
Big Servers—2.6 compared to 2.4

Wim A. Coekaerts
Oracle Corporation

wim.coekaerts@oracle.com

Abstract

Linux 2.4 has been around in production en-
vironments at companies for a few years now,
we have been able to gather some good data
on how well (or not) things scale up. Number
of CPU’s, amount of memory, number of pro-
cesses, IO throughput, etc.

Most of the deployments in production today,
are on relatively small systems, 4- to 8-ways,
8–16GB of memory, in a few cases 32GB.
The architecture of choice has also been IA32.
64-bit systems are picking up in popularity
rapidly, however.

Now with 2.6, a lot of the barriers are supposed
to be gone. So, have they really? How much
memory can be used now, how is cpu scaling
these days, how good is IO throughput with
multiple controllers in 2.6.

A lot of people have the assumption that 2.6
resolves all of this. We will go into detail on
what we have found out, what we have tested
and some of the conclusions on how good the
move to 2.6 will really be.

1 Introduction

The comparison between the 2.4 and 2.6 ker-
nel trees are not solely based on performance.
A large part of the testsuites are performance
benchmarks however, as you will see, they
have been used to also measure stability. There

are a number of features added which improve
stability of the kernel under heavy workloads.
The goal of comparing the two kernel releases
was more to show how well the 2.6 kernel will
be able to hold up in a real world production
environment. Many companies which have de-
ployed Linux over the last two years are look-
ing forward to rolling out 2.6 and it is impor-
tant to show the benefits of doing such a move.
It will take a few releases before the required
stability is there however it’s clear so far that
the 2.6 kernel has been remarkably solid, so
early on.

Most of the 2.4 based tests have been run on
Red Hat Enterprise Linux 3, based on Linux
2.4.21. This is the enterprise release of Red
Hat’s OS distribution; it contains a large num-
ber of patches on top of the Linux 2.4 kernel
tree. Some of the tests have been run on the
kernel.org mainstream 2.4 kernel, to show
the benefit of having extra functionality. How-
ever it is difficult to even just boot up the main-
stream kernel on the test hardware due to lack
of support for drivers, or lack of stability to
complete the testsuite. The interesting thing to
keep in mind is that with the current Linux 2.6
main stream kernel, most of the testsuites ran
through completition. A number of test runs on
Linux 2.6 have been on Novell/SuSE SLES9
beta release.



164 • Linux Symposium 2004 • Volume One

2 Test Suites

The test suites used to compare the various ker-
nels are based on an IO simulator for Oracle,
called OraSim and a TPC-C like workload gen-
erator called OAST.

Oracle Simulator (OraSim) is a stand-alone
tool designed to emulate the platform-critical
activities of the Oracle database kernel. Oracle
designed Oracle Simulator to test and charac-
terize the input and output (I/O) software stack,
the storage system, memory management, and
cluster management of Oracle single instances
and clusters. Oracle Simulator supports both
pass-fail testing for validation, and analytical
testing for debugging and tuning. It runs mul-
tiple processes, with each process representing
the parameters of a particular type of system
load similar to the Oracle database kernel.

OraSim is a relatively straightforward IO
stresstest utility, similar to IOzone or tiobench,
however it is built to be very flexible and con-
figurable.

It has its own script language which allows one
to build very complex IO patterns. The tool is
not released under any open source license to-
day because it has some code linked in which is
part of the RDBMS itself. The jobfiles used for
the testing are available onlinehttp://oss.

oracle.com/external/ols/jobfiles/ .

The advantage of using OraSim over a real
database benchmark is mainly the simplicity.
It does not require large amounts of memory or
large installed software components. There is
one executable which is started with the jobfile
as a parameter.The jobfiles used can be easily
modified to turn on certain filesystem features,
such as asynchronous IO.

OraSim jobfiles were created to simulate a rel-
atively small database. 10 files are defined as
actual database datafiles and two files are used

to simulate database journals.

OAST on the other hand is a complete database
stress test kit, based on the TPC-C benchmark
workloads. It requires a full installation of
the database software and relies on an actual
database environment to be created. TPC-C
is an on-line transaction workload. The num-
bers represented during the testruns are not ac-
tual TPC-C benchmarks results and cannot or
should not be used as a measure of TPC-C
performance—they are TPC-C-like; however,
not the same.

The database engine which runs the OAST
benchmark allocates a large shared memory
segment which contains the database caches
for SQL and for data blocks (shared pool and
buffer cache). Every client connection can run
on the same server or the connection can be
over TCP. In case of a local connection, for
each client, 2 processes are spawned on the
system. One process is a dedicated database
process and the other is the client code which
communicates with the database server pro-
cess through IPC calls. Test run parameters in-
clude run time length in seconds and number of
client connections. As you can see in the result
pages, both remote and local connections have
been tested.

3 Hardware

A number of hardware configurations have
been used. We tried to include various CPU
architectures as well as local SCSI disk ver-
sus network storage (NAS) and fibre channel
(SAN).

Configuration 1 consists of an 8-way IA32
Xeon 2 GHz with 32GB RAM attached to an
EMC CX300 Clariion array with 30 147GB
disks using a QLA2300 fibre channel HBA.
The network cards are BCM5701 Broadcom
Gigabit Ethernet.



Linux Symposium 2004 • Volume One • 165

Configuration 2 consists of an 8-way Itanium 2
1.3 GHz with 8GB RAM attached to a JBOD
fibre channel array with 8 36GB disks using
a QLA2300 fibre channel HBA. The network
cards are BCM5701 Broadcom Gigabit Ether-
net.

Configuration 3 consists of a 2-way AMD64 2
GHz (Opteron 246) with 6GB RAM attached
to local SCSI disk (LSI Logic 53c1030).

4 Operating System

The Linux 2.4 test cases were created using
Red Hat Enterprise Linux 3 on all architec-
tures. Linux 2.6 was done with SuSE SLES9
on all architectures; however, in a number of
tests the kernel was replaced by the 2.6 main-
stream kernel for comparison.

The test suites and benchmarks did not have
to be recompiled to run on either RHEL3 or
SLES9. Of course different executables were
used on the three CPU architectures.

5 Test Results

At the time of writing a lot of changes were
still happening on the 2.6 kernel. As such,
the actual spreadsheets with benchmark data
has been published on a website, the data is
up-to-date with the current kernel tree and can
be found here:http://oss.oracle.com/

external/ols/results/

5.1 IO

If you want to build a huge database server,
which can handle thousands of users, it is im-
portant to be able to attach a large number of
disks. A very big shortcoming in Linux 2.4
was the fact that it could only handle 128 or
256.

With some patches SuSE got to around 3700
disks in SLES8, however that meant stealing
major numbers from other components. Re-
ally large database setups which also require
very high IO throughput, usually have disks at-
tached ranging from a few hundred to a few
thousand.

With the 64-bitdev_t in 2.6, it’s now possible
to attach plenty of disk. Without modifications
it can easily handle tens of thousands of de-
vices attached. This opens the world to really
large scale datawarehouses, tens of terabytes of
storage.

Another important change is the block IO
layer, the BIO code is much more efficient
when it comes to large IOs being submitted
down from the running application. In 2.4,
every IO got broken down into small chunks,
sometimes causing bottlenecks on allocating
accounting structures. Some of the tests com-
pared 1MBread() and write() calls in
2.4 and 2.6.

5.2 Asynchronous IO and DirectIO

If there is one feature that has always been on
top of the Must Have list for large database
vendors, it must be async IO. Asynchronous IO
allows processes to submit batches of IO oper-
ations and continue on doing different tasks in
the meantime. It improves CPU utilization and
can keep devices more busy. The Enterprise
distributions based on Linux 2.4 all ship with
the async IO patch applied on top of the main-
line kernel.

Linux 2.6 has async IO out of the box. It is
implemented a little different from Linux 2.4
however combined with support for direct IO it
is very performant. Direct IO is very useful as
it eliminates copying the userspace buffers into
kernel space. On systems that are constantly
overloaded, there is a nice performance im-



166 • Linux Symposium 2004 • Volume One

provement to be gained doing direct IO. Linux
2.4 did not have direct IO and async IO com-
bined. As you can see in the performance
graph on AIO+DIO, it provides a significant
reduction in CPU utilization.

5.3 Virtual Memory

There has been another major VM overhaul in
Linux 2.6, in fact, even after 2.6.0 was released
a large portion has been re-written. This was
due to large scale testing showing weaknesses
as it relates to number of users that could be
handled on a system. As you can see in the test
results, we were able to go from around 3000
users to over 7000 users. In particular on 32-
bit systems, the VM has been pretty much a
disaster when it comes to deploying a system
with more than 16GB of RAM. With the latest
VM changes it is now possible to push a 32GB
even up to 48GB system pretty reliably.

Support for large pages has also been a big
winner. HUGETLBFSreduces TLB misses by
a decent percentage. In some of the tests it
provides up to a 3% performance gain. In our
testsHUGETLBFSwould be used to allocate
the shared memory segment.

5.4 NUMA

Linux 2.6 is the first Linux kernel with real
NUMA support. As we see high-end cus-
tomers looking at deploying large SMP boxes
running Linux, this became a real requirement.
In fact even with the AMD64 design, NUMA
support becomes important for performance
even when looking at just a dual-CPU system.

NUMA support has two components; however,
one is the fact that the kernel VM allocates
memory for processes in a more efficient way.
On the other hand, it is possible for applica-
tions to use the NUMA API and tell the OS
where memory should be allocated and how.

Oracle has an extention for Itanium2 to support
the libnuma API from Andi Kleen. Making use
of this extention showed a significant improve-
ment, up to about 20%. It allows the database
engine to be smart about memory allocations
resulting in a significant performance gain.

6 Conclusion

It is very clear that many of the features that
were requested by the larger corporations pro-
viding enterprise applications actually help a
huge amount. The advantage of having Asyn-
chronous IO or NUMA support in the main-
stream kernel is obvious. It takes a lot of effort
for distribution vendors to maintain patches on
top of the mainline kernel and when functional-
ity makes sense it helps to have it be included
in mainline. Micro-optimizations are still be-
ing done and in particular the VM subsystem
can improve quite a bit. Most of the stability
issues are around 32-bit, where the LowMem
versus HighMem split wreaks havoc quite fre-
quently. At least with some of the features now
in the 2.6 kernel it is possible to run servers
with more than 16GB of memory and scale up.

The biggest surprise was the stability. It was
very nice to see a new stable tree be so solid
out of the box, this in contrast to earlier stable
kernel trees where it took quite a few iterations
to get to the same point.

The major benefit of 2.6 is being able to run on
really large SMP boxes: 32-way Itanium2 or
Power4 systems with large amounts of mem-
ory. This was the last stronghold of the tradi-
tional Unices and now Linux can play along-
side with them even there. Very exciting times.



Proceedings of the
Linux Symposium

Volume One

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


