
The (Re)Architecture of the X Window System

James Gettys
jim.gettys@hp.com

Keith Packard
keithp@keithp.com

HP Cambridge Research Laboratory

Abstract

The X Window System, Version 11, is the stan-
dard window system on Linux and UNIX sys-
tems. X11, designed in 1987, was “state of
the art” at that time. From its inception, X has
been a network transparent window system in
which X client applications can run on any ma-
chine in a network using an X server running
on any display. While there have been some
significant extensions to X over its history (e.g.
OpenGL support), X’s design lay fallow over
much of the 1990’s. With the increasing inter-
est in open source systems, it was no longer
sufficient for modern applications and a sig-
nificant overhaul is now well underway. This
paper describes revisions to the architecture of
the window system used in a growing fraction
of desktops and embedded systems

1 Introduction

While part of this work on the X window sys-
tem [SG92] is “good citizenship” required by
open source, some of the architectural prob-
lems solved ease the ability of open source ap-
plications to print their results, and some of
the techniques developed are believed to be in
advance of the commercial computer industry.
The challenges being faced include:

• X’s fundamentally flawed font architec-

ture made it difficult to implement good
WYSIWYG systems

• Inadequate 2D graphics, which had al-
ways been intended to be augmented
and/or replaced

• Developers are loathe to adopt any new
technology that limits the distribution of
their applications

• Legal requirements for accessibility for
screen magnifiers are difficult to imple-
ment

• Users desire modern user interface eye
candy, which sport translucent graphics
and windows, drop shadows, etc.

• Full integration of applications into 3 D
environments

• Collaborative shared use of X (e.g. multi-
ple simultaneous use of projector walls or
other shared applications)

While some of this work has been published
elsewhere, there has never been any overview
paper describing this work as an integrated
whole, and the compositing manager work de-
scribed below is novel as of fall 2003. This
work represents a long term effort that started
in 1999, and will continue for several years
more.



228 • Linux Symposium 2004 • Volume One

2 Text and Graphics

X’s obsolete 2D bit-blit based text and graph-
ics system problems were most urgent. The de-
velopment of the Gnome and KDE GUI envi-
ronments in the period 1997-2000 had shown
X11’s fundamental soundness, but confirmed
the authors’ belief that the rendering system in
X was woefully inadequate. One of us par-
ticipated in the original X11 design meetings
where the intent was to augment the rendering
design at a later date; but the “GUI Wars” of the
late 1980’s doomed effort in this area. Good
printing support has been particularly difficult
to implement in X applications, as fonts have
were opaque X server side objects not directly
accessible by applications.

Most applications now composite images in
sophisticated ways, whether it be in Flash me-
dia players, or subtly as part of anti-aliased
characters. Bit-Blit is not sufficient for these
applications, and these modern applications
were (if only by their use of modern toolk-
its) all resorting to pixel based image manip-
ulation. The screen pixels are retrieved from
the window system, composited in clients, and
then restored to the screen, rather than directly
composited in hardware, resulting in poor per-
formance. Inspired by the model first imple-
mented in the Plan 9 window system, a graph-
ics model based on Porter/Duff [PD84] image
compositing was chosen. This work resulted in
the X Render extension [Pac01a].

X11’s core graphics exposed fonts as a server
side abstraction. This font model was, at best,
marginally adequate by 1987 standards. Even
WYSIWYG systems of that era found them in-
sufficient. Much additional information em-
bedded in fonts (e.g. kerning tables) were not
available from X whatsoever. Current com-
petitive systems implement anti-aliased outline
fonts. Discovering the Unicode coverage of a
font, required by current toolkits for interna-

tionalization, was causing major performance
problems. Deploying new server side font
technology is slow, as X is a distributed sys-
tem, and many X servers are seldom (or never)
updated.

Therefore, a more fundamental change in X’s
architecture was undertaken: to no longer use
server side fonts at all, but to allow applications
direct access to font files and have the window
system cache and composite glyphs onto the
screen.

The first implementation of the new font sys-
tem [Pac01b] taught a vital lesson. Xft1
provided anti-aliased text and proper font
naming/substitution support, but reverted to
the core X11 bitmap fonts if the Render
extension was not present. Xft1 included
the first implementation what is called “sub-
pixel decimation,” which provides higher qual-
ity subpixel based rendering than Microsoft’s
ClearType [Pla00] technology in a completely
general algorithm.

Despite these advances, Xft1 received at best
a lukewarm reception. If an application devel-
oper wanted anti-aliased text universally, Xft1
did not help them, since it relied on the Render
extension which had not yet been widely de-
ployed; instead, the developer would be faced
with two implementations, and higher mainte-
nance costs. This (in retrospect obvious) ratio-
nal behavior of application developers shows
the high importance of backwards compatibil-
ity; X extensions intended for application de-
velopers’ use must be designed in a down-
ward compatible form whenever possible, and
should enable a complete conversion to a new
facility, so that multiple code paths in appli-
cations do not need testing and maintenance.
These principles have guided later develop-
ment.

The font installation, naming, substitution,
and internationalization problems were sepa-



Linux Symposium 2004 • Volume One • 229

rated from Xft into a library named Fontcon-
fig [Pac02], (since some printer only appli-
cations need this functionality independent of
the window system.) Fontconfig provides in-
ternationalization features in advance of those
in commercial systems such as Windows or
OS X, and enables trivial font installation with
good performance even when using thousands
of fonts. Xft2 was also modified to operate
against legacy X servers lacking the Render ex-
tension.

Xft2 and Fontconfig’s solving of several ma-
jor problems and lack of deployment barriers
enabled rapid acceptance and deployment in
the open source community, seeing almost uni-
versal use and uptake in less than one calen-
dar year. They have been widely deployed on
Linux systems since the end of 2002. They also
“future proof” open source systems against
coming improvements in font systems (e.g.
OpenType), as the window system is no longer
a gating item for font technology.

Sun Microsystems implemented a server side
font extension over the last several years; for
the reasons outlined in this section, it has not
been adopted by open source developers.

While Xft2 and Fontconfig finally freed ap-
plication developers from the tyranny of
X11’s core font system, improved perfor-
mance [PG03], and at a stroke simplified their
printing problems, it has still left a substantial
burden on applications. The X11 core graph-
ics, even augmented by the Render extension,
lack convenient facilities for many applications
for even simple primitives like splines, tasteful
wide lines, stroking paths, etc, much less pro-
vide simple ways for applications to print the
results on paper.

3 Cairo

The Cairo library [WP03], developed by one of
the authors in conjunction with by Carl Worth
of ISI, is designed to solve this problem. Cairo
provides a state full user-level API with sup-
port for the PDF 1.4 imaging model. Cairo pro-
vides operations including stroking and filling
Bézier cubic splines, transforming and com-
positing translucent images, and anti-aliased
text rendering. The PostScript drawing model
has been adapted for use within applications.
Extensions needed to support much of the PDF
1.4 imaging operations have been included.
This integration of the familiar PostScript op-
erational model within the native application
language environments provides a simple and
powerful new tool for graphics application de-
velopment.

Cairo’s rendering algorithms use work done
in the 1980’s by Guibas, Ramshaw, and
Stolfi [GRS83] along with work by John
Hobby [Hob85], which has never been ex-
ploited in Postscript or in Windows. The im-
plementation is fast, precise, and numerically
stable, supports hardware acceleration, and is
in advance of commercial systems.

Of particular note is the current development of
Glitz [NR04], an OpenGL backend for Cairo,
being developed by a pair of master’s students
in Sweden. Not only is it showing that a high
speed implementation of Cairo is possible, it
implements an interface very similar to the X
Render extension’s interface. More about this
in the OpenGL section below.

Cairo is in the late stages of development and
is being widely adopted in the open source
community. It includes the ability to render
to Postscript and a PDF back end is planned,
which should greatly improve applications’
printing support. Work to incorporate Cairo in
the Gnome and KDE desktop environments is



230 • Linux Symposium 2004 • Volume One

well underway, as are ports to Windows and
Apple’s MacIntosh, and it is being used by the
Mono project. As with Xft2, Cairo works with
all X servers, even those without the Render
extension.

4 Accessibility and Eye-Candy

Several years ago, one of us implemented a
prototype X system that used image composit-
ing as the fundamental primitive for construct-
ing the screen representation of the window hi-
erarchy contents. Child window contents were
composited to their parent windows which
were incrementally composed to their parents
until the final screen image was formed, en-
abling translucent windows. The problem with
this simplistic model was twofold—first, a
naïve implementation consumed enormous re-
sources as each window required two com-
plete off screen buffers (one for the window
contents themselves, and one for the window
contents composited with the children) and
took huge amounts of time to build the final
screen image as it recursively composited win-
dows together. Secondly, the policy govern-
ing the compositing was hardwired into the X
server. An architecture for exposing the same
semantics with less overhead seemed almost
possible, and pieces of it were implemented
(miext/layer). However, no complete system
was fielded, and every copy of the code tracked
down and destroyed to prevent its escape into
the wild.

Both Mac OS X and DirectFB [Hun04] per-
form window-level compositing by creating
off-screen buffers for each top-level window
(in OS X, the window system is not nested,
so there are only top-level windows). The
screen image is then formed by taking the re-
sulting images and blending them together on
the screen. Without handling the nested win-
dow case, both of these systems provide the

desired functionality with a simple implemen-
tation. This simple approach is inadequate
for X as some desktop environments nest the
whole system inside a single top-level win-
dow to allow panning, and X’s long history
has shown the value of separating mechanism
from policy (Gnome and KDE were developed
over 10 years after X11’s design). The fix is
pretty easy—allow applications to select which
pieces of the window hierarchy are to be stored
off-screen and which are to be drawn to their
parent storage.

With window hierarchy contents stored in off-
screen buffers, an external application can now
control how the screen contents are constructed
from the constituent sub-windows and what-
ever other graphical elements are desired. This
eliminated the complexities surrounding pre-
cisely what semantics would be offered in
window-level compositing within the X server
and the design of the underlying X extensions.
They were replaced by some concerns over the
performance implications of using an external
agent (the “Compositing Manager”) to execute
the requests needed to present the screen im-
age. Note that every visible pixel is under the
control of the compositing manager, so screen
updates are limited to how fast that application
can get the bits painted to the screen.

The architecture is split across three new ex-
tensions:

• Composite, which controls which sub-
hierarchies within the window tree are
rendered to separate buffers.

• Damage, which tracks modified areas
with windows, informing the Composting
Manager which areas of the off-screen hi-
erarchy components have changed.

• Xfixes, which includes new Region ob-
jects permitting all of the above computa-
tion to be performed indirectly within the



Linux Symposium 2004 • Volume One • 231

X server, avoiding round trips.

Multiple applications can take advantage of the
off screen window contents, allowing thumb-
nail or screen magnifier applications to be in-
cluded in the desktop environment.

To allow applications other than the composit-
ing manager to present alpha-blended content
to the screen, a new X Visual was added to the
server. At 32 bits deep, it provides 8 bits of
red, green and blue along with 8 bits of alpha
value. Applications can create windows using
this visual and the compositing manager can
composite them onto the screen.

Nothing in this fundamental design indicates
that it is used for constructing translucent win-
dows; redirection of window contents and no-
tification of window content change seems
pretty far removed from one of the final goals.
But note the compositing manger can use what-
ever X requests it likes to paint the com-
bined image, including requests from the Ren-
der extension, which does know how to blend
translucent images together. The final image
is constructed programmatically so the possi-
ble presentation on the screen is limited only
by the fertile imagination of the numerous eye-
candy developers, and not restricted to any pol-
icy imposed by the base window system. And
vital to rapid deployment, most applications
can be completely oblivious to this background
legerdemain.

In this design, such sophisticated effects need
only be applied at frame update rates on only
modified sections of the screen rather than at
the rate applications perform graphics; this
constant behavior is highly desirable in sys-
tems.

There is very strong “pull” from both commer-
cial and non-commercial users of X for this
work and the current early version will likely
be shipped as part of the next X.org Foun-

dation X Window System release, sometime
this summer. Since there has not been suffi-
cient exposure through widespread use, further
changes will certainly be required further expe-
rience with the facilities are gained in a much
larger audience; as these can be made without
affecting existing applications, immediate de-
ployment is both possible and extremely desir-
able.

The mechanisms described above realize a fun-
damentally more interesting architecture than
either Windows or Mac OSX, where the com-
positing policy is hardwired into the window
system. We expect a fertile explosion of ex-
perimentation, experience (both good and bad),
and a winnowing of ideas as these facilities
gain wider exposure.

5 Input Transformation

In the “naïve,” eye-candy use of the new com-
positing functions, no transformation of input
events are required, as input to windows re-
mains at the same geometric position on the
screen, even though the windows are first ren-
dered off screen. More sophisticated use, for
example, screen readers or immersive environ-
ments such as Croquet [SRRK02], or Sun’s
Looking Glass [KJ04] requires transformation
of input events from where they first occur
on the visible screen to the actual position in
the windows (being rendered from off screen),
since the window’s contents may have been ar-
bitrarily transformed or even texture mapped
onto shapes on the screen.

As part of Sun Microsystem’s award winning
work on accessibility in open source for screen
readers, Sun has developed the XEvIE exten-
sion [Kre], which allows external clients to
transform input events. This looks like a good
starting point for the somewhat more general
problem that 3D systems pose, and with some



232 • Linux Symposium 2004 • Volume One

modification can serve both the accessibility
needs and those of more sophisticated applica-
tions.

6 Synchronization

Synchronization is probably the largest re-
maining challenge posed by compositing.
While composite has eliminated much flashing
of the screen since window exposure is elimi-
nated, this does not solve the challenge of the
compositing manager happening to copy an ap-
plication’s window to the frame buffer in the
middle of an application painting a sequence
of updates. No “tearing” of single graphics op-
erations take place since the X server is single
threaded, and all graphics operations are run to
completion.

The X Synchronization extension
(XSync) [GCGW92], widely available
but to date seldom used, provides a general set
of mechanisms for applications to synchronize
with each other, with real time, and potentially
with other system provided counters. XSync’s
original design intent intended system pro-
vided counters for vertical retrace interrupts,
audio sample clocks, and similar system
facilities, enabling very tight synchronization
of graphics operations with these time bases.
Work has begun on Linux to provide these
counters at long last, when available, to flesh
out the design originally put in place and tested
in the early 1990’s.

A possible design for solving the application
synchronization problem at low overhead may
be to mark sections of requests with incre-
ments of XSync counters: if the count is odd
(or even) the window would be unstable/stable.
The compositing manager might then copy the
window only if the window is in a stable state.
Some details and possibly extensions to XSync
will need to be worked out, if this approach is

pursued.

7 Next Steps

We believe we are slightly more than half way
through the process of rearchitecting and reim-
plementing the X Window System. The ex-
isting prototype needs to become a produc-
tion system requiring significant infrastructure
work as described in this section.

7.1 OpenGL based X

Current X-based systems which support
OpenGL do so by encapsulating the OpenGL
environment within X windows. As such,
an OpenGL application cannot manipulate X
objects with OpenGL drawing commands.

Using OpenGL as the basis for the X server it-
self will place X objects such as pixmaps and
off-screen window contents inside OpenGL
objects allowing applications to use the full
OpenGL command set to manipulate them.

A “proof of concept” of implementation of the
X Render extension is being done as part of
the Glitz back-end for Cairo, which is showing
very good performance for render based appli-
cations. Whether the “core” X graphics will re-
quire any OpenGL extensions is still somewhat
an open question.

In concert with the new compositing exten-
sions, conventional X applications can then be
integrated into 3D environments such as Cro-
quet, or Sun’s Looking Glass. X application
contents can be used as textures and mapped
onto any surface desired in those environments.

This work is underway, but not demonstrable
at this date.



Linux Symposium 2004 • Volume One • 233

7.2 Kernel support for graphics cards

In current open source systems, graphics cards
are supported in a manner totally unlike that
of any other operating system, and unlike pre-
vious device drivers for the X Window System
on commercial UNIX systems. There is no sin-
gle central kernel driver responsible for manag-
ing access to the hardware. Instead, a large set
of cooperating user and kernel mode systems
are involved in mutual support of the hardware,
including the X server (for 2D graphic), the
direct-rendering infrastructure (DRI) (for ac-
celerated 3D graphics), the kernel frame buffer
driver (for text console emulation), the Gen-
eral ATI TV and Overlay Software (GATOS)
(for video input and output) and alternate 2D
graphics systems like DirectFB.

Two of these systems, the kernel frame buffer
driver and the X server both include code to
configure the graphics card “video mode”—
the settings needed to send the correct video
signals to monitors connected to the card.
Three of these systems, DRI, the X server
and GATOS, all include code for managing
the memory space within the graphics card.
All of these systems directly manipulate hard-
ware registers without any coordination among
them.

The X server has no kernel component for
2D graphics. Long-latency operations cannot
use interrupts, instead the X server spins while
polling status registers. DMA is difficult or im-
possible to configure in this environment. Per-
haps the most egregious problem is that the
X server reconfigures the PCI bus to correct
BIOS mapping errors without informing the
operating system kernel. Kernel access to de-
vices while this remapping is going on may
find the related devices mismapped.

To rationalize this situation, various groups and
vendors are coordinating efforts to create a sin-

gle kernel-level entity responsible for basic de-
vice management, but this effort has just be-
gun.

7.3 Housecleaning and Latency Elimination
and Latency Hiding

Serious attempts were made in the early 1990’s
to multi-thread the X server itself, with the dis-
covery that the threading overhead in the X
server is a net performance loss [Smi92].

Applications, however, often need to be multi-
threaded. The primary C binding to the X pro-
tocol is called Xlib, and its current implemen-
tation by one of us dates from 1987. While it
was partially developed on a Firefly multipro-
cessor workstation of that era, something al-
most unheard of at that date, and some con-
sideration of multi-threaded applications were
taken in its implementation, its internal trans-
port facilities were never expected/intended to
be preserved when serious multi-threaded op-
erating systems became available. Unfortu-
nately, rather than a full rewrite as one of us ex-
pected, multi-threaded support was debugged
into existence using the original code base and
the resulting code is very bug-prone and hard to
maintain. Additionally, over the years, Xlib be-
came a “kitchen sink” library, including func-
tionality well beyond its primary use as a bind-
ing to the X protocol. We have both seri-
ously regretted the precedents both of us set
introducing extraneous functionality into Xlib,
causing it to be one of the largest libraries on
UNIX/Linux systems. Due to better facilities
in modern toolkits and system libraries, more
than half of Xlib’s current footprint is obsolete
code or data.

While serious work was done in X11’s design
to mitigate latency, X’s performance, particu-
larly over low speed networks, is often lim-
ited by round trip latency, and with retrospect
much more can be done [PG03]. As this



234 • Linux Symposium 2004 • Volume One

work shows, client side fonts have made a sig-
nificant improvement in startup latency, and
work has already been completed in toolkits
to mitigate some of the other hot spots. Much
of the latency can be retrieved by some sim-
ple techniques already underway, but some re-
quire more sophisticated techniques that the
current Xlib implementation is not capable of.
Potentially 90the latency as of 2003 can be
recovered by various techniques. The XCB
library [MS01] by Bart Massey and Jamey
Sharp is both carefully engineered to be mul-
tithreaded and to expose interfaces that will al-
low for latency hiding.

Since libraries linked against different basic
X transport systems would cause havoc in the
same address space, a Xlib compatibility layer
(XCL) has been developed that provides the
“traditional” X library API, using the original
Xlib stubs, but replacing the internal transport
and locking system, which will allow for much
more useful latency hiding interfaces. The
XCB/XCL version of Xlib is now able to run
essentially all applications, and after a shake-
down period, should be able to replace the ex-
isting Xlib transport soon. Other bindings than
the traditional Xlib bindings then become pos-
sible in the same address space, and we may
see toolkits adopt those bindings at substantial
savings in space.

7.4 Mobility, Collaboration, and Other Topics

X’s original intended environment included
highly mobile students, and a hope, never gen-
erally realized for X, was the migration of ap-
plications between X servers.

The user should be able to travel between sys-
tems running X and retrieve your running ap-
plications (with suitable authentication and au-
thorization). The user should be able to log out
and “park” applications somewhere for later
retrieval, either on the same display, or else-

where. Users should be able to replicate an
application’s display on a wall projector for
presentation. Applications should be able to
easily survive the loss of the X server (most
commonly caused by the loss of the underly-
ing TCP connection, when running remotely).

Toolkit implementers typically did not under-
stand and share this poorly enunciated vision
and were primarily driven by pressing imme-
diate needs, and X’s design and implemen-
tation made migration or replication difficult
to implement as an afterthought. As a re-
sult, migration (and replication) was seldom
implemented, and early toolkits such as Xt
made it even more difficult. Emacs is the only
widespread application capable of both migra-
tion and replication, and it avoided using any
toolkit. A more detailed description of this vi-
sion is available in [Get02].

Recent work in some of the modern toolkits
(e.g. GTK+) and evolution of X itself make
much of this vision demonstrable in current ap-
plications. Some work in the X infrastructure
(Xlib) is underway to enable the prototype in
GTK+ to be finished.

Similarly, input devices need to become full-
fledged network data sources, to enable much
looser coupling of keyboards, mice, game con-
soles and projectors and displays; the challenge
here will be the authentication, authorization
and security issues this will raise. The HAL
and DBUS projects hosted at freedesktop.org
are working on at least part of the solutions for
the user interface challenges posed by hotplug
of input devices.

7.5 Color Management

The existing color management facilities in
X are over 10 years old, have never seen
widespread use, and do not meet current needs.
This area is ripe for revisiting. Marti Maria Sa-



Linux Symposium 2004 • Volume One • 235

guer’s LittleCMS [Mar] may be of use here.
For the first time, we have the opportunity to
“get it right” from one end to the other if we
choose to make the investment.

7.6 Security and Authentication

Transport security has become an burning is-
sue; X is network transparent (applications can
run on any system in a network, using remote
displays), yet we dare no longer use X over the
network directly due to password grabbing kits
in the hands of script kiddies. SSH [BS01] pro-
vides such facilities via port forwarding and
is being used as a temporary stopgap. Ur-
gent work on something better is vital to en-
able scaling and avoid the performance and la-
tency issues introduced by transit of extra pro-
cesses, particularly on (Linux Terminal Server
Project (LTSP [McQ02]) servers, which are be-
ginning break out of their initial use in schools
and other non security sensitive environments
into very sensitive commercial environments.

Another aspect of security arises between ap-
plications sharing a display. In the early and
mid 1990’s efforts were made as a result of the
compartmented mode workstation projects to
make it much more difficult for applications to
share or steal data from each other on a X dis-
play. These facilities are very inflexible, and
have gone almost unused.

As projectors and other shared displays be-
come common over the next five years, appli-
cations from multiple users sharing a display
will become commonplace. In such environ-
ments, different people may be using the same
display at the same time and would like some
level of assurance that their application’s data
is not being grabbed by the other user’s appli-
cation.

Eamon Walsh has, as part of the SELinux
project [Wal04], been working to replace the

existing X Security extension with an exten-
sion that, as in SELinux, will allow multiple
different security policies to be developed ex-
ternal to the X server. This should allow multi-
ple different policies to be available to suit the
varied uses: normal workstations, secure work-
stations, shared displays in conference rooms,
etc.

7.7 Compression and Image Transport

Many/most modern applications and desktops,
including the most commonly used application
(a web browser) are now intensive users of syn-
thetic and natural images. The previous at-
tempt (XIE [SSF+96]) to provide compressed
image transport failed due to excessive com-
plexity and over ambition of the designers, has
never been significantly used, and is now in
fact not even shipped as part of current X dis-
tributions.

Today, many images are being read from disk
or the network in compressed form, uncom-
pressed into memory in the X client, moved
to the X server (where they often occupy an-
other copy of the uncompressed data). If we
add general data compression to X (or run X
over ssh with compression enabled) the data
would be both compressed and uncompressed
on its way to the X server. A simple replace-
ment for XIE (if the complexity slippery slope
can be avoided in a second attempt) would be
worthwhile, along with other general compres-
sion of the X protocol.

Results in our 2003 Usenix X Network Per-
formance paper show that, in real applica-
tion workloads (the startup of a Gnome desk-
top), using even simple GZIP [Gai93] style
compression can make a tremendous differ-
ence in a network environment, with a fac-
tor of 300(!) savings in bandwidth. Appar-
ently the synthetic images used in many cur-
rent UI’s are extremely good candidates for



236 • Linux Symposium 2004 • Volume One

compression. A simple X extension that could
encapsulate one or more X requests into the
extension request would avoid multiple com-
pression/uncompression of the same data in
the system where an image transport extension
was also present. The basic X protocol frame-
work is actually very byte efficient relative to
most conventional RPC systems, with a basic
X request only occupying 4 bytes (contrast this
with HTTP or CORBA, in which a simple re-
quest is more than 100 bytes).

With the great recent interest in LTSP in com-
mercial environments, work here would be ex-
tremely well spent, saving both memory and
CPU, and network bandwidth.

We are more than happy to hear from anyone
interested in helping in this effort to bring X
into the new millennium.

References

[BS01] Daniel J. Barrett and Richard
Silverman.SSH, The Secure
Shell: The Definitive Guide.
O’Reilly & Associates, Inc.,
2001.

[Gai93] Jean-Loup Gailly.Gzip: The
Data Compression Program.
iUniverse.com, 1.2.4 edition,
1993.

[GCGW92] Tim Glauert, Dave Carver, James
Gettys, and David Wiggins. X
Synchronization Extension
Protocol, Version 3.0. X
consortium standard, 1992.

[Get02] James Gettys. The Future is
Coming, Where the X Window
System Should Go. InFREENIX
Track, 2002 Usenix Annual
Technical Conference, Monterey,
CA, June 2002. USENIX.

[GRS83] Leo Guibas, Lyle Ramshaw, and
Jorge Stolfi. A kinetic framework
for computational geometry. In
Proceedings of the IEEE 1983
24th Annual Symposium on the
Foundations of Computer
Science, pages 100–111. IEEE
Computer Society Press, 1983.

[Hob85] John D. Hobby.Digitized Brush
Trajectories. PhD thesis,
Stanford University, 1985. Also
Stanford Report
STAN-CS-85-1070.

[Hun04] A. Hundt. DirectFB Overview
(v0.2 for DirectFB 0.9.21),
February 2004.
http://www.directfb.
org/documentation .

[KJ04] H. Kawahara and D. Johnson.
Project Looking Glass: 3D
Desktop Exploration. InX
Developers Conference,
Cambridge, MA, April 2004.

[Kre] S. Kreitman. XEvIE - X Event
Interception Extension.http:
//freedesktop.org/
~stukreit/xevie.html .

[Mar] M. Maria. Little CMS Engine
1.12 API Definition. Technical
report.
http://www.littlecms.
com/lcmsapi.txt .

[McQ02] Jim McQuillan. LTSP - Linux
Terminal Server Project, Version
3.0. Technical report, March
2002.http://www.ltsp.
org/documentation/
ltsp-3.0-4-en.html .

[MS01] Bart Massey and Jamey Sharp.
XCB: An X protocol c binding.



Linux Symposium 2004 • Volume One • 237

In XFree86 Technical
Conference, Oakland, CA,
November 2001. USENIX.

[NR04] Peter Nilsson and David
Reveman. Glitz: Hardware
Accelerated Image Compositing
using OpenGL. InFREENIX
Track, 2004 Usenix Annual
Technical Conference, Boston,
MA, July 2004. USENIX.

[Pac01a] Keith Packard. Design and
Implementation of the X
Rendering Extension. In
FREENIX Track, 2001 Usenix
Annual Technical Conference,
Boston, MA, June 2001.
USENIX.

[Pac01b] Keith Packard. The Xft Font
Library: Architecture and Users
Guide. InXFree86 Technical
Conference, Oakland, CA,
November 2001. USENIX.

[Pac02] Keith Packard. Font
Configuration and Customization
for Open Source Systems. In
2002 Gnome User’s and
Developers European
Conference, Seville, Spain, April
2002. Gnome.

[PD84] Thomas Porter and Tom Duff.
Compositing Digital Images.
Computer Graphics,
18(3):253–259, July 1984.

[PG03] Keith Packard and James Gettys.
X Window System Network
Performance. InFREENIX
Track, 2003 Usenix Annual
Technical Conference, San
Antonio, TX, June 2003.
USENIX.

[Pla00] J. Platt. Optimal filtering for
patterned displays.IEEE Signal
Processing Letters,
7(7):179–180, 2000.

[SG92] Robert W. Scheifler and James
Gettys.X Window System.
Digital Press, third edition, 1992.

[Smi92] John Smith. The Multi-Threaded
X Server.The X Resource,
1:73–89, Winter 1992.

[SRRK02] D. Smith, A. Raab, D. Reed, and
A. Kay. Croquet: The Users
Manual, October 2002.
http://glab.cs.
uni-magdeburg.de/
~croquet/downloads/
Croquet0.1.pdf .

[SSF+96] Robert N.C. Shelley, Robert W.
Scheifler, Ben Fahy, Jim Fulton,
Keith Packard, Joe Mauro,
Richard Hennessy, and Tom
Vaughn. X Image Extension
Protocol Version 5.02. X
consortium standard, 1996.

[Wal04] Eamon Walsh. Integrating
XFree86 With
Security-Enhanced Linux. InX
Developers Conference,
Cambridge, MA, April 2004.
http://freedesktop.
org/Software/XDevConf/
x-security-walsh.pdf .

[WP03] Carl Worth and Keith Packard.
Xr: Cross-device Rendering for
Vector Graphics. InProceedings
of the Ottawa Linux Symposium,
Ottawa, ON, July 2003. OLS.



238 • Linux Symposium 2004 • Volume One



Proceedings of the
Linux Symposium

Volume One

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


