsson Research

ibrahim.haddad@ericsson.com

Abstract

Traditionally, communications and data ser-
vice networks were built on proprietary plat-
forms that had to meet very specific availabil-
ity, reliability, performance, and service re-
sponse time requirements. Today, communica-
tion service providers are challenged to meet
their needs cost-effectively for new architec-
tures, new services, and increased bandwidth,
with highly available, scalable, secure, and
reliable systems that have predictable perfor-
mance and that are easy to maintain and up-
grade. This paper presents the technological
trend of migrating from proprietary to open
platforms based on software and hardware
building blocks. It also focuses on the ongo-
ing work by the Carrier Grade Linux working
group at the Open Source Development Labs,
examines the CGL architecture, the require-
ments from the latest specification release, and
presents some of the needed kernel features
that are not currently supported by Linux such
as a Linux cluster communication mechanism,
a low-level kernel mechanism for improved re-
liability and soft-realtime performance, sup-
port for multi-FIB, and support for additional
security mechanisms.

1 Open platforms

The demand for rich media and enhanced
communication services is rapidly leading to

significant changes in the communication in-
dustry, such as the convergence of data and
voice technologies. The transition to packet-
based, converged, multi-service IP networks
require a carrier grade infrastructure based on
interoperable hardware and software building
blocks, management middleware, and appli-
cations, implemented with standard interfaces.
The communication industry is witnessing a
technology trend moving away from propri-
etary systems toward open and standardized
systems that are built using modular and flex-
ible hardware and software (operating system
and middleware) common off the shelf com-
ponents. The trend is to proceed forward de-
livering next generation and multimedia com-
munication services, using open standard car-
rier grade platforms. This trend is motivated
by the expectations that open platforms are go-
ing to reduce the cost and risk of developing
and delivering rich communications services.
Also, they will enable faster time to market and
ensure portability and interoperability between
various components from different providers.
One frequently asked question is: ’How can we
meet tomorrow’s requirements using existing
infrastructures and technologies?’. Proprietary
platforms are closed systems, expensive to de-
velop, and often lack support of the current
and upcoming standards. Using such closed
platforms to meet tomorrow’s requirements for
new architectures and services is almost impos-
sible. A uniform open software environment
with the characteristics demanded by telecom



256 • Linux Symposium 2004 • Volume One

applications, combined with commercial off-
the-shelf software and hardware components
is a necessary part of these new architectures.
The following key industry consortia are defin-
ing hardware and software high availability
specifications that are directly related to tele-
com platforms:

1. The PCI Industrial Computer Manufactur-
ers Group [1] (PICMG) defines standards
for high availability (HA) hardware.

2. The Open Source Development Labs [2]
(OSDL) Carrier Grade Linux [3] (CGL)
working group was established in Jan-
uary 2002 with the goal of enhancing the
Linux operating system, to achieve an
Open Source platform that is highly avail-
able, secure, scalable and easily main-
tained, suitable for carrier grade systems.

3. The Service Availability Forum [4] (SA
Forum) defines the interfaces of HA mid-
dleware and focusing on APIs for hard-
ware platform management and for appli-
cation failover in the application API. SA
compliant middleware will provide ser-
vices to an application that needs to be HA
in a portable way.

Figure 1: From Proprietary to Open Solutions

The operating system is a core component in
such architectures. In the remaining of this pa-
per, we will be focusing on CGL, its architec-
ture and specifications.

2 The term Carrier Grade

In this paper, we refer to the term Carrier Grade
on many occasions. Carrier grade is a term
for public network telecommunications prod-
ucts that require a reliability percentage up to 5
or 6 nines of uptime.

• 5 nines refers to 99.999% of uptime per
year (i.e., 5 minutes of downtime per
year). This level of availability is usually
associated with Carrier Grade servers.

• 6 nines refers to 99.9999% of uptime per
year (i.e., 30 seconds of downtime per
year). This level of availability is usually
associated with Carrier Grade switches.

3 Linux versus proprietary operat-
ing systems

This section describes briefly the motivating
reasons in favor of using Linux on Carrier
Grade systems, versus continuing with propri-
etary operating systems. These motivations in-
clude:

• Cost: Linux is available free of charge in
the form of a downloadable package from
the Internet.

• Source code availability: With Linux, you
gain full access to the source code allow-
ing you to tailor the kernel to your needs.

• Open development process (Figure 2):
The development process of the kernel is
open to anyone to participate and con-
tribute. The process is based on the con-
cept of "release early, release often."

• Peer review and testing resources: With
access to the source code, people using a



Linux Symposium 2004 • Volume One • 257

wide variety of platform, operating sys-
tems, and compiler combinations; can
compile, link, and run the code on their
systems to test for portability, compatibil-
ity and bugs.

• Vendor independent: With Linux, you no
longer have to be locked into a specific
vendor. Linux is supported on multiple
platforms.

• High innovation rate: New features are
usually implemented on Linux before they
are available on commercial or propri-
etary systems.

Figure 2: Open development process of the
Linux kernel

Other contributing factors include Linux’ sup-
port for a broad range of processors and
peripherals, commercial support availability,
high performance networking, and the proven
record of being a stable, and reliable server
platform.

4 Carrier Grade Linux

The Linux kernel is missing several features
that are needed in a telecom environment. It
is not adapted to meet telecom requirements
in various areas such as reliability, security,
and scalability. To help the advancement of

Linux in the telecom space, OSDL established
the CGL working group. The group specifies
and helps implement an Open Source platform
targeted for the communication industry that
is highly available, secure, scalable and easily
maintained. The CGL working group is com-
posed of several members from network equip-
ment providers, system integrators, platform
providers, and Linux distributors. They all
contribute to the requirement definition of Car-
rier Grade Linux, help Open Source projects
to meet these requirements, and in some cases
start new Open Source projects. Many of
the CGL members companies have contributed
pieces of technologies to Open Source in order
to make the Linux Kernel a more viable option
for telecom platforms. For instance, the Open
Systems Lab [5] from Ericsson Research has
contributed three key technologies: the Trans-
parent IPC [6], the Asynchronous Event Mech-
anism [7], and the Distributed Security Infras-
tructure [8]. There are already Linux distri-
butions, MontaVista [9] for instance, that are
providing CGL distribution based on the CGL
requirement definition. Many companies are
also either deploying CGL, or at least evaluat-
ing and experimenting with it.

Consequently, CGL activities are giving much
momentum for Linux in the telecom space
allowing it to be a viable option to propri-
etary operating system. Member companies of
CGL are releasing code to Open Source and
are making some of their proprietary technolo-
gies open, which leads to going forward from
closed platforms to open platforms that use
CGL Linux.

5 Target CGL applications

The CGL Working Group has identified three
main categories of application areas into which
they expect the majority of applications imple-
mented on CGL platforms to fall. These appli-



258 • Linux Symposium 2004 • Volume One

cation areas are gateways, signaling, and man-
agement servers.

• Gateways are bridges between two dif-
ferent technologies or administration do-
mains. For example, a media gateway per-
forms the critical function of converting
voice messages from a native telecommu-
nications time-division-multiplexed net-
work, to an Internet protocol packet-
switched network. A gateway processes a
large number of small messages received
and transmitted over a large number of
physical interfaces. Gateways perform
in a timely manner very close to hard
real-time. They are implemented on ded-
icated platforms with replicated (rather
than clustered) systems used for redun-
dancy.

• Signaling servers handle call control, ses-
sion control, and radio recourse control.
A signaling server handles the routing and
maintains the status of calls over the net-
work. It takes the request of user agents
who want to connect to other user agents
and routes it to the appropriate signaling.
Signaling servers require soft real time re-
sponse capabilities less than 80 millisec-
onds, and may manage tens of thousands
of simultaneous connections. A signaling
server application is context switch and
memory intensive due to requirements for
quick switching and a capacity to manage
large numbers of connections.

• Management servers handle traditional
network management operations, as well
as service and customer management.
These servers provide services such as: a
Home Location Register and Visitor Lo-
cation Register (for wireless networks)
or customer information (such as per-
sonal preferences including features the

customer is authorized to use). Typi-
cally, management applications are data
and communication intensive. Their re-
sponse time requirements are less strin-
gent by several orders of magnitude, com-
pared to those of signaling and gateway
applications.

6 Overview of the CGL working
group

The CGL working group has the vision that
next-generation and multimedia communica-
tion services can be delivered using Linux
based open standards platforms for carrier
grade infrastructure equipment. To achieve this
vision, the working group has setup a strat-
egy to define the requirements and architecture
for the Carrier Grade Linux platform, develop
a roadmap for the platform, and promote the
development of a stable platform upon which
commercial components and services can be
deployed.

In the course of achieving this strategy, the
OSDL CGL working group, is creating the re-
quirement definitions, and identifying existing
Open Source projects that support the roadmap
to implement the required components and in-
terfaces of the platform. When an Open Source
project does not exist to support a certain re-
quirement, OSDL CGL is launching (or sup-
port the launch of) new Open Source projects
to implement missing components and inter-
faces of the platform.

The CGL working group consists of three dis-
tinct sub-groups that work together. These sub-
groups are: specification, proof-of-concept,
and validation. Responsibilities of each sub-
group are as follows:

1. Specifications: The specifications sub-
group is responsible for defining a set of



Linux Symposium 2004 • Volume One • 259

requirements that lead to enhancements in
the Linux kernel, that are useful for car-
rier grade implementations and applica-
tions. The group collects, categorizes, and
prioritizes the requirements from partici-
pants to allow reasonable work to proceed
on implementations. The group also in-
teracts with other standard defining bod-
ies, open source communities, develop-
ers and distributions to ensure that the re-
quirements identify useful enhancements
in such a way, that they can be adopted
into the base Linux kernel.

2. Proof-of-Concept: This sub-group gener-
ates documents covering the design, fea-
tures, and technology relevant to CGL. It
drives the implementation and integration
of core Carrier Grade enhancements to
Linux as identified and prioritized by the
requirement document. The group is also
responsible for ensuring the integrated en-
hancements pass, the CGL validation test
suite and for establishing and leading an
open source umbrella project to coordi-
nate implementation and integration ac-
tivities for CGL enhancements.

3. Validation: This sub-group defines stan-
dard test environments for developing val-
idation suites. It is responsible for co-
ordinating the development of validation
suites, to ensure that all of the CGL re-
quirements are covered. This group is
also responsible for the development of
an Open Source project CGL validation
suite.

7 CGL architecture

Figure 3 presents the scope of the CGL Work-
ing Group, which covers two areas:

• Carrier Grade Linux: Various require-
ments such as availability and scalability

Figure 3: CGL architecture and scope

are related to the CGL enhancements to
the operating system. Enhancements may
also be made to hardware interfaces, inter-
faces to the user level or application code
and interfaces to development and debug-
ging tools. In some cases, to access the
kernel services, user level library changes
will be needed.

• Software Development Tools: These tools
will include debuggers and analyzers.

On October 9, 2003, OSDL announced
the availability of the OSDL Carrier
Grade Linux Requirements Definition,
Version 2.0 (CGL 2.0). This latest re-
quirement definition for next-generation
carrier grade Linux offers major advances
in security, high availability, and cluster-
ing.

8 CGL requirements

The requirement definition document of CGL
version 2.0 introduced new and enhanced fea-
tures to support Linux as a carrier grade plat-
form. The CGL requirement definition divides
the requirements in main categories described
briefly below:



260 • Linux Symposium 2004 • Volume One

8.1 Clustering

These requirements support the use of multi-
ple carrier server systems to provide higher lev-
els of service availability through redundant re-
sources and recovery capabilities, and to pro-
vide a horizontally scaled environment sup-
porting increased throughput.

8.2 Security

The security requirements are aimed at main-
taining a certain level of security while not en-
dangering the goals of high availability, perfor-
mance, and scalability. The requirements sup-
port the use of additional security mechanisms
to protect the systems against attacks from both
the Internet and intranets, and provide special
mechanisms at kernel level to be used by tele-
com applications.

8.3 Standards

CGL specifies standards that are required for
compliance for carrier grade server systems.
Examples of these standards include:

• Linux Standard Base

• POSIX Timer Interface

• POSIX Signal Interface

• POSIX Message Queue Interface

• POSIX Semaphore Interface

• IPv6 RFCs compliance

• IPsecv6 RFCs compliance

• MIPv6 RFCs compliance

• SNMP support

• POSIX threads

8.4 Platform

OSDL CGL specifies requirements that sup-
port interactions with the hardware platforms
making up carrier server systems. Platform ca-
pabilities are not tied to a particular vendor’s
implementation. Examples of the platform re-
quirements include:

• Hot insert: supports hot-swap insertion of
hardware components

• Hot remove: supports hot-swap removal
of hardware components

• Remote boot support: supports remote
booting functionality

• Boot cycle detection: supports detecting
reboot cycles due to recurring failures.
If the system experiences a problem that
causes it to reboot repeatedly, the system
will go offline. This is to prevent addi-
tional difficulties from occurring as a re-
sult of the repeated reboots

• Diskless systems: Provide support for
diskless systems loading their ker-
nel/application over the network

• Support remote booting across common
LAN and WAN communication media

8.5 Availability

The availability requirements support height-
ened availability of carrier server systems, such
as improving the robustness of software com-
ponents or by supporting recovery from failure
of hardware or software. Examples of these re-
quirements include:

• RAID 1: support for RAID 1 offers mir-
roring to provide duplicate sets of all data
on separate hard disks



Linux Symposium 2004 • Volume One • 261

• Watchdog timer interface: support for
watchdog timers to perform certain speci-
fied operations when timeouts occur

• Support for Disk and volume manage-
ment: to allow grouping of disks into vol-
umes

• Ethernet link aggregation and link
failover: support bonding of multiple NIC
for bandwidth aggregation and provide
automatic failover of IP addresses from
one interface to another

• Support for application heartbeat moni-
tor: monitor applications availability and
functionality.

8.6 Serviceability

The serviceability requirements support servic-
ing and managing hardware and software on
carrier server systems. These are wide-ranging
set requirements, put together, help support the
availability of applications and the operating
system. Examples of these requirements in-
clude:

• Support for producing and storing kernel
dumps

• Support for dynamic debug to allow dy-
namically the insertion of software instru-
mentation into a running system in the
kernel or applications

• Support for platform signal handler en-
abling infrastructures to allow interrupts
generated by hardware errors to be logged
using the event logging mechanism

• Support for remote access to event log in-
formation

8.7 Performance

OSDL CGL specifies the requirements that
support performance levels necessary for the
environments expected to be encountered by
carrier server systems. Examples of these re-
quirements include:

• Support for application (pre) loading.

• Support for soft real time performance
through configuring the scheduler to pro-
vide soft real time support with latency of
10 ms.

• Support Kernel preemption.

• Raid 0 support: RAID Level 0 pro-
vides "disk striping" support to enhance
performance for request-rate-intensive or
transfer-rate-intensive environments

8.8 Scalability

These requirements support vertical and hori-
zontal scaling of carrier server systems such as
the addition of hardware resources to result in
acceptable increases in capacity.

8.9 Tools

The tools requirements provide capabilities to
facilitate diagnosis. Examples of these require-
ments include:

• Support the usage of a kernel debugger.

• Support for Kernel dump analysis.

• Support for debugging multi-threaded
programs



262 • Linux Symposium 2004 • Volume One

9 CGL 3.0

The work on the next version of the OSDL
CGL requirements, version 3.0, started in Jan-
uary 2004 with focus on advanced require-
ment areas such as manageability, serviceabil-
ity, tools, security, standards, performance,
hardware, clustering and availability. With the
success of CGL’s first two requirement docu-
ments, OSDL CGL working group anticipates
that their third version will be quite beneficial
to the Carrier Grade ecosystem. Official re-
lease of the CGL requirement document Ver-
sion 3.0 is expected in October 2004.

10 CGL implementations

There are several enhancements to the Linux
Kernel that are required by the communication
industry, to help adopt Linux on their carrier
grade platforms, and support telecom applica-
tions. These enhancements (Figure 4) fall into
the following categories availability, security,
serviceability, performance, scalability, relia-
bility, standards, and clustering.

Figure 4: CGL enhancements areas

The implementations providing theses en-
hancements are Open Source projects and
planned for integration with the Linux ker-
nel when the implementations are mature, and
ready for merging with the kernel code. In

some cases, bringing some projects into matu-
rity levels takes a considerable amount of time
before being able to request its integration into
the Linux kernel. Nevertheless, some of the en-
hancements are targeted for inclusion in kernel
version 2.7. Other enhancements will follow in
later kernel releases. Meanwhile, all enhance-
ments, in the form of packages, kernel modules
and patches, are available from their respective
project web sites. The CGL 2.0 requirements
are in-line with the Linux development com-
munity. The purpose of this project is to form a
catalyst to capture common requirements from
end-users for a CGL distribution. With a com-
mon set of requirements from the major Net-
work Equipment Providers, developers can be
much more productive and efficient within de-
velopment projects. Many individuals within
the CGL initiative are also active participants
and contributors in the Open Source develop-
ment community.

11 Examples of needed features in
the Linux Kernel

In this section, we provide some examples
of missing features and mechanisms from the
Linux kernel that are necessary in a telecom
environment.

11.1 Transparent Inter-Process and Inter-
Processor Communication Protocol for
Linux Clusters

Today’s telecommunication environments are
increasingly adopting clustered servers to gain
benefits in performance, availability, and scal-
ability. The resulting benefits of a cluster
are greater or more cost-efficient than what a
single server can provide. Furthermore, the
telecommunications industry interest in clus-
tering originates from the fact that clusters
address carrier grade characteristics such as
guaranteed service availability, reliability and



Linux Symposium 2004 • Volume One • 263

scaled performance, using cost-effective hard-
ware and software. Without being absolute
about these requirements, they can be divided
in these three categories: short failure detection
and failure recovery, guaranteed availability of
service, and short response times. The most
widely adopted clustering technique is use of
multiple interconnected loosely coupled nodes
to create a single highly available system.

One missing feature from the Linux kernel in
this area is a reliable, efficient, and transpar-
ent inter-process and inter-processor commu-
nication protocol. Transparent Inter Process
Communication (TIPC) [6] is a suitable Open
Source implementation that fills this gap and
provides an efficient cluster communication
protocol. This leverages the particular condi-
tions present within loosely coupled clusters.
It runs on Linux and is provided as a portable
source code package implementing a loadable
kernel module.

TIPC is unique because there seems to be no
other protocol providing a comparable com-
bination of versatility and performance. It
includes some original innovations such as
the functional addressing, the topology sub-
scription services, and the reactive connec-
tion concept. Other important TIPC fea-
tures include full location transparency, sup-
port for lightweight connections, reliable mul-
ticast, signaling link protocol, topology sub-
scription services and more.

TIPC should be regarded as a useful toolbox
for anyone wanting to develop or use Carrier
Grade or Highly Available Linux clusters. It
provides the necessary infrastructure for clus-
ter, network and software management func-
tionality, as well as a good support for de-
signing site-independent, scalable, distributed,
high-availability and high-performance appli-
cations.

It is also worthwhile to mention that the

ForCES (Forwarding and Control Element
WG) [11] working group within IETF has
agreed that their router internal protocol (the
ForCES protocol) must be possible to carry
over different types of transport protocols.
There is consensus on that TCP is the pro-
tocol to be used when ForCES messages are
transported over the Internet, while TIPC is
the protocol to be used in closed environments
(LANs), where special characteristics such as
high performance and multicast support is de-
sirable. Other protocols may also be added as
options.

TIPC is a contribution from Ericsson [5] to
the Open Source community. TIPC was an-
nounced on LKML on June 28, 2004; it is li-
censed under a dual GPL and BSD license.

11.2 IPv4, IPv6, MIPv6 forwarding tables fast
access and compact memory with multi-
ple FIB support

Routers are core elements of modern telecom
networks. They propagate and direct billion
of data packets from their source to their des-
tination using air transport devices or through
high-speed links. They must operate as fast as
the medium in order to deliver the best qual-
ity of service and have a negligible effect on
communications. To give some figures, it is
common for routers to manage between 10.000
to 500.000 routes. In these situations, good
performance is achievable by handling around
2000 routes/sec. The actual implementation of
the IP stack in Linux works fine for home or
small business routers. However, with the high
expectation of telecom operators and the new
capabilities of telecom hardware, it appears as
barely possible to use Linux as an efficient
forwarding and routing element of a high-end
router for large network (core/border/access
router) or a high-end server with routing capa-
bilities.



264 • Linux Symposium 2004 • Volume One

One problem with the networking stack in
Linux is the lack of support for multiple
forward-ing information bases (multi-FIB) wit
h overlapping interface’s IP address, and the
lack of appropriate interfaces for addressing
FIB. Another problem with the curren t imple-
mentation is the limited scalability of the rout-
ing table.

The solution to these problems is to provide
support for multi-FIB with overlapping IP ad-
dress. As such, we can have on differe nt
VLAN or different physical interfaces, inde-
pendent network in the same Linux box. For
example, we can have two HTTP servers serv-
ing two different networks with potentially the
same IP address. One HTTP server will serve
the network/FIB 10, and the othe r HTTP
server will serves the network/FIB 20. The ad-
vantage gained is to have one Linux box serv-
ing two different customers usi ng the same IP
address. ISPs adopt this approach by provid-
ing services for multiple customers sharing the
same server (server pa rtitioning), instead of
using a server per customer.

The way to achieve this is to have an ID (an
identifier that identifies the customer or user of
the service) to completely separ ate the rout-
ing table in memory. Two approaches exist:
the first is to have a separate routing tables,
each routing table is looked up by their ID and
within tha t table the lookup is done one the
prefix. The second approach is to have one ta-
ble, and the lookup is done on the combined
key = prefix + ID.

A different kind of problem arises when we are
not able to predict access time, with the chain-
ing in the hash table of the routi ng cache (and
FIB). This problem is of particular inter-est in
an environment that requires predictable per-
formance.

Another aspect of the problem is that the route
cache and the routing table are not kept syn-

chronized most of the time (path MTU, just
to name one). The route cache flush is exe-
cuted regularly; therefore, any updates on the
cache are lost. For example, if you have a rout-
ing cache flush, you have to rebuild every route
that you are currently talking to, by going for
every route in the hash/try table and rebuilding
the information. First, you have to lookup in
the routing cache, and if you have a miss, then
you need to go in the hash/try table. This pro-
cess is very slow and not predictable since the
hash/try table is implemented wi th linked list
and there is high potential for collisions when a
large number of routes are present. This design
is suitable fo r a home PC with a few routes, but
it is not scalable for a large server.

To support the various routing requirements
of server nodes operating in high perfor-
mance and mission critical envrionments,
Linux should support the following:

• Implementation of multi-FIB using tree
(radix, patricia, etc.): It is very impor-
tant to have predictable performance in in-
sert/delete/lookup from 10.000 to 500.000
routes. In addition, it is favourable to have
the same data structure for both IPv4 and
IPv6.

• Socket and ioctl interfaces for addressing
multi-FIB.

• Multi-FIB support for neighbors (arp).

Providing these implementations in Linux will
affect a large part of net/core, net/ipv4 and
net/ipv6; these subsystems (mostly network
layer) will need to be re-written. Other areas
will have minimal impact at the source code
level, mostly at the transport layer (socket,
TCP, UDP, RAW, NAT, IPIP, IGMP, etc.).

As for the availability of an Open Source
project that can provide these functionalities,



Linux Symposium 2004 • Volume One • 265

there exists a project called "Linux Virtual
Routing and Forwarding" [12]. This project
aims to implement a flexible and scalable
mechanism for providing multiple routing in-
stances within the Linux kernel. The project
has some potential in providing the needed
functionalities, however no progress has been
made since 2002 and the project seems to be
inactive.

11.3 Run-time Authenticity Verification for Bi-
naries

Linux has generally been considered immune
to the spread of viruses, backdoors and Tro-
jan programs on the Internet. However, with
the increasing popularity of Linux as a desk-
top platform, the risk of seeing viruses or Tro-
jans developed for this platform are rapidly
growing. To alleviate this problem, the sys-
tem should prevent on run time the execu-
tion of un-trusted software. One solution is
to digitally sign the trusted binaries and have
the system check the digital signature of bina-
ries before running them. Therefore, untrusted
(not signed) binaries are denied the execution.
This can improve the security of the system
by avoiding a wide range of malicious bina-
ries like viruses, worms, Trojan programs and
backdoors from running on the system.

DigSig [13] is a Linux kernel module that
checks the signature of a binary before running
it. It inserts digital signatures inside the ELF
binary and verifies this signature before load-
ing the binary. It is based on the Linux Security
Module hooks (LSM has been integrated with
the Linux kernel since 2.5.X and higher).

Typically, in this approach, vendors do not sign
binaries; the control of the system remains with
the local administrator. The responsible ad-
ministrator is to sign all binaries they trust with
their private key. Therefore, DigSig guarantees
two things: (1) if you signed a binary, nobody

else other than yourself can modify that binary
without being detected. (2) Nobody can run a
binary which is not signed or badly signed.

There has already been several initiatives in
this domain, such as Tripwire [14], BSign [15],
Cryptomark [16], but we believe the DigSig
project is the first to be both easily accessible to
all (available on SourceForge, under the GPL
license) and to operate at kernel level on run
time. The run time is very important for Car-
rier Grade Linux as this takes into account the
high availability aspects of the system.

The DigSig approach has been using exist-
ing solutions like GnuPG [17] and BSign (a
Debian package) rather than reinventing the
wheel. However, in order to reduce the over-
head in the kernel, the DigSig project only took
the minimum code necessary from GnuPG.
This helped much to reduce the amount of code
imported to the kernel in source code of the
original (only 1/10 of the original GnuPG 1.2.2
source code has been imported to the kernel
module).

DigSig is a contribution from Ericsson [5] to
the Open Source community. It was released
under the GPL license and it is available from
[8].

DigSig has been announced on LKML [18] but
it not yet integrated in the Linux Kernel.

11.4 Efficient Low-Level Asynchronous Event
Mechanism

Carrier grade systems must provide a 5-nines
availability, a maximum of five minutes per
year of downtime, which includes hardware,
operating system, software upgrade and main-
tenance. Operating systems for such systems
must ensure that they can deliver a high re-
sponse rate with minimum downtime. In ad-
dition, carrier-grade systems must take into
account such characteristics such as scalabil-



266 • Linux Symposium 2004 • Volume One

ity, high availability and performance. In car-
rier grade systems, thousands of requests must
be handled concurrently without affecting the
overall system’s performance, even under ex-
tremely high loads. Subscribers can expect
some latency time when issuing a request, but
they are not willing to accept an unbounded
response time. Such transactions are not han-
dled instantaneously for many reasons, and it
can take some milliseconds or seconds to re-
ply. Waiting for an answer reduces applica-
tions abilities to handle other transactions.

Many different solutions have been envisaged
to improve Linux’s capabilities in this area us-
ing different types of software organization,
such as multithreaded architectures, imple-
menting efficient POSIX interfaces, or improv-
ing the scalability of existing kernel routines.

One possible solution that is adequate for car-
rier grade servers is the Asynchronous Event
Mechanism (AEM), which provides asyn-
chronous execution of processes in the Linux
kernel. AEM implements a native support
for asynchronous events in the Linux kernel
and aims to bring carrier-grade characteristics
to Linux in areas of scalability and soft real-
time responsiveness. In addition, AEM offers
event-based development framework, scalabil-
ity, flexibility, and extensibility.

Ericsson [5] released AEM to Open Source in
February 2003 under the GPL license. AEM
was announced on the Linux Kernel Mailing
List (LKML) [20], and received feedback that
resulted in some changes to the design and im-
plementation. AEM is not yet integrated with
the Linux kernel.

12 Conclusion

There are many challenges accompanying the
migration from proprietary to open platforms.
The main challenge remains to be the availabil-

ity of the various kernel features and mecha-
nisms needed for telecom platforms and inte-
grating these features in the Linux kernel.

References

[1] PCI Industrial Computer Manufacturers
Group,
http://www.picmg.org

[2] Open Source Development Labs,
http://www.osdl.org

[3] Carrier Grade Linux,
http://osdl.org/lab_activities

[4] Service Availability Forum,
http://www.saforum.org

[5] Open System Lab,
http://www.linux.ericsson.ca

[6] Transparent IPC,
http://tipc.sf.net

[7] Asynchronous Event Mechanism,
http://aem.sf.net

[8] Distributed Security Infrastructure,
http://disec.sf.net

[9] MontaVista Carrier Grade Edition,
http://www.mvista.com/cge

[10] Make Clustering Easy with TIPC,
LinuxWorld Magazine, April 2004

[11] IETF ForCES working group,
http://www.sstanamera.com/~forces

[12] Linux Virtual Routing and Forwarding
project,
http://linux-vrf.sf.net

[13] Stop Malicious Code Execution at
Kernel Level, LinuxWorld Magazine,
January 2004



Linux Symposium 2004 • Volume One • 267

[14] Tripwire,
http://www.tripwire.com

[15] Bsign,
http://packages.debian.org/bsign

[16] Cryptomark,
http://immunix.org/cryptomark.html

[17] GnuPG,
http://www.gnupg.org

[18] DigSig announcement on LKML,
http://lwn.net/Articles/51007

[19] An Event Mechanism for Linux, Linux
Journal, July 2003

[20] AEM announcement on LKML,
http://lwn.net/Articles/45633

Acknowledgments

Thank you to Ludovic Beliveau, Mathieu
Giguere, Magnus Karlson, Jon Maloy, Mats
Naslund, Makan Pourzandi, and Frederic
Rossi, for their valuable contributions and re-
views.



268 • Linux Symposium 2004 • Volume One



Proceedings of the
Linux Symposium

Volume One

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


