
NFSv4 andrpcsec_gss for linux

J. Bruce Fields
University of Michigan
bfields@umich.edu

Abstract

The 2.6 Linux kernels now include support for
version 4 of NFS. In addition to built-in lock-
ing and ACL support, and features designed to
improve performance over the Internet, NFSv4
also mandates the implementation of strong
cryptographic security. This security is pro-
vided by rpcsec_gss, a standard, widely imple-
mented protocol that operates at the rpc level,
and hence can also provide security for NFS
versions 2 and 3.

1 The rpcsec_gss protocol

The rpc protocol, which all version of NFS
and related protocols are built upon, includes
generic support for authentication mecha-
nisms: each rpc call has two fields, the cre-
dential and the verifier, each consisting of a
32-bit integer, designating a “security flavor,”
followed by 400 bytes of opaque data whose
structure depends on the specified flavor. Sim-
ilarly, each reply includes a single “verifier.”

Until recently, the only widely implemented
security flavor has been the auth_unix flavor,
which uses the credential to pass uid’s and
gid’s and simply asks the server to trust them.
This may be satisfactory given physical secu-
rity over the clients and the network, but for
many situations (including use over the Inter-
net), it is inadequate.

Thus rfc 2203 defines the rpcsec_gss protocol,

which uses rpc’s opaque security fields to carry
cryptographically secure tokens. The crypto-
graphic services are provided by the GSS-API
(“Generic Security Service Application Pro-
gram Interface,” defined by rfc 2743), allowing
the use of a wide variety of security mecha-
nisms, including, for example, Kerberos.

Three levels of security are provided by rpc-
sec_gss:

1. Authentication only: The rpc header of
each request and response is signed.

2. Integrity: The header and body of each re-
quest and response is signed.

3. Privacy: The header of each request is
signed, and the body is encrypted.

The combination of a security level with a
GSS-API mechanism can be designated by a
32-bit “pseudoflavor.” The mount protocol
used with NFS versions 2 and 3 uses a list
of pseudoflavors to communicate the security
capabilities of a server. NFSv4 does not use
pseudoflavors on the wire, but they are still use-
ful in internal interfaces.

Security protocols generally require some ini-
tial negotiation, to determine the capabilities
of the systems involved and to choose session
keys. The rpcsec_gss protocol uses calls with
procedure number 0 for this purpose. Nor-
mally such a call is a simple “ping” with no
side-effects, useful for measuring round-trip



208 • Linux Symposium 2004 • Volume One

latency or testing whether a certain service is
running. However a call with procedure num-
ber 0, if made with authentication flavor rpc-
sec_gss, may use certain fields in the credential
to indicate that it is part of a context-initiation
exchange.

2 Linux implementation of rpc-
sec_gss

The Linux implementation of rpcsec_gss con-
sists of several pieces:

1. Mechanism-specific code, currently for
two mechanisms: krb5 and spkm3.

2. A stripped-down in-kernel version of the
GSS-API interface, with an interface that
allows mechanism-specific code to regis-
ter support for various pseudoflavors.

3. Client and server code which uses the
GSS-API interface to encode and decode
rpc calls and replies.

4. A userland daemon, gssd, which performs
context initiation.

2.1 Mechanism-specific code

The NFSv4 RFC mandates the implementation
(though not the use) of three GSS-API mecha-
nisms: krb5, spkm3, and lipkey.

Our krb5 implementation supports three
pseudoflavors: krb5, krb5i, and krb5p, pro-
viding authentication only, integrity, and
privacy, respectively. The code is derived from
MIT’s Kerberos implementation, somewhat
simplified, and not currently supporting the
variety of encryption algorithms that MIT’s
does. The krb5 mechanism is also supported
by NFS implementations from Sun, Network

Appliance, and others, which it interoperates
with.

The Low Infrastructure Public Key Mechanism
(“lipkey,” specified by rfc 2847), is a public key
mechanism built on top of the Simple Public
Key Mechanism (spkm), which provides func-
tionality similar to that of TLS, allowing a se-
cure channel to be established using a server-
side certificate and a client-side password.

We have a preliminary implementation of
spkm3 (without privacy), but none yet of lip-
key. Other NFS implementors have not yet
implemented either of these mechanisms, but
there appears to be sufficient interest from the
grid community for us to continue implemen-
tation even if it is Linux-only for now.

2.2 GSS-API

The GSS-API interface as specified is very
complex. Fortunately, rpcsec_gss only requires
a subset of the GSS-API, and even less is re-
quired for per-packet processing.

Our implementation is derived by the im-
plementation in MIT Kerberos, and initially
stayed fairly close the the GSS-API specifica-
tion; but over time we have pared it down to
something quite a bit simpler.

The kernel gss interface also provides APIs
by which code implementing particular mech-
anisms can register itself to the gss-api code
and hence can be safely provided by modules
loaded at runtime.

2.3 RPC code

The RPC code has been enhanced by the addi-
tion of a new rpcsec_gss mechanism which au-
thenticates calls and replies and which wraps
and unwraps rpc bodies in the case of integrity
and privacy.



Linux Symposium 2004 • Volume One • 209

This is relatively straightforward, though
somewhat complicated by the need to handle
discontiguous buffers containing page data.

Caches for session state are also required on
both client and server; on the client a preex-
isting rpc credentials cache is used, and on the
server we use the same caching infrastructure
used for caching of client and export informa-
tion.

2.4 Userland daemon

We had no desire to put a complete implemen-
tation of Kerberos version 5 or the other mech-
anisms into the kernel. Fortunately, the work
performed by the various GSS-API mecha-
nisms can be divided neatly into context ini-
tiation and per-packet processing. The former
is complex and is performed only once per ses-
sion, while the latter is simple by comparison
and needs to be performed on every packet.
Therefore it makes sense to put the packet pro-
cessing in the kernel, and have the context ini-
tiation performed in userspace.

Since it is the kernel that knows when context
initiation is necessary, we require a mechanism
allowing the kernel to pass the necessary pa-
rameters to a userspace daemon whenever con-
text initiation is needed, and allowing the dae-
mon to respond with the completed security
context.

This problem was solved in different ways
on the client and server, but both use spe-
cial files (the former in a dedicated filesystem,
rpc_pipefs, and the latter in the proc filesys-
tem), which our userspace daemon, gssd, can
poll for requests and then write responses back
to.

In the case of Kerberos, the sequence of events
will be something like this:

1. The user gets Kerberos credentials using

kinit, which are cached on a local filesys-
tem.

2. The user attempts to perform an operation
on an NFS filesystem mounted with krb5
security.

3. The kernel rpc client looks for the a secu-
rity context for the user in its cache; not
finding any, it does an upcall to gssd to re-
quest one.

4. Gssd, on receiving the upcall, reads the
user’s Kerberos credentials from the lo-
cal filesystem and uses them to construct
a null rpc request which it sends to the
server.

5. The server kernel makes an upcall which
passes the null request to its gssd.

6. At this point, the server gssd has all it
needs to construct a security context for
this session, consisting mainly of a ses-
sion key. It passes this context down to
the kernel rpc server, which stores it in its
context cache.

7. The server’s gssd then constructs the null
rpc reply, which it gives to the kernel to
return to the client gssd.

8. The client gssd uses this reply to construct
its own security context, and passes this
context to the kernel rpc client.

9. The kernel rpc client then uses this con-
text to send the first real rpc request to the
server.

10. The server uses the new context in its
cache to verify the rpc request, and to
compose its reply.



210 • Linux Symposium 2004 • Volume One

3 The NFSv4 protocol

While rpcsec_gss works equally well on all ex-
isting versions of NFS, much of the work on
rpcsec_gss has been motivated by NFS version
4, which is the first version of NFS to make
rpcsec_gss mandatory to implement.

This new version of NFS is specified by rfc
3530, which says:

“Unlike earlier versions, the NFS version 4
protocol supports traditional file access while
integrating support for file locking and the
mount protocol. In addition, support for strong
security (and its negotiation), compound oper-
ations, client caching, and internationalization
have been added. Of course, attention has been
applied to making NFS version 4 operate well
in an Internet environment.”

Descriptions of some of these features follow,
with some notes about their implementation in
Linux.

3.1 Compound operations

Each rpc request includes a procedure number,
which describes the operation to be performed.
The format of the body of the rpc request (the
arguments) and of the reply depend on the pro-
gram number. Procedure 0 is reserved as a no-
op (except when it is used for rpcsec_gss con-
text initiation, as described above).

The NFSv4 protocol only supports one non-
zero procedure, procedure 1, the compound
procedure.

The body of a compound is a list of opera-
tions, each with its own arguments. For exam-
ple, a compound request performing a lookup
might consist of 3 operations: a PUTFH, with
a filehandle, which sets the “current filehandle”
to the provided filehandle; a LOOKUP, with a
name, which looks up the name in the directory

given by the current filehandle and then modi-
fies the current filehandle to be the filehandle of
the result; a GETFH, with no arguments, which
returns the new value of the current filehandle;
and a GETATTR, with a bitmask specifying a
set of attributes to return for the looked-up file.

The server processes these operations in order,
but with no guarantee of atomicity. On encoun-
tering any error, it stops and returns the results
of the operations up to and including the oper-
ation that failed.

In theory complex operations could therefore
be done by long compounds which perform
complex series of operations.

In practice, the compounds sent by the Linux
client correspond very closely to NFSv2/v3
procedures—the VFS and the POSIX filesys-
tem API make it difficult to do otherwise—and
our server, like most NFSv4 servers we know
of, rejects overly long or complex compounds.

3.2 Well-known port for NFS

RPC allows services to be run on different
ports, using the “portmap” service to map pro-
gram numbers to ports. While flexible, this
system complicates firewall management; so
NFSv4 recommends the use of port 2049.

In addition, the use of sideband protocols for
mounting, locking, etc. also complicates fire-
wall management, as multiple connections to
multiple ports are required for a single NFS
mount. NFSv4 eliminates these extra proto-
cols, allowing all traffic to pass over a single
connection using one protocol.

3.3 No more mount protocol

Earlier versions of NFS use a separate protocol
for mount. The mount protocol exists primarily
to map path names, presented to the server as



Linux Symposium 2004 • Volume One • 211

strings, to filehandles, which may then be used
in the NFS protocol.

NFSv4 instead uses a single operation, PUT-
ROOTFH, that returns a filehandle; clients can
then use ordinary lookups to traverse to the
filesystem they wish to mount. This changes
the behavior of NFS in a few subtle ways: for
example, the special status of mounts in the old
protocol meant that mounting/usr and then
looking up local might get you a different
object than would mounting/usr/local ;
under NFSv4 this can no longer happen.

A server that exports multiple filesystems must
knit them together using a single “pseud-
ofilesystem” which links them to a common
root.

On Linux’s nfsd the pseudofilesystem is a
real filesystem, marked by the export option
“fsid=0”. An adminstrator that is content to
export a single filesystem can export it with
“fsid=0”, and clients will find it just by mount-
ing the path “/”.

The expected use for “fsid=0”, however, is to
designate a filesystem that is used just a collec-
tion of empty directories used as mountpoints
for exported filesystems, which are mounted
usingmount ---bind ; thus an administra-
tor could export/bin and/local/src by:

mkdir -p /exports/home
mkdir -p /exports/bin/
mount --bind /home /exports/home
mount --bind /bin/ /exports/bin

and then using an exports file something like:

/exports *.foo.com(fsid=0,crossmnt)
/exports/home *.foo.com
/exports/bin *.foo.com

Clients in foo.com can then mount
server.foo.com:/bin or server.

foo.com:/home . However the relationship
between the original mountpoint on the server
and the mountpoint under/exports (which
determines the path seen by the client) is
arbitrary, so the administrator could just as
well export/home as/some/other/path
if desired.

This gives maximum flexibility at the expense
of some confusion for adminstrators used to
earlier NFS versions.

3.4 No more lock protocol

Locking has also been absorbed into the
NFSv4 protocol. In addition to advantages
enumerated above, this allows servers to sup-
port mandatory locking if desired. Previously
this was impossible because it was impos-
sible to tell whether a given read or write
should be ordered before or after a lock re-
quest. NFSv4 enforces such sequencing by
providing a stateid field on each read or write
which identifies the locking state that the oper-
ation was performed under; thus for example a
write that occurred while a lock was held, but
that appeared on the server to have occurred af-
ter an unlock, can be identified as belonging to
a previous locking context, and can therefore
be correctly rejected.

The additional state required to manage lock-
ing is the source of much of the additional com-
plexity in NFSv4.

3.5 String representations of user and group
names

Previous versions of NFS use integers to rep-
resent users and groups; while simple to han-
dle, they can make NFS installations difficult to
manage, particularly across adminstrative do-
mains. Version 4, therefore, uses string names
of the formuser@domain .

This poses some challenges for the kernel im-



212 • Linux Symposium 2004 • Volume One

plementation. In particular, while the protocol
may use string names, the kernel still needs to
deal with uid’s, so it must map between NFSv4
string names and integers.

As with rpcsec_gss context initation, we solve
this problem by making upcalls to a userspace
daemon; with the mapping in userspace, it is
easy to use mechanisms such as NIS or LDAP
to do the actual mapping without introducing
large amounts of code into the kernel. So as not
to degrade performance by requiring a context
switch every time we process a packet carrying
a name, we cache the results of this mapping in
the kernel.

3.6 Delegations

NFSv4, like previous versions of NFS, does
not attempt to provide full cache consistency.
Instead, all that is guaranteed is that if an open
follows a close of the same file, then data read
after the open will reflect any modifications
performed before the close. This makes both
open and close potentially high latency oper-
ations, since they must wait for at least one
round trip before returning–in the close case,
to flush out any pending writes, and in the
open case, to check the attributes of the file in
question to determine whether the local cache
should be invalidated.

Locks provide similar semantics—writes are
flushed on unlock, and cache consistency is
verified on lock—and hence lock operations
are also prone to high latencies.

To mitigate these concerns, and to encourage
the use of NFS’s locking features, delegations
have been added to NFSv4. Delegations are
granted or denied by the server in response to
open calls, and give the client the right to per-
form later locks and opens locally, without the
need to contact the server. A set of callbacks
is provided so that the server can notify the

client when another client requests an open that
would confict with the open originally obtained
by the client.

Thus locks and opens may be performed
quickly by the client in the common case when
files are not being shared, but callbacks ensure
that correct close-to-open (and unlock-to-lock)
semantics may be enforced when there is con-
tention.

To allow other clients to proceed when a client
holding a delegation reboots, clients are re-
quired to periodically send a “renew” opera-
tion to the server, indicating that it is still alive;
a client that fails to send a renew operation
within a given lease time (established when the
client first contacts the server) may have all of
its delegations and other locking state revoked.

Most implementations of NFSv4 delegations,
including Linux’s, are still young, and we
haven’t yet gathered good data on the perfor-
mance impact.

Nevertheless, further extensions, including
delegations over directories, are under consid-
eration for future versions of the protocol.

3.7 ACLs

ACL support is integrated into the protocol,
with ACLs that are more similar to those found
in NT than to the POSIX ACLs supported by
Linux.

Thus while it is possible to translate an arbi-
trary Linux ACL to an NFS4 ACL with nearly
identical meaning, most NFS ACLs have no
reasonable representation as Linux ACLs.

Marius Eriksen has written a draft describing
the POSIX to NFS4 ACL translation. Cur-
rently the Linux implementation uses this map-
ping, and rejects any NFS4 ACL that isn’t ex-
actly in the image of this mapping. This en-



Linux Symposium 2004 • Volume One • 213

sures userland support from all tools that cur-
rently support POSIX ACLs, and simplifies
ACL management when an exported filesys-
tem is also used by local users, since both nfsd
and the local users can use the backend filesys-
tem’s POSIX ACL implementation. However
it makes it difficult to interoperate with NFSv4
implementations that support the full ACL pro-
tocol. For that reason we will eventually also
want to add support for NFSv4 ACLs.

4 Acknowledgements and Further
Information

This work has been sponsored by Sun Mi-
crosystems, Network Appliance, and the
Accelerated Strategic Computing Initiative
(ASCI). For further information, seewww.
citi.umich.edu/projects/nfsv4/ .



214 • Linux Symposium 2004 • Volume One



Proceedings of the
Linux Symposium

Volume One

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


