
IA64-Linux perf tools for IO dorks
Examples of IA-64 PMU usage

Grant Grundler
Hewlett-Packard
iod00d@hp.com

grundler@parisc-linux.org

Abstract

Itanium processors have very sophisticated
performance monitoring tools integrated into
the CPU. McKinley and Madison Itanium
CPUs have over three hundred different types
of events they can filter, trigger on, and count.
The restrictions on which combinations of trig-
gers are allowed is daunting and varies across
CPU implementations. Fortunately, the tools
hide this complicated mess. While the tools
prevent us from shooting ourselves in the foot,
it’s not obvious how to use those tools for mea-
suring kernel device driver behaviors.

IO driver writers can use pfmon to measure two
key areas generally not obvious from the code:
MMIO read and write frequency and precise
addresses of instructions regularly causing L3
data cache misses. Measuring MMIO reads has
some nuances related to instruction execution
which are relevant to understanding ia64 and
likely ia32 platforms. Similarly, the ability to
pinpoint exactly which data is being accessed
by drivers enables driver writers to either mod-
ify the algorithms or add prefetching directives
where feasible. I include some examples on
how I used pfmon to measure NIC drivers and
give some guidelines on use.

q-syscollect is a “gprof without the pain” kind
of tool. While q-syscollect uses the same ker-
nel perfmon subsystem as pfmon, the former

works at a higher level. With some knowledge
about how the kernel operates, q-syscollect can
collect call-graphs, function call counts, and
percentage of time spent in particular routines.
In other words, pfmon can tell us how much
time the CPU spends stalled on d-cache misses
and q-syscollect can give us the call-graph for
the worst offenders.

Updated versions of this paper will be avail-
able from http://iou.parisc-linux.

org/ols2004/

1 Introduction

Improving the performance of IO drivers is re-
ally not that easy. It usually goes something
like:

1. Determine which workload is relevant

2. Set up the test environment

3. Collect metrics

4. Analyze the metrics

5. Change the code based on theories about
the metrics

6. Iterate on Collect metrics

This paper attempts to make the collect-
analyze-change loop more efficient for three
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obvious things: MMIO reads, MMIO writes,
and cache line misses.

MMIO reads and writes are easier to locate in
Linux code than for other OSs which support
memory-mapped IO—just search forreadl()
andwritel() calls. Butpfmon [1] can provide
statistics of actual behavior and not just where
in the code MMIO space is touched.

Cache line misses are hard to detect. None
of the regular performance tools I’ve used
can precisely tell where CPU stalls are taking
place. We can guess some of them based on
data usage—like spin locks ping-ponging be-
tween CPUs. This requires a level of under-
standing that most of us mere mortals don’t
possess. Again,pfmon can help out here.

Lastly, getting an overview of system perfor-
mance and getting run-time call graph usually
requires compiler support that gcc doesn’t pro-
vide. q-tools[4] can provide that information.
Driver writers can then manually adjust the
code knowing where the “hot spots” are.

1.1 pfmon

The author ofpfmon , Stephane Eranian [2],
describespfmon as “the performance tool
for IA64-Linux which exploits all the features
of the IA-64 Performance Monitoring Unit
(PMU).” pfmon uses a command line inter-
face and does not require any special privilege
to run. pfmon can monitor a single process, a
multi-threaded process, multi-processes work-
loads and the entire system.

pfmon is the user command line interface to
the kernel perfmon subsystem. perfmon does
the ugly work of programming the PMU. Perf-
mon is versioned separately frompfmon com-
mand. When in doubt, use the perfmon in the
latest 2.6 kernel.

There are two major types of measurements:

counting and sampling. For counting,pfmon
simply reports the number of occurrences of
the desired events during the monitoring pe-
riod. pfmon can also be configured to sample
at certain intervals information about the exe-
cution of a command or for the entire system.
It is possible to sample any events provided by
the underlying PMU.

The information recorded by the PMU depends
on what the user wants.pfmon contains a few
preset measurements but for the most part the
user is free to set up custom measurements.
On Itanium2,pfmon provides access to all the
PMU advanced features such as opcode match-
ing, range restrictions, the Event Address Reg-
isters (EAR) and the Branch Trace Buffer.

1.2 pfmon command line options

Here is a summary of command line options
used in the examples later in this paper:

–us-c use the US-style comma separator for
large numbers.

–cpu-list=0 bind pfmon to CPU 0 and only
count on CPU 0

–pin-command bind the command at the end
of the command line to the same CPU as
pfmon .

–resolve-addr look up addresses and print the
symbols

–long-smpl-periods=2000take a sample of
every 2000th event.

–smpl-periods-random=0xfff:10 randomize
the sampling period. This is necessary
to avoid bias when sampling repetitive
behaviors. The first value is the mask
of bits to randomize (e.g., 0xfff) and the
second value is initial seed (e.g., 10).

-k kernel only.
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–system-widemeasure the entire system (all
processes and kernel)

Parameters only available on a to-be-released
pfmon v3.1:

–smpl-module=dear-hist-itanium2 This par-
ticular module is to be used ONLY in
conjunction with the Data EAR (Event
Address Registers) and presents recorded
samples as histograms about the cache
misses. By default, the information is pre-
sented in the instruction view but it is pos-
sible to get the data view of the misses
also.

-e data_ear_cache_lat64pseudo event for
memory loads with latency≥ 64 cy-
cles. The real event isDATA_EAR_EVENT

(counts the number of times Data EAR
has recorded something) and the pseudo
event expresses the latency filter for the
event. Use “pfmon -ldata_ear_
cache* ” to list all valid values. Valid
values with McKinley CPU are powers of
two (4 – 4096).

1.3 q-tools

The author of q-tools, David Mosberger [5],
has described q-tools as “gprof without the
pain.”

q-tools package containsq-syscollect ,
q-view , qprof , and q-dot .
q-syscollect collects profile infor-
mation using kernel perfmon subsystem to
sample the PMU.q-view will present the
data collected in both flat-profile and call
graph form. q-dot displays the call-graph
in graphical form. Please see theqprof [6]
website for details onqprof .

q-syscollect depends on the kernel perf-
mon subsystem which is included in all 2.6

Linux kernels. Becauseq-syscollect uses
the PMU, it has the following advantages over
other tools:

• no special kernel support needed (besides
perfmon subsystem).

• provides call-graph of kernel functions

• can collect call-graphs of the kernel while
interrupts are blocked.

• measures multi-threaded applications

• data is collected per-CPU and can be
merged

• instruction level granularity (not bundles)

2 Measuring MMIO Reads

Nearly every driver uses MMIO reads to ei-
ther flush MMIO writes, flush in-flight DMA,
or (most obviously) collect status data from the
IO device directly. While use of MMIO read is
necessary in most cases, it should be avoided
where possible.

2.1 Why worry about MMIO Reads?

MMIO reads are expensive—how expensive
depends on speed of the IO bus, the number
bridges the read (and its corresponding read re-
turn) has to cross, how “busy” each bus is, and
finally how quickly the device responds to the
read request. On most architectures, one can
precisely measure the cost by measuring a loop
of MMIO reads and callingget_cycles()
before/after the loop.

I’ve measured anywhere from 1µs to 2µs per
read. In practical terms:

• ∼ 500–600 cycles on an otherwise-idle
400 MHz PA-RISC machine.
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• ∼ 1000 cycles on a 450 MHz Pentium ma-
chine which included crossing a PCI-PCI
bridge.

• ∼ 900–1000 cycles on a 800 MHz IA64
HP ZX1 machine.

And for those who still don’t believe me, try
watching a DVD movie after turning DMA off
for an IDE DVD player:

hdparm -d 0 /dev/cdrom

By switching the IDE controller to use PIO
(Programmed I/O) mode, all data will be trans-
ferred to/from host memory under CPU con-
trol, byte (or word) at a time.pfmon can mea-
sure this. Andpfmon looks broken when it
displays three and four digit “Average Cycles
Per Instruction” (CPI) output.

2.2 Eh? Memory Reads don’t stall?

They do. But the CPU and PMU don’t “real-
ize” the stall until the next memory reference.
The CPU continues execution until memory or-
der is enforced by the acquire semantics in the
MMIO read. This means theData Event Ad-
dress Registers record the next stalled mem-
ory reference due to memory ordering con-
straints, not the MMIO read . One has to look
at the instruction stream carefully to determine
which instruction actually caused the stall.

This also means the following sequence
doesn’t work exactly like we expect:

writel(CMD,addr);
readl(addr);
udelay(1);
y = buf->member;

The problem is the value returned by
read(x) is never consumed. Memory

ordering imposes no constraint on non-
load/store instructions. Henceudelay(1)
begins before the CPU stalls. The CPU will
stall on buf->member because of memory
ordering restrictions if theudelay(1) com-
pletes beforereadl(x) is retired. Drop the
udelay(1) call andpfmon will always see
the stall caused by MMIO reads on the next
memory reference.

Unfortunately, the IA32 Software Developer’s
Manual[3] Volume 3, Chapter 7.2 “MEMORY
ORDERING” is silent on the issue of how
MMIO (uncached accesses) will (or will not)
stall the instruction stream. This document
is very clear on how “IO Operations” (e.g.,
IN/OUT) will stall the instruction pipeline until
the read return arrives at the CPU. A direct re-
sponse from Intel(R) indicatedreadl() does
not stall like IN or OUT do and IA32 has the
same problem. The Intel® architect who re-
sponded did hedge the above statement claim-
ing a “udelay(10) will be as close as expected”
for an example similar to mine. Anyone who
has access to a frontside bus analyzer can ver-
ify the above statement by measuring timing
loops between uncached accesses. I’m not that
privileged and have to trust Intel® in this case.

For IA64, we considered putting an extra bur-
den onudelay to stall the instruction stream
until previous memory references were retired.
We could use dummy loads/stores before and
after the actual delay loop so memory ordering
could be used to stall the instruction pipeline.
That seemed excessive for something that we
didn’t have a bug report for.

Consensus was addingmf.a (memory fence)
instruction toreadl() should be sufficient.
The architecture only requiresmf.a serve as
an ordering token and need not cause any de-
lays of its own. In other words, the imple-
mentation is platform specific.mf.a has not
been added toreadl() yet because every-
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thing was working without so far.

2.3 pfmon -e uc_loads_retired

IO accesses are generally the only uncached
references made on IA64-linux and normally
will represent MMIO reads. The basic mea-
surement will tell us roughly how many cycles
the CPU stalls for MMIO reads. Get the num-
ber of MMIO reads per sample period and then
multiply by the actual cycle counts a MMIO
read takes for the given device. One needs to
measure MMIO read cost by using a CPU in-
ternal cycle counter and hacking the kernel to
read a harmless address from the target device
a few thousand times.

In order to make statements about per trans-
action or per interrupt, we need to know
the cumulative number of transactions or
interrupts processed for the sample period.
pktgen is straightforward in this regard since
pktgen will print transaction statistics when
a run is terminated. And one can record
/proc/interrupts contents before and
after eachpfmon run to collect interrupt
events as well.

Drawbacks to the above are one assumes a ho-
mogeneous driver environment; i.e., only one
type of driver is under load during the test. I
think that’s a fair assumption for development
in most cases. Bridges (e.g., routing traffic
across different interconnects) are probably the
one case it’s not true. One has to work a bit
harder to figure out what the counts mean in
that case.

For other benchmarks, like SpecWeb, we want
to grab/proc/interrupt and networking
stats before/afterpfmon runs.

2.4 tg3 Memory Reads

In summary, Figure 1 shows tg3 is do-
ing 2749675/(1834959 − 918505) ≈ 3
MMIO reads per interrupt and averaging about
5000000/(1834959 − 918505) ≈ 5 packets
per interrupt. This is with the BCM5701 chip
running in PCI mode at 66MHz:64-bit.

Based on code inspection, here is a break down
of where the MMIO reads occur in temporal
order:

1. tg3_interrupt() flushes MMIO
write toMAILBOX_INTERRUPT_0

2. tg3_poll() → tg3_enable_
ints() → tw32(TG3PCI_MISC_
HOST_CTRL)

3. tg3_enable_ints() flushes MMIO
write to MAILBOX_INTERRUPT_0

It’s obvious when inspectingtw32() , the
BCM5701 chip has a serious bug. Every call
to tw32() on BCM5701 requires a MMIO
read to follow the MMIO write. Only writes to
mailbox registers don’t require this and a dif-
ferent routine is used for mailbox writes.

Given the NIC was designed for zero MMIO
reads, this is pretty poor performance. Us-
ing a BCM5703 or BCM5704 would avoid the
MMIO read in tw32().

I’ve exchanged email with David Miller and
Jeff Garzik (tg3 driver maintainers). They have
valid concerns with portability. We agree tg3
could be reduced to one MMIO read after the
last MMIO write (to guarantee interrupts get
re-enabled).

One would need to use the “tag” field in the
status block when writing the mail box register
to indicate which “tag” the CPU most recently
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gsyprf3:~# pfmon -e uc_loads_retired -k --system-wide \
-- /usr/src/pktgen-testing/pktgen-single-tg3
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 918505 0 IO-SAPIC-level eth1
Result: OK: 7613693(c7613006+d687) usec, 5000000 (64byte) 656771pps 320Mb/sec
(336266752bps) errors: 0

57: 1834959 0 IO-SAPIC-level eth1
CPU0 2749675 UC_LOADS_RETIRED
CPU1 1175 UC_LOADS_RETIRED
}

Figure 1: tg3 v3.6 MMIO reads with pktgen/IRQ on same CPU

saw. Using Message Signaled Interrupts (MSI)
instead of Line based IRQs would guarantee
the most recent status block update (transferred
via DMA writes) would be visible to the CPU
beforetg3_interrupt() gets called.

The protocol would allow correct operation
without using MSI, too.

2.5 Benchmarking,pfmon , and CPU bindings

The purpose of bindingpktgen to CPU1 is
to verify the transmit code path is NOT doing
any MMIO reads. We split the transmit code
path and interrupt handler across CPUs to nar-
row down which code path is performing the
MMIO reads. This change is not obvious from
Figure 2 output since tg3 only performs MMIO
reads from CPU 0 (tg3_interrupt() ).

But in Figure 2, performance goes up 30%!
Offhand, I don’t know if this is due to CPU
utilization (pktgen andtg3_interrupt()
contending for CPU cycles) or if DMA is more
efficient because of cache-line flows. When I
don’t have any deadlines looming, I’d like to
determine the difference.

2.6 e1000 Memory Reads

e1000 version 5.2.52-k4 has a more efficient
implementation than tg3 driver. In a nut shell,
MMIO reads are pretty much irrelevant to the
pktgen workload with e1000 driver using de-
fault values.

Figure 3 shows e1000 performs
173315/(703829 − 622143) ≈ 2 MMIO
reads per interrupt and5000000/(703829 −
622143) ≈ 61 packets per interrupt.

Being the curious soul I am, I tracked down
the two MMIO reads anyway. One is in the in-
terrupt handler and the second when interrupts
are re-enabled. It looks like e1000 will always
need at least 2 MMIO reads per interrupt.

3 Measuring MMIO Writes

3.1 Why worry about MMIO Writes?

MMIO writes are clearly not as significant as
MMIO reads. Nonetheless, every time a driver
writes to MMIO space, some subtle things hap-
pen. There are four minor issues to think about:
memory ordering, PCI bus utilization, filling
outbound write queues, and stalling MMIO
reads longer than necessary.
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gsyprf3:~# pfmon -e uc_loads_retired -k --system-wide \
-- /usr/src/pktgen-testing/pktgen-single-tg3
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 5809687 0 IO-SAPIC-level eth1
Result: OK: 5914889(c5843865+d71024) usec, 5000000 (64byte) 845451pps 412Mb/se
c (432870912bps) errors: 0

57: 6427969 0 IO-SAPIC-level eth1
CPU0 1855253 UC_LOADS_RETIRED
CPU1 950 UC_LOADS_RETIRED

Figure 2: tg3 v3.6 MMIO reads with pktgen/IRQ on diff CPU

gsyprf3:~# pfmon -e uc_loads_retired -k --system-wide \
-- /usr/src/pktgen-testing/pktgen-single-e1000
Configuring devices
Running... ctrl^C to stop

59: 622143 0 IO-SAPIC-level eth3
Result: OK: 10228738(c9990105+d238633) usec, 5000000 (64byte) 488854pps 238Mb/
sec (250293248bps) errors: 81669

59: 703829 0 IO-SAPIC-level eth3
CPU0 173315 UC_LOADS_RETIRED
CPU1 1422 UC_LOADS_RETIRED

Figure 3: MMIO reads for e1000 v5.2.52-k4
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First, memory ordering is enforced since PCI
requires strong ordering of MMIO writes. This
means the MMIO write will push all previous
regular memory writes ahead. This is not a se-
rious issue but it can make a MMIO write take
longer.

MMIO writes are short transactions (i.e., much
less than a cache-line). The PCI bus setup time
to select the device, send the target address and
data, and disconnect measurably reduces PCI
bus utilization. It typically results in six or
more PCI bus cycles to send four (or eight)
bytes of data. On systems which strongly or-
der DMA Read Returns and MMIO Writes, the
latter will also interfere with DMA flows by in-
terrupting in-flight, outbound DMA.

If the IO bridge (e.g., PCI Bus controller) near-
est the CPU has a full write queue, the CPU
will stall. The bridge would normally queue
the MMIO write and then tell the CPU it’s
done. The chip designers normally make the
write queue deep enough so the CPU never
needs to stall. But drivers that perform many
MMIO writes (e.g., use door bells) and burst
many of MMIO writes at a time, could run into
a worst case.

The last concern, stalling MMIO reads longer
than normal, exists because of PCI ordering
rules. MMIO reads and MMIO writes are
strongly ordered. E.g., if four MMIO writes
are queued before a MMIO read, the read will
wait until all four MMIO write transactions
have completed. So instead of say 1000 CPU
cycles, the MMIO read might take more than
2000 CPU cycles on current platforms.

3.2 pfmon -e uc_stores_retired

pfmon counts MMIO Writes with no sur-
prises.

3.3 tg3 Memory Writes

Figure 4 shows tg3 does about 10M MMIO
writes to send 5M packets. However, we
can break the MMIO writes down into base
level (feed packets onto transmit queue) and
tg3_interrupt which handles TX (and
RX) completions. Knowing which code path
the MMIO writes are in helps track down us-
age in the source code.

Output in Figure 5 is after hacking the
pktgen-single-tg3 script to bind
pktgen kernel thread to CPU 1 when
eth1 is directing interrupts to CPU 0.
The distribution between TX queue setup
and interrupt handling is obvious now.
CPU 0 is handling interrupts and performs
3013580/(5803789 − 5201193) ≈ 5 MMIO
writes per interrupt. CPU 1 is handling TX
setup and performs5000376/5000000 ≈ 1
MMIO write per packet.

Again, as noted in section 2.5, binding pktgen
thread to one CPU and interrupts to another,
changes the performance dramatically.

3.4 e1000 Memory Writes

Figure 6 shows 248891/(991082 −
908366) ≈ 3 MMIO writes per inter-
rupt and5001303/5000000 ≈ 1 MMIO write
per packet. In other words, slightly better than
tg3 driver. Nonetheless, the hardware can’t
push as many packets. One difference is the
e1000 driver is pushing data to a NIC behind a
PCI-PCI Bridge.

Figure 7 shows a≈40% improvement in
throughput1 for pktgen without a PCI-PCI
Bridge in the way. Note the ratios of MMIO
writes per interrupt and MMIO writes per

1This demonstrates how the distance between the IO
device and CPU (and memory) directly translates into
latency and performance.
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gsyprf3:~# pfmon -e uc_stores_retired -k --system-wide -- /usr/src/pktgen-test
ing/pktgen-single-tg3
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 4284466 0 IO-SAPIC-level eth1
Result: OK: 7611689(c7610900+d789) usec, 5000000 (64byte) 656943pps 320Mb/sec
(336354816bps) errors: 0

57: 5198436 0 IO-SAPIC-level eth1
CPU0 9570269 UC_STORES_RETIRED
CPU1 445 UC_STORES_RETIRED

Figure 4: tg3 v3.6 MMIO writes

gsyprf3:~# pfmon -e uc_stores_retired -k --system-wide -- /usr/src/
pktgen-testing/pktgen-single-tg3
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 5201193 0 IO-SAPIC-level eth1
Result: OK: 5880249(c5811180+d69069) usec, 5000000 (64byte) 850340pps 415Mb
/sec (435374080bps) errors: 0

57: 5803789 0 IO-SAPIC-level eth1
CPU0 3013580 UC_STORES_RETIRED
CPU1 5000376 UC_STORES_RETIRED

Figure 5: tg3 v3.6 MMIO writes with pktgen/IRQ split across CPUs

gsyprf3:~# pfmon -e uc_stores_retired -k --system-wide -- /usr/src/
pktgen-testing/pktgen-single-e1000
Running... ctrl^C to stop

59: 908366 0 IO-SAPIC-level eth3
Result: OK: 10340222(c10104719+d235503) usec, 5000000 (64byte) 483558pps 236Mb
/sec (247581696bps) errors: 82675

59: 991082 0 IO-SAPIC-level eth3
CPU0 248891 UC_STORES_RETIRED
CPU1 5001303 UC_STORES_RETIRED

Figure 6: MMIO writes for e1000 v5.2.52-k4

gsyprf3:~# pfmon -e uc_stores_retired -k --system-wide -- /usr/src/pktgen-test
ing/pktgen-single-e1000
Running... ctrl^C to stop

71: 3 0 IO-SAPIC-level eth7
Result: OK: 7491358(c7342756+d148602) usec, 5000000 (64byte) 667467pps 325Mb/s
ec (341743104bps) errors: 59870

71: 59907 0 IO-SAPIC-level eth7
CPU0 180406 UC_STORES_RETIRED
CPU1 5000939 UC_STORES_RETIRED

Figure 7: e1000 v5.2.52-k4 MMIO writes without PCI-PCI Bridge
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packet are the same. I doubt the MMIO
reads and MMIO writes are the limiting fac-
tors. More likely DMA access to memory
(and thus TX/RX descriptor rings) limits NIC
packet processing.

4 Measuring Cache-line Misses

The Event Address Registers2 (EAR) can only
record one event at a time. What is so interest-
ing about them is that they record precise infor-
mation about data cache misses. For instance
for a data cache miss, you get the:

• address of the instruction, likely a load

• address of the target data

• latency in cycles to resolve the miss

The information pinpoints the source of the
miss, not the consequence (i.e., the stall).

The Data EAR (DEAR) can also tell us about
MMIO reads via sampling. The DEAR can
only record loads that miss, not stores. Of
course, MMIO reads always miss because they
are uncached. This is interesting if we want to
track down which MMIO addresses are “hot.”
It’s usually easier to track down usage in source
code knowing which MMIO address is refer-
enced.

Collecting with DEAR sampling requires two
parameters be tweaked to statistically improve
the samples. One is the frequency at which
Data Addresses are recorded and the other is
the threshold (how many CPU cycles latency).

Because we know the latency to L3 is about
21 cycles, setting the EAR threshold to a value
higher (e.g., 64 cycles) ensures only the load

2pfmon v3.1 is the first version to support EAR
and is expected to be available in August, 2004.

misses accessing main memory will be cap-
tured. This is how to select which level of
cacheline misses one samples.

While high threshholds (e.g., 64 cycles) will
show us where the longest delays occur, it will
not show us the worst offenders. Doing a sec-
ond run with a lower threshold (e.g., 4 cycles)
shows all L1, L2, and L3 cache misses and pro-
vides a much broader picture of cache utiliza-
tion.

When sampling events with low threshholds,
we will get saturated with events and need to
reduce the number of events actually sampled
to every 5000th. The appropriate value will
depend on the workload and how patient one
is. The workload needs to be run long enough
to be statistically significant and the sampling
period needs to be high enough to not signifi-
cantly perturb the workload.

4.1 tg3 Data Cache misses > 64 cycles

For the output in Figure 8, I’ve iteratively de-
creased the smpl-periods until I noticed the to-
tal pktgen throughput starting to drop. Fig-
ure 8 output only shows the tg3 interrupt code
path sincepfmon is bound to CPU 0. Nor-
mally, it would be useful to run this again with
cpu-list=1 . We could then see what the
TX code path and pktgen are doing.

Also, the pin-command option in
this example doesn’t do anything since
pktgen-single-tg3 directs a pktgen
kernel thread bound CPU 1 to do the real
work. I’ve included the option only to make
people aware of it.

4.2 tg3 Data Cache misses > 4 cycles

Figure 9 puts thelat64 output in Figure 8
into better perspective. It shows tg3 is spending
more time for L1 and L2 misses than L3 misses
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gsyprf3:~# pfmon31 --us-c --cpu-list=0 --pin-command --resolve-addr \
--smpl-module=dear-hist-itanium2 \
-e data_ear_cache_lat64 --long-smpl-periods=500 \
--smpl-periods-random=0xfff:10 --system-wide \
-k -- /usr/src/pktgen-testing/pktgen-single-tg3

added event set 0
only kernel symbols are resolved in system-wide mode
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 7209769 0 IO-SAPIC-level eth1
Result: OK: 5915877(c5845032+d70845) usec, 5000000 (64byte) 845308pps 412Mb/sec
(432797696bps) errors: 0

57: 7827812 0 IO-SAPIC-level eth1
# total_samples 672
# instruction addr view
# sorted by count
# showing per per distinct value
# %L2 : percentage of L1 misses that hit L2
# %L3 : percentage of L1 misses that hit L3
# %RAM : percentage of L1 misses that hit memory
# L2 : 5 cycles load latency
# L3 : 12 cycles load latency
# sampling period: 500
#count %self %cum %L2 %L3 %RAM instruction addr

38 5.65% 5.65% 0.00% 0.00% 100.00% 0xa000000100009141 ia64_spinlock_contention
+0x21<kernel>

36 5.36% 11.01% 0.00% 0.00% 100.00% 0xa00000020003e580 tg3_interrupt[tg3]+0xe0<kernel>
32 4.76% 15.77% 0.00% 0.00% 100.00% 0xa000000200034770 tg3_write_indirect_reg32[tg3]

+0x90<kernel>
32 4.76% 20.54% 0.00% 0.00% 100.00% 0xa00000020003e640 tg3_interrupt[tg3]+0x1a0<kernel>
30 4.46% 25.00% 0.00% 0.00% 100.00% 0xa000000200034e91 tg3_enable_ints[tg3]+0x91<kernel>
29 4.32% 29.32% 0.00% 0.00% 100.00% 0xa00000020003e510 tg3_interrupt[tg3]+0x70<kernel>
28 4.17% 33.48% 0.00% 0.00% 100.00% 0xa00000020003d1a0 tg3_tx[tg3]+0x2e0<kernel>
27 4.02% 37.50% 0.00% 0.00% 100.00% 0xa00000020003cfa0 tg3_tx[tg3]+0xe0<kernel>
24 3.57% 41.07% 0.00% 0.00% 100.00% 0xa00000020003cfd1 tg3_tx[tg3]+0x111<kernel>
21 3.12% 44.20% 0.00% 0.00% 100.00% 0xa000000200034e60 tg3_enable_ints[tg3]+0x60<kernel>

.

.

.
# level 0 : counts=0 avg_cycles=0.0ms 0.00%
# level 1 : counts=0 avg_cycles=0.0ms 0.00%
# level 2 : counts=672 avg_cycles=0.0ms 100.00%
approx cost: 0.0s

Figure 8: tg3 v3.6 lat64 output
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gsyprf3:~# pfmon31 --us-c --cpu-list=0 --resolve-addr --smpl-module=dear-hist-itanium2 \
-e data_ear_cache_lat4 --long-smpl-periods=5000 --smpl-periods-random=0xfff:10 \
--system-wide -k -- /usr/src/pktgen-testing/pktgen-single-tg3
added event set 0
only kernel symbols are resolved in system-wide mode
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 8484552 0 IO-SAPIC-level eth1
Result: OK: 5938001(c5866437+d71564) usec, 5000000 (64byte) 842034pps 411Mb/sec

(431121408bps) errors: 0
57: 9093642 0 IO-SAPIC-level eth1

# total_samples 795
# instruction addr view
# sorted by count
# showing per per distinct value
# %L2 : percentage of L1 misses that hit L2
# %L3 : percentage of L1 misses that hit L3
# %RAM : percentage of L1 misses that hit memory
# L2 : 5 cycles load latency
# L3 : 12 cycles load latency
# sampling period: 5000
# #count %self %cum %L2 %L3 %RAM instruction addr

95 11.95% 11.95% 0.00% 98.95% 1.05% 0xa00000020003d150 tg3_tx[tg3]+0x290<kernel>
83 10.44% 22.39% 93.98% 4.82% 1.20% 0xa00000020003d030 tg3_tx[tg3]+0x170<kernel>
21 2.64% 25.03% 0.00% 95.24% 4.76% 0xa0000001000180f0 ia64_handle_irq+0x170<kernel>
20 2.52% 27.55% 5.00% 80.00% 15.00% 0xa00000020003d040 tg3_tx[tg3]+0x180<kernel>
18 2.26% 29.81% 50.00% 11.11% 38.89% 0xa00000020003cfa0 tg3_tx[tg3]+0xe0<kernel>
17 2.14% 31.95% 0.00% 0.00% 100.00% 0xa00000020003e671 tg3_interrupt[tg3]

+0x1d1<kernel>
17 2.14% 34.09% 0.00% 100.00% 0.00% 0xa00000020003e700 tg3_interrupt[tg3]

+0x260<kernel>
16 2.01% 36.10% 56.25% 43.75% 0.00% 0xa000000100012160 ia64_leave_kernel

+0x180<kernel>
16 2.01% 38.11% 62.50% 0.00% 37.50% 0xa00000020003cf60 tg3_tx[tg3]+0xa0<kernel>
15 1.89% 40.00% 86.67% 6.67% 6.67% 0xa00000020003cfd0 tg3_tx[tg3]+0x110<kernel>
15 1.89% 41.89% 0.00% 0.00% 100.00% 0xa000000100016041 do_IRQ+0x1a1<kernel>
15 1.89% 43.77% 0.00% 53.33% 46.67% 0xa00000020003e370 tg3_poll[tg3]+0x350<kernel>
.
.
.

# level 0 : counts=226 avg_cycles=0.0ms 28.43%
# level 1 : counts=264 avg_cycles=0.0ms 33.21%
# level 2 : counts=305 avg_cycles=0.0ms 38.36%
approx cost: 0.0s

Figure 9: tg3 v3.6 lat4 output
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and in only two locations. Adding one prefetch
to pull data from L3 into L2 would help for the
top offender. One needs to figure out which bit
of data each recorded access refers to and de-
termine how early one can prefetch that data.

We can also rule out MMIO accesses as the top
culprit. tg3_interrupt+0x1d1 could be
an MMIO read but it doesn’t show up in Fig-
ure 8 like tg3_write_indirect_reg32
does.

Note smpl-periods is 10x higher in Fig-
ure 9 than in Figure 8. Collecting 10x more
samples with lat4 definitely disturbs the
workload.

5 q-tools

q-syscollect and q-view are trivial to
use. An example and brief explanation for ker-
nel usage follow.

Please remember most applications spend most
of the time in user space and not in the kernel.
q-tools is especially good in user space.

5.1 q-syscollect

q-syscollect -c 5000 -C 5000 -t
20 -k

This will collect system wide kernel data dur-
ing the 20 second period. Twenty to thrity sec-
onds is usually long enough to get sufficient ac-
curacy3. However, if the workload generates
a very wide call graph with even distribution,
one will likely need to sample for longer peri-
ods to get accuracy in the±1% range. When
in doubt, try sampling for longer periods to see
if the call-counts change significantly.

3See Page 7 of the David Mosberger’s Gelato talk
[4] for a nice graph on accuracy whichonly applies to
his example.

The -c and -C set the call sample rate and
code sample rate respectively. The call sam-
ple rate is used to collect function call counts.
This is one of the key differences compared to
traditional profiling tools: q-syscollect obtains
call-counts in a statistical fashion, just as has
been done traditionally for the execution-time
profile. The code sample rate is used to collect
a flat profile (CPU_CYCLESby default).

The -e option allows one to change the event
used to sample for the flat profile. The default
is to sample CPU_CYCLES event. This pro-
vides traditional execution time in the flat pro-
file.

The data is stored in the current directory under
.q/ directory. The next section demonstrates
howq-view displays the data.

5.2 q-view

I was running the netperf [7] TCP_RR test in
the background to another server when I col-
lected the following data. As Figure 10 shows,
this particular TCP_RR test isn’t costing many
cycles in tg3 driver. Or, at least not ones I can
measure.

tg3_interrupt() shows up in the flat pro-
file with 0.314 seconds time associated with
it. The time measurement is only possible
becausehandle_IRQ_event() re-enables
interrupts if the IRQ handler is not regis-
tered with SA_INTERRUPT(to indicate la-
tency sensitive IRQ handler).do_IRQ() and
other functions in that same call graph do NOT
have any time measurements because inter-
rupts are disabled. As noted before, the call-
graph is sampled using a different part of the
PMU than the part which samples the flat pro-
file.

Lastly, I’ve omitted the trailing output of
q-view which explains the fields and
columns more completely. Read that first be-
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gsyprf3:~# q-view .q/kernel-cpu0.info | more
Flat profile of CPU_CYCLES in kernel-cpu0.hist#0:

Each histogram sample counts as 200.510u seconds
% time self cumul calls self/call tot/call name

68.88 13.41 13.41 215k 62.5u 62.5u default_idle
2.90 0.56 13.97 431k 1.31u 1.31u finish_task_switch
2.50 0.49 14.46 233k 2.09u 4.89u tg3_poll
1.77 0.35 14.80 1.38M 251n 268n ipt_do_table
1.61 0.31 15.12 240k 1.31u 1.31u tg3_interrupt
1.51 0.29 15.41 240k 1.22u 5.95u net_rx_action
.
.
.

Call-graph table:
index %time self children called name

<spontaneous>
[176] 69.4 30.5m 13.4 - cpu_idle

29.5m 0.285 231k/457k schedule [164]
10.0m 0.00 244k/244k check_pgt_cache [178]

13.4 0.00 215k/215k default_idle [177]
----------------------------------------------------

.

.

.
----------------------------------------------------

0.293 1.14 240k __do_softirq [40]
[56] 7.4 0.293 1.14 240k net_rx_action

0.487 0.649 233k/233k tg3_poll [57]
----------------------------------------------------

0.487 0.649 233k net_rx_action [56]
[57] 5.9 0.487 0.649 233k tg3_poll

- 0.00 229k/229k tg3_enable_ints [133]
97.7m 0.552 225k/225k tg3_rx [61]

- 0.00 227k/227k tg3_tx [58]
----------------------------------------------------

.

.

.
----------------------------------------------------

- 1.88 348k ia64_leave_kernel [10]
[11] 9.7 - 1.88 348k ia64_handle_irq

- 1.52 239k/240k do_softirq [39]
- 0.367 356k/356k do_IRQ [12]

----------------------------------------------------
.
.
.

Figure 10:q-view output for TCP_RR over tg3 v3.6
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fore going through the rest of the output.

6 Conclusion

6.1 More pfmon examples

CPU L2 cache misses in one kernel function
pfmon --verb -k \
--irange=sba_alloc_range \
-el2_misses --system-wide \
--session-timeout=10
Show all L2 cache misses in
sba_alloc_range . This is interesting
since sba_alloc_range() walks
a bitmap to look for “free” resources.
One can instead specify-el3_misses
since L3 cache misses are much more
expensive.

CPU 1 memory loads
pfmon --us-c \
--cpu-list=1 \
-e loads_retired \
-k --system-wide \
-- /tmp/pktgen-single Only
count memory loads on CPU 1. This is
useful for when we can bind the interrupt
to CPU 1 and the workload to a different
CPU. This lets us separate interrupt path
from base level code, i.e., when is the
load happening (before or after DMA
occurred) and which code path should
one be looking more closely at.

List EAR events supported pfmon -lear
List all EAR types supported bypfmon 4.

More info on Event pfmon -i DATA_EAR_

TLB_ALL pfmon can provide more info
on particular events it supports.

4EAR isn’t supported untilpfmon v3.1

6.2 And thanks to. . .

Special thanks to Stephane Eranian [2] for ded-
icating so much time to the perfmon kernel
driver and associated tools. People might think
the PMU does it all—but only with a lot of SW
driving it. His review of this paper caught some
good bloopers. This talk only happened be-
cause I sit across the aisle from him and could
pester him regularly.

Thanks to David Mosberger[5] for putting to-
gether q-tools and making it so trivial to use.

In addition, in no particular order:
Christophe de Dinechin, Bjorn Helgaas,
Matthew Wilcox, Andrew Patterson, Al Stone,
Asit Mallick, and James Bottomley for review-
ing this document or providing technical guid-
ance.

Thanks also to the OLS staff for making this
event happen every year.

My apologies if I omitted other contributors.
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