
Multi-processor and Frequency Scaling
Making Your Server Behave Like a Laptop

Paul Devriendt
AMD Software Research and Development

paul.devriendt@amd.com

Copyright © 2004 Advanced Micro Devices, Inc.

Abstract

This paper will explore a multi-processor im-
plementation of frequency management, using
an AMD Opteron™ processor 4-way server as
a test vehicle.

Topics will include:

• the benefits of doing this, and why server
customers are asking for this,

• the hardware, for case of the AMD
Opteron processor,

• the various software components that
make this work,

• the issues that arise, and

• some areas of exploration for follow on
work.

1 Introduction

Processor frequency management is common
on laptops, primarily as a mechanism for im-
proving battery life. Other benefits include a
cooler processor and reduced fan noise. Fans
also use a non-trivial amount of power.

This technology is spreading to desktop ma-
chines, driven both by a desire to reduce power
consumption and to reduce fan noise.

Servers and other multiprocessor machines can
equally benefit. The multiprocessor frequency
management scenario offers more complex-
ity (no surprise there). This paper discusses
these complexities, based upon a test imple-
mentation on an AMD Opteron processor 4-
way server. Details within this paper are AMD
processor specific, but the concepts are appli-
cable to other architectures.

The author of this paper would like to make
it clear that he is just the maintainer of the
AMD frequency driver, supporting the AMD
Athlon™ 64 and AMD Opteron processors.
This frequency driver fits into, and is totally de-
pendent, on the CPUFreq support. The author
has gratefully received much assistance and
support from the CPUFreq maintainer (Do-
minik Brodowski).

2 Abbreviations

BKDG: The BIOS and Kernel Developer’s
Guide. Document published by AMD contain-
ing information needed by system software de-
velopers. See the references section, entry 4.

MSR: Model Specific Register. Processor reg-
isters, accessable only from kernel space, used
for various control functions. These regis-
ters are expected to change across processor
families. These registers are described in the

168 • Linux Symposium 2004 • Volume One

BKDG[4].

VRM: Voltage Regulator Module. Hardware
external to the processor that controls the volt-
age supplied to the processor. The VRM has to
be capable of supplying different voltages on
command. Note that for multiprocessor sys-
tems, it is expected that each processor will
have its own independent VRM, allowing each
processor to change voltage independently. For
systems where more than one processor shares
a VRM, the processors have to be managed as
a group. The current frequency driver does not
have this support.

fid: Frequency Identifier. The values writ-
ten to the control MSR to select a core fre-
quency. These identifiers are processor family
specific. Currently, these are six bit codes, al-
lowing the selection of frequencies from 800
MHz to 5 Ghz. See the BKDG[4] for the map-
pings from fid to frequency. Note that the fre-
quency driver does need to “understand” the
mapping of fid to frequency, as frequencies are
exposed to other software components.

vid: Voltage Identifier. The values written to
the control MSR to select a voltage. These val-
ues are then driven to the VRM by processor
logic to achieve control of the voltage. These
identifiers are processor model specific. Cur-
rently these identifiers are five bit codes, of
which there are two sets—a standard set and
a low-voltage mobile set. The frequency driver
does not need to be able to “understand” the
mapping of vid to voltage, other than perhaps
for debug prints.

VST: Voltage Stabilization Time. The length
of time before the voltage has increased and is
stable at a newly increased voltage. The driver
has to wait for this time period when stepping
the voltage up. The voltage has to be stable
at the new level before applying a further step
up in voltage, or before transitioning to a new
frequency that requires the higher voltage.

MVS: Maximum Voltage Step. The maximum
voltage step that can be taken when increasing
the voltage. The driver has to step up voltage
in multiple steps of this value when increasing
the voltage. (When decreasing voltage it is not
necessary to step, the driver can merely jump
to the correct voltage.) A typical MVS value
would be 25mV.

RVO: Ramp Voltage Offset. When transition-
ing frequencies, it is necessary to temporarily
increase the nominal voltage by this amount
during the frequency transition. A typical RVO
value would be 50mV.

IRT: Isochronous Relief Time. During fre-
quency transitions, busmasters briefly lose ac-
cess to system memory. When making mul-
tiple frequency changes, the processor driver
must delay the next transition for this time
period to allow busmasters access to system
memory. The typical value used is 80us.

PLL: Phase Locked Loop. Electronic circuit
that controls an oscillator to maintain a con-
stant phase angle relative to a reference signal.
Used to synthesize new frequencies which are
a multiple of a reference frequency.

PLL Lock Time: The length of time, in mi-
croseconds, for the PLL to lock.

pstate: Performance State. A combination of
frequency/voltage that is supported for the op-
eration of the processor. A processor will typi-
cally have several pstates available, with higher
frequencies needing higher voltages. The pro-
cessor clock can not be set to any arbitrary fre-
quency; it may only be set to one of a limited
set of frequencies. For a given frequency, there
is a minimum voltage needed to operate reli-
ably at that frequency, and this is the correct
voltage, thus forming the frequency/voltage
pair.

ACPI: Advanced Configuration and Power In-

Linux Symposium 2004 • Volume One • 169

terface Specification. An industry specifica-
tion, initially developed by Intel, Microsoft,
Phoenix and Toshiba. See the reference sec-
tion, entry 5.

_PSS:Performance Supported States. ACPI
object that defines the performance states valid
for a processor.

_PPC: Performance Present Capabilities.
ACPI object that defines which of the _PSS
states are currently available, due to current
platform limitations.

PSBPerformance State Block. BIOS provided
data structure used to pass information, to the
driver, concerning the pstates available on the
processor. The PSB does not support multi-
processor systems (which use the ACPI _PSS
object instead) and is being deprecated. The
format of the PSB is defined in the BKDG.

3 Why Does Frequency Manage-
ment Affect Power Consump-
tion?

Higher frequency requires higher voltage.
As an example, data for part number
ADA3200AEP4AX:

2.2 GHz @ 1.50 volts, 58 amps max – 89 watts

2.0 GHz @ 1.40 volts, 48 amps max – 69 watts

1.8 GHz @ 1.30 volts, 37 amps max – 50 watts

1.0 GHz @ 1.10 volts, 18 amps max – 22 watts

These figures are worst case current/power fig-
ures, at maximum case temperature, and in-
clude I/O power of 2.2W.

Actual power usage is determined by:

• code currently executing (idle blocks in
the processor consume less power),

• activity from other processors (cache co-
herency, memory accesses, pass-through
traffic on the HyperTransport™ connec-
tions),

• processor temperature (current increases
with temperature, at constant workload
and voltage),

• processor voltage.

Increasing the voltage allows operation at
higher frequencies, at the cost of higher power
consumption and higher heat generation. Note
that relationship between frequency and power
consumption is not a linear relationship—a
10% frequency increase will cost more than
10% in power consumption (30% or more).

Total system power usage depends on other de-
vices in the system, such as whether disk drives
are spinning or stopped, and on the efficiency
of power supplies.

4 Why Should Your Server Behave
Like A Laptop?

• Save power. It is the right thing to do
for the environment. Note that power
consumed is largely converted into heat,
which then becomes a load on the air con-
ditioning in the server room.

• Save money. Power costs money. The
power savings for a single server are typi-
cally regarded as trivial in terms of a cor-
porate budget. However, many large or-
ganizations have racks of many thousands
of servers. The power bill is then far from
trivial.

• Cooler components last longer, and this
translates into improved server reliability.

• Government Regulation.

170 • Linux Symposium 2004 • Volume One

5 Interesting Scenarios

These are real world scenarios, where the ap-
plication of the technology is appropriate.

5.1 Save power in an idle cluster

A cluster would typically be kept running at
all times, allowing remote access on demand.
During the periods when the cluster is idle, re-
ducing the CPU frequency is a good way to
reduce power consumption (and therefore also
air conditioning load), yet be able to quickly
transition back up to full speed (<0.1 second)
when a job is submitted.

User space code (custom to the management of
that cluster) can be used to offer cluster speeds
of “fast” and “idle,” using the/proc or /sys
file systems to trigger frequency transitions.

5.2 The battery powered server

Or, the server running on a UPS.

Many production servers are connected
to a battery backup mechanism (UPS—
uninterruptible power supply) in case the
mains power fails. Action taken on a mains
power failure varies:

• Orderly shutdown.

• Stay up and running for as long as there
is battery power, but orderly shutdown if
mains power is not restored.

• Stay up and running, mains power will be
provided by backup generators as soon as
the generators can be started.

In these scenarios, transitioning to lower per-
formance states will maximize battery life, or
reduce the amount of generator/battery power
capacity required.

UPS notification of mains power loss to the
server for administrator alerts is well under-
stood technology. It is not difficult to add the
support for transitioning to a lower pstate. This
can be done by either a cpufreq governor or by
adding the simple user space controls to an ex-
isting user space daemon that is monitoring the
UPS alerts.

5.3 Server At Less Than Maximum Load

As an example, a busy server may be process-
ing 100 transactions per second, but only 5
transactions per second during quiet periods.
Reducing the CPU frequency from 2.2 GHz to
1.0 GHz is not going to impact the ability of
that server to process 5 transactions per second.

5.4 Processor is not the bottleneck

The bottleneck may not be the processor speed.
Other likely bottlenecks are disk access and
network access. Having the processor waiting
faster may not improve transaction throughput.

5.5 Thermal cutback to avoid over tempera-
ture situations

The processors are the main generators of heat
in a system. This becomes very apparent when
many processors are in close proximity, such
as with blade servers. The effectiveness of the
processor cooling is impacted when the proces-
sor heat sinks are being cooled with hot air. Re-
ducing processor frequency when idle can dra-
matically reduce the heat production.

5.6 Smaller Enclosures

The drive to build servers in smaller boxes,
whether as standalone machines or slim rack-
mount machines, means that there is less space
for air to circulate. Placing many slim rack-
mounts together in a rack (of which the most

Linux Symposium 2004 • Volume One • 171

demanding case is a blade server) aggravates
the cooling problem as the neighboring boxes
are also generating heat.

6 System Power Budget

The processors are only part of the system. We
therefore need to understand the power con-
sumption of the entire system to see how sig-
nificant processor frequency management is on
the power consumption of the whole system.

A system power budget is obviously plat-
form specific. This sample DC (direct cur-
rent) power budget is for a 4-processor AMD
Opteron processor based system. The system
has three 500W power supplies, of which one
is redundant. Analysis shows that for many
operating scenarios, the system could run on
a single power supply.

This analysis is of DC power. For the system
in question, the efficiency of the power sup-
plies are approximately linear across varying
loads, and thus the DC power figures expressed
as percentages are meaningful as predictors of
the AC (alternating current) power consump-
tion. For systems with power supplies that are
not linearly efficient across varying loads, the
calculations obviously have to be factored to
take account of power supply efficiency.

System components:

• 4 processors @ 89W = 356W in the maxi-
mum pstate, 4 @ 22W = 88W in the mini-
mum pstate. These are worst case figures,
at maximium case temperature, with the
worst case instruction mix. The figures in
Table1 are reduced from these maximums
by approximately 10% to account for a re-
duced case temperature and for a work-
load that does not keep all of the proces-
sors’ internal units busy.

• Two disk drives (Western Digital 250
GByte SATA), 16W read/write, 10W idle
(spinning), 1.3W sleep (not spinning).
Note SCSI drives typically consume more
power.

• DVD Drive, 10W read, 1W idle/sleep.

• PCI 2.2 Slots – absolute max of 25W per
slot, system will have a total power budget
that may not account for maximum power
in all slots. Estimate 2 slots occupied at a
total of 20W.

• VGA video card in a PCI slot. 5W. (AGP
would be more like 15W+).

• DDR DRAM, 10W max per DIMM, 40W
for 4 GBytes configured as 4 DIMMs.

• Network (built in) 5W.

• Motherboard and components 30W.

• 10 fans @ 6W each. 60W.

• Keyboard + Mouse 3W

See Table 1 for the sample power budget under
busy and light loads.

The light load without any frequency reduction
is baselined as 100%.

The power consumption is shown for the same
light load with frequency reduction enabled,
and again where the idle loop incorporates the
hlt instruction.

Using frequency management, the power con-
sumption drops to 43%, and adding the use of
the hlt instruction (assuming 50% time halted),
the power consumption drops further to 33%.

These are significant power savings, for sys-
tems that are under light load conditions at
times. The percentage of time that the system
is running under reduced load has to be known
to predict actual power savings.

172 • Linux Symposium 2004 • Volume One

system load 4 2 kbd
cpus disks dvd pci vga dram net planar fans mou total

busy 320 32 10 20 5 40 5 30 60 3 525W
90%

light load 310 22 1 15 5 38 5 20 60 3 479W
87% 100%

light load, using 79 22 1 15 5 38 5 20 20 3 208W
frequency reduction 90% 43%

light load, using 32 22 1 15 5 38 5 20 15 3 156
frequency reduction 40% 33%
and using hlt 50%

of the time

Table 1: Sample System Power Budget (DC), in watts

7 Hardware—AMD Opteron

7.1 Software Interface To The Hardware

There are two MSRs, the FIDVID_STATUS
MSR and the FIDVID_CONTROL MSR, that
are used for frequency voltage transitions.
These MSRs are the same for the single pro-
cessor AMD Athlon 64 processors and for the
AMD Opteron MP capable processors. These
registers are not compatible with the previ-
ous generation of AMD Athlon processors, and
will not be compatible with the next generation
of processors.

The CPU frequency driver for AMD proces-
sors therefore has to change across processor
revisions, as do the ACPI _PSS objects that de-
scribe pstates.

The status register reports the current fid and
vid, as well as the maximum fid, the start fid,
the maximum vid and the start vid of the par-
ticular processor.

These registers are documented in the
BKDG[4].

As MSRs can only be accessed by executing
code (the read msr or write msr instructions) on

the target processor, the frequency driver has to
use the processor affinity support to force exe-
cution on the correct processor.

7.2 Multiple Memory Controllers

In PC architectures, the memory controller is
a component of the northbridge, which is tra-
ditionally a separate component from the pro-
cessor. With AMD Opteron processors, the
northbridge is built into the processor. Thus,
in a multi-processor system there are multiple
memory controllers.

See Figure 1 for a block diagram of a two pro-
cessor system.

If a processor is accessing DRAM that is phys-
ically attached to a different processor, the
DRAM access (and any cache coherency traf-
fic) crosses the coherent HyperTransport inter-
processor links. There is a small performance
penalty in this case. This penalty is of the or-
der of a DRAM page hit versus a DRAM page
miss, about 1.7 times slower than a local ac-
cess.

This penalty is minimized by the processor
caches, where data/code residing in remote
DRAM is locally cached. It is also minimized

Linux Symposium 2004 • Volume One • 173

by Linux’s NUMA support.

Note that a single threaded application that
is memory bandwidth constrained may benefit
from multiple memory controllers, due to the
increase in memory bandwidth.

When the remote processor is transitioned to
a lower frequency, this performance penalty is
worse. An upper bound to the penalty may
be calculated as proportional to the frequency
slowdown. I.e., taking the remote processor
from 2.2 GHz to 1.0 GHz would take the 1.7
factor from above to a factor of 2.56. Note that
this is an absolute worst case, an upper bound
to the factor. Actual impact is workload depen-
dent.

A worst case scenario would be a memory
bound task, doing memory reads at addresses
that are pathologically the worst case for the
caches, with all accesses being to remote mem-
ory. A more typical scenario would see this
penalty alleviated by:

• processor caches, where 64 bytes will
be read and cached for a single access,
so applications that walk linearly through
memory will only see the penalty on 64
byte boundaries,

• memory writes do not take a penalty
(as processor execution continues without
waiting for a write to complete),

• memory may be interleaved,

• kernel NUMA optimizations for non-
interleaved memory (which allocate
memory local to the processor when
possible to avoid this penalty).

7.3 DRAM Interface Speed

The DRAM interface speed is impacted by the
core clock frequency. A full table is published

in the processor data sheet; Table 2 shows a
sample of actual DRAM frequencies for the
common specified DRAM frequencies, across
a range of core frequencies.

This table shows that certain DRAM speed /
core speed combinations are suboptimal.

Effective memory performance is influenced
by many factors:

• cache hit rates,

• effectiveness of NUMA memory alloca-
tion routines,

• load on the memory controller,

• size of penalty for remote memory ac-
cesses,

• memory speed,

• other hardware related items, such as
types of DRAM accesses.

It is therefore necessary to benchmark the ac-
tual workload to get meaningful data for that
workload.

7.4 UMA

During frequency transitions, and when Hy-
perTransport LDTSTOP is asserted, DRAM is
placed into self refresh mode. UMA graph-
ics devices therefore can not access DRAM.
UMA systems therefore need to limit the time
that DRAM is in self refresh mode. Time con-
straints are bandwidth dependent, with high
resolution displays needing higher memory
bandwidth. This is handled by the IRT delay
time during frequency transitions. When tran-
sitioning multiple steps, the driver waits an ap-
propriate length of time to allow external de-
vices to access memory.

174 • Linux Symposium 2004 • Volume One

AMD Opteron
TM

Processor

AMD Opteron
 TM

Processor

AMD 8151
TM

Graphics Tunnel

AMD 8131
TM

PCI-X Tunnel

AMD 8111
TM

I/O Hub

ncHT

ncHT

DDR

8X AGP

Legacy PCI

USB

LPC

AC ‘97

EIDE

DDR

PCI-X

cHT

ncHT

Figure 1: Two Processor System

Processor 100MHz 133MHz 166MHz 200MHz
Core DRAM DRAM DRAM DRAM

Frequency spec spec spec spec

800MHz 100.00 133.33 160.00 160.00
1000MHz 100.00 125.00 166.66 200.00
2000MHz 100.00 133.33 166.66 200.00
2200MHz 100.00 129.41 157.14 200.00

Table 2: DRAM Frequencies For A Range Of Processor Core Frequencies

Linux Symposium 2004 • Volume One • 175

7.5 TSC Varying

The Time Stamp Counter (TSC) register is
a register that increments with the processor
clock. Multiple reads of the register will see
increasing values. This register increments on
each core clock cycle in the current generation
of processors. Thus, the rate of increase of the
TSC when compared with “wall clock time”
varies as the frequency varies. This causes
problems in code that calibrates the TSC incre-
ments against an external time source, and then
attempts to use the TSC to measure time.

The Linux kernel uses the TSC for such tim-
ings, for example when a driver calls udelay().
In this case it is not a disaster if the udelay()
call waits for too long as the call is defined to
allow this behavior. The case of the udelay()
call returning too quickly can be fatal, and this
has been demonstrated during experimentation
with this code.

This particular problem is resolved by the
cpufreq driver correcting the kernel TSC cal-
ibration whenever the frequency changes.

This issue may impact other code that uses
the TSC register directly. It is interesting to
note that it is hard to define a correct behavior.
Code that calibrates the TSC against an exter-
nal clock will be thrown off if the rate of in-
crement of the TSC should change. However,
other code may expect a certain code sequence
to consistently execute in approximately the
same number of cycles, as measured by the
TSC, and this code will be thrown off if the be-
havior of the TSC changes relative to the pro-
cessor speed.

7.6 Measurement Of Frequency Transition
Times

The time required to perform a transition is a
combination of the software time to execute the

required code, and the hardware time to per-
form the transition.

Examples of hardware wait time are:

• waiting for the VRM to be stable at a
newer voltage,

• waiting for the PLL to lock at the new fre-
quency,

• waiting for DRAM to be placed into and
then taken out of self refresh mode around
a frequency transition.

The time taken to transition between two states
is dependent on both the initial state and the
target state. This is due to :

• multiple steps being required in some
cases,

• certain operations are lengthier (for ex-
ample, voltage is stepped up in multiple
stages, but stepped down in a single step),

• difference in code execution time depen-
dent on processor speed (although this is
minor).

Measurements, taken by calibrating the fre-
quency driver, show that frequency transitions
for a processor are taking less than 0.015 sec-
onds.

Further experimentation with multiple proces-
sors showed a worst case transition time of less
than 0.08 seconds to transition all 4 processors
from minimum to maximum frequency, and
slightly faster to transition from maximum to
minimum frequency.

Note, there is a driver optimization under
consideration that would approximately halve
these transition times.

176 • Linux Symposium 2004 • Volume One

7.7 Use of Hardware Enforced Throttling

The southbridge (I/O Hub, example AMD-
8111™ HyperTransport I/O Hub) is capable
of initiating throttling via the HyperTransport
stopclock message, which will ramp down the
CPU grid by the programmed amount. This
may be initiated by the southbridge for thermal
throttling or for other reasons.

This throttling is transparent to software, other
than the performance impact.

This throttling is of greatest value in the lowest
pstate, due to the reduced voltage.

The hardware enforced throttling is generally
not of relevance to the software management
of processor frequencies. However, a system
designer would need to take care to ensure
that the optimal scenarios occur—i.e., transi-
tion to a lower frequency/voltage in preference
to hardware throttling in high pstates. The
BIOS configurations are documented in the
BKDG[4].

For maximum power savings, the southbridge
would be configured to initiate throttling when
the processor executes thehlt instruction.

8 Software

The AMD frequency driver is a small part of
the software involved. The frequency driver
fits into the CPUFreq architecture, which is
part of the 2.6 kernel. It is also available as a
patch for the 2.4 kernel, and many distributions
do include it.

The CPUFreq architecture includes kernel sup-
port, the CPUFreq driver itself (drivers/
cpufreq), an architecture specific driver to
control the hardware (powernow-k8.ko is this
case), and/sys file system code for userland
access.

The kernel support code (linux/kernel/
cpufreq.c) handles timing changes such as
updating the kernel constantloops_per_
jiffies , as well as notifiers (system com-
ponents that need to be notified of a frequency
change).

8.1 History Of The AMD Frequency Driver

The CPU frequency driver for AMD Athlon
(the previous generation of processors) was
developed by Dave Jones. This driver sup-
ports single processor transitions only, as the
pstate transition capability was only enabled in
mobile processors. This driver used the PSB
mechanism to determine valid pstates for the
processor. This driver has subsequently been
enhanced to add ACPI support.

The initial AMD Athlon 64 and AMD Opteron
driver (developed by me, based upon Dave’s
earlier work, and with much input from Do-
minik and others), was also PSB based. This
was followed by a version of the driver that
added ACPI support.

The next release is intended to add a built-in
table of pstates that will allow the checking of
BIOS supplied data, and also allow an override
capability to provide pstate data when not sup-
plied by BIOS.

8.2 User Interface

The deprecated /proc/cpufreq (and
/proc/sys) file system offers control over
all processors or individual processors. By
echoing values into this file, the root user
can change policies and change the limits on
available frequencies.

Examples:

Constrain all processors to frequencies be-
tween 1.0 GHz and 1.6 GHz, with the perfor-
mance policy (effectively chooses 1.6 GHz):

Linux Symposium 2004 • Volume One • 177

echo -n "1000000:16000000:

performance" > /proc/cpufreq

Constrain processor 2 to run at only 2.0 GHz:

echo -n "2:2000000:2000000:

performance" > proc/cpufreq

The “performance” refers to a policy, with
the other policy available being “powersave.”
These policies simply forced the frequency to
be at the appropriate extreme of the available
range. With the 2.6 kernel, the choice is nor-
mally for a “userspace” governor, which allows
the (root) user or any user space code (running
with root privilege) to dynamically control the
frequency.

With the 2.6 kernel, a new interface in the
/sys filesystem is available to the root user,
deprecating the/proc/cpufreq method.

The control and status files exist under
/sys/devices/system/cpu/cpuN/
cpufreq , where N varies from 0 up-
wards, dependent on which processors are
online. Among the other files in each proces-
sor’s directory, scaling_min_freq and
scaling_max_freq control the minimum
and maximum of the ranges in which the fre-
quency may vary. Thescaling_governor
file is used to control the choice of gov-
ernor. See linux/Documentation/
cpu-freq/userguide.txt for more
information.

Examples:

Constrain processor 2 to run only in the range
1.6 GHz to 2.0 GHz:

cd /sys/devices/system/cpu

cd cpu2/cpufreq

echo 1600000 > scaling_min_freq

echo 2000000 > scaling_max_freq

8.3 Control From User Space And User Dae-
mons

The interface to the/sys filesystem allows
userland control and query functionality. Some
form of automation of the policy would nor-
mally be part of the desired complete imple-
mentation.

This automation is dependent on the reason for
using frequency management. As an example,
for the case of transitioning to a lower pstate
when running on a UPS, a daemon will be no-
tified of the failure of mains power, and that
daemon will trigger the frequency change by
writing to the control files in the/sys filesys-
tem.

The CPUFreq architecture has thus split the
implementation into multiple parts:

1. user space policy

2. kernel space driver for common function-
ality

3. kernel space driver for processor specific
implementation.

There are multiple user space automation
implementations, not all of which currently
support multiprocessor systems. One that
does, and that has been used in this
project is cpufreqd version 1.1.2 (http://

sourceforge.net/projects/cpufreqd).

This daemon is controlled by a configuration
file. Other than making changes to the con-
figuration file, the author of this paper has not
been involved in any of the development work
on cpufreqd, and is a mere user of this tool.

The configuration file specifies profiles and
rules. A profile is a description of the system
settings in that state, and my configuration file
is setup to map the profiles to the processor

178 • Linux Symposium 2004 • Volume One

pstates. Rules are used to dynamically choose
which profile to use, and my rules are setup
to transition profiles based on total processor
load.

My simple configuration file to change proces-
sor frequency dependent on system load is:

[General]
pidfile=/var/run/cpufreqd.pid
poll_interval=2
pm_type=acpi

2.2 GHz processor speed
[Profile]
name=hi_boost
minfreq=95%
maxfreq=100%
policy=performance

2.0 GHz processor speed
[Profile]
name=medium_boost
minfreq=90%
maxfreq=93%
policy=performance

1.0 GHz processor Speed
[Profile]
name=lo_boost
minfreq=40%
maxfreq=50%
policy=powersave

[Profile]
name=lo_power
minfreq=40%
maxfreq=50%
policy=powersave

[Rule]
#not busy 0%-40%
name=conservative
ac=on
battery_interval=0-100

cpu_interval=0-40
profile=lo_boost

#medium busy 30%-80%
[Rule]
name=lo_cpu_boost
ac=on
battery_interval=0-100
cpu_interval=30-80
profile=medium_boost

#really busy 70%-100%
[Rule]
name=hi_cpu_boost
ac=on
battery_interval=50-100
cpu_interval=70-100
profile=hi_boost

This approach actually works very well for
multiple small tasks, for transitioning the fre-
quencies of all the processors together based
on a collective loading statistic.

For a long running, single threaded task, this
approach does not work well as the load is only
high on a single processor, with the others be-
ing idle. The average load is thus low, and
all processors are kept at a slow speed. Such
a workload scenario would require an imple-
mentation that looked at the loading of individ-
ual processors, rather than the average. See the
section below on future work.

8.4 The Drivers Involved

powernow-k8.ko arch/i386/
kernel/cpu/cpufreq/powernow-k8.
c (the same source code is built as a 32-bit
driver in thei386 tree and as a 64-bit driver
in thex86_64 tree)

drivers/acpi

drivers/cpufreq

Linux Symposium 2004 • Volume One • 179

The Test Driver

Note that thepowernow-k8.ko driver does
not export any read, write, or ioctl interfaces.
For test purposes, a second driver exists with
an ioctl interface for test application use. The
test driver was a big part of the test effort on
powernow-k8.ko prior to release.

8.5 Frequency Driver Entry Points

powernowk8_init()

Driver late_initcall . Initialization is
late as the acpi driver needs to be initialized
first. Verifies that all processors in the system
are capable of frequency transitions, and that
all processors are supported processors. Builds
a data structure with the addresses of the four
entry points for cpufreq use (listed below), and
callscpufreq_register_driver() .

powernowk8_exit()

Called when the driver is to be unloaded. Calls
cpufreq_unregister_driver() .

8.6 Frequency Driver Entry Points For Use By
The CPUFreq driver

powernowk8_cpu_init()

This is a per-processor initialization routine.
As we are not guaranteed to be executing on
the processor in question, and as the driver
needs access to MSRs, the driver needs to force
itself to run on the correct processor by using
set_cpus_allowed() .

This pre-processor initialization allows for pro-
cessors to be taken offline or brought online dy-
namically. I.e., this is part of the software sup-
port that would be needed for processor hot-
plug, although this is not supported in the hard-
ware.

This routine finds the ACPI pstate data for this

processor, and extracts the (proprietary) data
from the ACPI_PSSobjects. This data is ver-
ified as far as is reasonable. Per-processor data
tables for use during frequency transitions are
constructed from this information.

powernowk8_cpu_exit()

Per-processor cleanup routine.

powernowk8_verify()

When the root user (or an application running
on behalf of the root user) requests a change to
the minimum/maximum frequencies, or to the
policy or governor, the frequency driver’s ver-
ification routine is called to verify (and correct
if necessary) the input values. For example,
if the maximum speed of the processor is 2.4
GHz and the user requests that the maximum
range be set to 3.0 GHz, the verify routine will
correct the maximum value to a value that is ac-
tually possible. The user can, however, chose a
value that is less than the hardware maximum,
for example 2.0 GHz in this case.

As this routine just needs to access the per-
processor data, and not any MSRs, it does not
matter which processor executes this code.

powernowk8_target()

This is the driver entry point that actually per-
forms a transition to a new frequency/voltage.
This entry point is called for each processor
that needs to transition to a new frequency.

There is therefore an optimization possible by
enhancing the interface between the frequency
driver and the CPUFreq driver for the case
where all processors are to be transitioned to
a new, common frequency. However, it is not
clear that such an optimization is worth the
complexity, as the functionality to transition a
single processor would still be needed.

This routine is invoked with the processor

180 • Linux Symposium 2004 • Volume One

number as a parameter, and there is no guaran-
tee as to which processor we are currently exe-
cuting on. As the mechanism for changing the
frequency involves accessing MSRs, it is nec-
essary to execute on the target processor, and
the driver forces its execution onto the target
processor by usingset_cpus_allowed() .

The CPUFreq helpers are then used to deter-
mine the correct target frequency. Once a cho-
sen targetfid andvid are identified:

• the cpufreq driver is called to warn that a
transition is about to occur,

• the actual transition code within
powernow-k8 is called, and then

• the cpufreq driver is called again to con-
firm that the transition was successful.

The actual transition is protected with a
semaphore that is used across all processors.
This is to prevent transitions on one proces-
sor from interfering with transitions on other
processors. This is due to the inter-processor
communication that occurs at a hardware level
when a frequency transition occurs.

8.7 CPUFreq Interface

The CPUFreq interface provides entry points,
that are required to make the system function.

It also provides helper functions, which need
not be used, but are there to provide common
functionality across the set of all architecture
specific drivers. Elimination of duplicate good
is a good thing! An architecture specific driver
can build a table of available frequencies, and
pass this table to the CPUFreq driver. The
helper functions then simplify the architecture
driver code by manipulating this table.

cpufreq_register_driver()

Registers the frequency driver as being the
driver capable of performing frequency transi-
tions on this platform. Only one driver may be
registered.

cpufreq_unregister_driver()

Unregisters the driver, when it is being un-
loaded.

cpufreq_notify_transition()

Used to notify the CPUFreq driver, and thus the
kernel, that a frequency transition is occurring,
and triggering recalibration of timing specific
code.

cpufreq_frequency_table_target()

Helper function to find an appropriate table en-
try for a given target frequency. Used in the
driver’s target function.

cpufreq_frequency_table_verify()

Helper function to verify that an input fre-
quency is valid. This helper is effectively a
complete implementation of the driver’s verify
function.

cpufreq_frequency_table_cpuinfo()

Supplies the frequency table data that is used
on subsequent helper function calls. Also aids
with providing information as to the capabili-
ties of the processors.

8.8 Calls To The ACPI Driver

acpi_processor_register_performance()

acpi_processor_unregister_performance()

Helper functions used at per-processor initial-
ization time to gain access to the data from the
_PSS object for that processor. This is a prefer-
able solution to the frequency driver having to
walk the ACPI namespace itself.

Linux Symposium 2004 • Volume One • 181

8.9 The Single Processor Solution

Many of the kernel system calls collapse to
constants when the kernel is built without
multiprocessor support. For example,num_
online_cpus() becomes a macro with the
value 1. By the careful use of the defini-
tions in smp.h, the same driver code handles
both multiprocessor and single processor ma-
chines without the use of conditional compi-
lation. The multiprocessor support obviously
adds complexity to the code for a single proces-
sor code, but this code is negligible in the case
of transitioning frequencies. The driver ini-
tialization and termination code is made more
complex and lengthy, but this is not frequently
executed code. There is also a small penalty in
terms of code space.

The author does not feel that the penalty of the
multiple processor support code is noticeable
on a single processor system, but this is obvi-
ously debatable. The current choice is to have
a single driver that supports both single proces-
sor and multiple processor systems.

As the primary performance cost is in terms
of additional code space, it is true that a sin-
gle processor machine with highly constrained
memory may benefit from a simplified driver
without the additional multi-processor support
code. However, such a machine would see
greater benefit by eliminating other code that
would not be necessary on a chosen platform.
For example, the PSB support code could be
removed from a memory constrained single
processor machine that was using ACPI.

This approach of removing code unnecessary
for a particular platform is not a wonderful ap-
proach when it leads to multiple variants of
the driver, all of which have to be supported
and enhanced, and which makes Kconfig even
more complex.

8.10 Stages Of Development, Test And Debug
Of The Driver

The algorithm for transitioning to a new fre-
quency is complex. See the BKDG[4] for a
good description of the steps required, includ-
ing flowcharts. In order to test and debug the
frequency/voltage transition code thoroughly,
the author first wrote a simple simulation of the
processor. This simulation maintained a state
machine, verified that fid/vid MSR control ac-
tivity was legal, provided fid/vid status MSR
results, and wrote a log file of all activity. The
core driver code was then written as an appli-
cation and linked with this simulation code to
allow testing of all combinations.

The driver was then developed as a skele-
ton using printk to develop and test the
BIOS/ACPI interfaces without having the fre-
quency/voltage transition code present. This is
because attempts to actually transition to an in-
valid pstate often result in total system lock-
ups that offer no debug output—if the proces-
sor voltage is too low for the frequency, suc-
cessful code execution ceases.

When the skeleton was working correctly, the
actual transition code was dropped into place,
and tested on real hardware, both single pro-
cessor and multiple processor. (The single pro-
cessor driver was released many months before
the multi-processor capable driver as the multi-
processor capable hardware was not available
in the marketplace.) The functional driver was
tested, using printk to trace activity, and using
external hardware to track power usage, and
using a test driver to independently verify reg-
ister settings.

The functional driver was then made available
to various people in the community for their
feedback. The author is grateful for the ex-
tensive feedback received, which included the
changed code to implement suggestions. The
driver as it exists today is considerably im-

182 • Linux Symposium 2004 • Volume One

proved from the initial release, due to this feed-
back mechanism.

9 How To Determine Valid PStates
For A Given Processor

AMD defines pstates for each processor. A
performance state is a frequency/voltage pair
that is valid for operation of that processor.
These are specified as fid/vid (frequency iden-
tifier/voltage identifier values) pairs, and are
documented in the Processor Thermal and Data
Sheets (see references). The worst case proces-
sor power consumption for each pstate is also
characterized. The BKDG[4] contains tables
for mapping fid to frequency and vid to volt-
age.

Pstates are processor specific. I.e., 2.0 GHz at
1.45V may be correct for one model/revision
of processor, but is not necessarily correct for
a different/revision model of processor.

Code can determine whether a processor sup-
ports or does not support pstate transitions by
executing the cpuid instruction. (For details,
see the BKDG[4] or the source code for the
Linux frequency driver). This needs to be done
for each processor in an MP system.

Each processor in an MP system could theoret-
ically have different pstates.

Ideally, the processor frequency driver would
not contain hardcoded pstate tables, as the
driver would then need to be revised for new
processor revisions. The chosen solution is to
have the BIOS provide the tables of pstates,
and have the driver retrieve the pstate data from
the BIOS. There are two such tables defined for
use by BIOSs for AMD systems:

1. PSB, AMD’s original proprietary mech-
anism, which does not support MP. This
mechanism is being deprecated.

2. ACPI _PSS objects. Whereas the ACPI
specification is a standard, the data within
the_PSSobjects is AMD specific (and, in
fact, processor family specific), and thus
there is still a proprietary nature of this so-
lution.

The current AMD frequency driver obtains
data from the ACPI objects. ACPI does in-
troduce some limitations, which are discussed
later. Experimentation is ongoing with a built-
in database approach to the problem in an at-
tempt to bypass these issues, and also to allow
checking of validity of the ACPI provided data.

10 ACPI And Frequency Restric-
tions

ACPI[5] provides the_PPCobject, that is used
to constrain the pstates available. This object
is dynamic, and can therefore be used in plat-
forms for purposes such as:

• forcing frequency restrictions when oper-
ating on battery power,

• forcing frequency restrictions due to ther-
mal conditions.

For battery / mains power transitions, an ACPI-
compliant GPE (General Purpose Event) input
to the chipset (I/O hub) is dedicated to assign-
ing a SCI (System Control Interrupt) when the
power source changes. The ACPI driver will
then execute the ACPI control method (see the
_PSR power source ACPI object), which is-
sues a notify to the_CPUnobject, which trig-
gers the ACPI driver to re-evaluate the_PPC
object. If the current pstate exceeds that al-
lowed by this new evaluation of the_PPCob-
ject, the CPU frequency driver will be called to
transition to a lower pstate.

Linux Symposium 2004 • Volume One • 183

11 ACPI Issues

ACPI as a standard is not perfect. There is vari-
ation among different implementations, and
Linux ACPI support does not work on all ma-
chines.

ACPI does introduce some overhead, and some
users are not willing to enable ACPI.

ACPI requires that pstates be of equivalent
power usage and frequency across all proces-
sors. In a system with processors that are ca-
pable of different maximum frequencies (for
example, one processor capable of 2.0 GHz
and a second processor capable of 2.2 GHz),
compliance with the ACPI specification means
that the faster processor(s) will be restricted to
the maximum speed of the slowest processor.
Also, if one processor has 5 available pstates,
the presence of processor with only 4 available
pstates will restrict all processors to 4 pstates.

12 What Is There Today?

AMD is shipping pstate capable AMD Opteron
processors (revision CG). Server processors
prior to revision CG were not pstate capable.
All AMD Athlon 64 processors for mobile and
desktop are pstate capable.

BKDG[4] enhancements to describe the capa-
bility are in progress.

AMD internal BIOSs have the enhancements.
These enhancements are rolling out to the pub-
licly available BIOSs along with the BKDG
enhancements.

The multi-processor capable Linux frequency
driver has released under GPL.

The cpufreqd user-mode daemon, available
for download fromhttp://sourceforge.

net/projects/cpufreqd supports multiple

processors.

13 Other Software-directed Power
Saving Mechanisms

13.1 Use Of TheHLT Instruction

The hlt instruction is normally used when the
operating system has no code for the processor
to execute. This is the ACPI C1 state. Exe-
cution of instructions ceases, until the proces-
sor is restarted with an interrupt. The power
savings are maximized when the hlt state is en-
tered in the minimum pstate, due to the lower
voltage. The alternative to the use of the hlt
instruction is a do nothing loop.

13.2 Use of Power Managed Chipset Drivers

Devices on the planar board, such as a PCI-X
bridge or an AGP tunnel, may have the capabil-
ity to operate in lower power modes. Entering
and leaving the lower power modes is under the
control of the driver for that device.

Note that HyperTransport attached devices can
transition themselves to lower power modes
when certain messages are seen on the bus.
However, this functionality is typically config-
urable, so a chipset driver (or the system BIOS
during bootup) would need to enable this capa-
bility.

14 Items For Future Exploration

14.1 A Built-in Database

The theory is that the driver could have a built-
in database of processors and the pstates that
they support. The driver could then use this
database to obtain the pstate data without de-
pendencies on ACPI, or use it for enhanced

184 • Linux Symposium 2004 • Volume One

checking of the ACPI provided data. The dis-
advantage of this is the need to update the
database for new processor revisions. The ad-
vantages are the ability to overcome the ACPI
imposed restrictions, and also to allow the use
of the technology on systems where the ACPI
support is not enabled.

14.2 Kernel Scheduler—CPU Power

An enhanced scheduler for the 2.6 kernel
(2.6.6-bk1) is aware of groups of processors
with different processing power. The power
tating of each CPU group should be dynami-
cally adjusted using a cpufreq transition noti-
fier as the processor frequencies are changed.

See http://lwn.net/Articles/
80601/ for a detailed acount of the scheduler
changes.

14.3 Thermal Management, ACPI Thermal
Zones

Publicly available BIOSs for AMD machines
do not implement thermal zones. Obviously
this is one way to provide the input control for
frequency management based on thermal con-
ditions.

14.4 Thermal Management, Service Processor

Servers typically have a service processor,
which may be compliant to the IPMI specifi-
cation. This service processor is able to ac-
curately monitor temperature at different lo-
cations within the chassis. The 2.6 kernel
includes an IPMI driver. User space code
may use these thermal readings to control fan
speeds and generate administrator alerts. It
may make sense to also use these accurate ther-
mal readings to trigger frequency transitions.

The interaction between thermal events from
the service processor and ACPI thermal zones

may be a problem.

Hiding Thermal Conditions

One concern with the use of CPU frequency
manipulation to avoid overheating is that hard-
ware problems may not be noticed. Over tem-
perature conditions would normally cause ad-
ministrator alerts, but if the processor is first
taken to a lower frequency to hold temperature
down, then the alert may not be generated. A
failing fan (not spinning at full speed) could
therefore be missed. Some hardware compo-
nents fail gradually, and early warning of im-
minent failures is needed to perform planned
maintenance. Losing this data would be bad-
ness.

15 Legal Information

Copyright © 2004 Advanced Micro Devices, Inc

Permission to redistribute in accordance with Linux
Symposium submission guidelines is granted; all
other rights reserved.

AMD, the AMD Arrow logo, AMD Opteron,
AMD Athlon and combinations thereof, AMD-
8111, AMD-8131, and AMD-8151 are trademarks
of Advanced Micro Devices, Inc.

Linux is a registered trademark of Linus Torvalds.

HyperTransport is a licensed trademark of the Hy-
perTransport Technology Consortium.

Other product names used in this publication are for
identification purposes only and may be trademarks
of their respective companies.

16 References

1. AMD Opteron™ Processor Data Sheet,
publication 23932, available fromwww.
amd.com

2. AMD Opteron™ Processor Power And

Linux Symposium 2004 • Volume One • 185

Thermal Data Sheet, publication 30417,
available fromwww.amd.com

3. AMD Athlon™ 64 Processor Power And
Thermal Data Sheet, publication 30430,
available fromwww.amd.com

4. BIOS and Kernel Developer’s Guide (the
BKDG) for AMD Athlon™ 64 and AMD
Opteron™ Processors, publication 26094,
available fromwww.amd.com. Chapter
9 covers frequency management.

5. ACPI 2.0b Specification, fromwww.
acpi.info

6. Text documentation files in the kernel
linux/Documentation/cpu-freq/

directory:

• index.txt

• user-guide.txt

• core.txt

• cpu-drivers.txt

• governors.txt

186 • Linux Symposium 2004 • Volume One

Proceedings of the
Linux Symposium

Volume One

July 21st–24th, 2004
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

