
Get More Device Drivers out of the Kernel!

Peter Chubb∗

National ICT Australia
and

The University of New South Wales
peterc@gelato.unsw.edu.au

Abstract

Now that Linux has fast system calls, good
(and getting better) threading, and cheap con-
text switches, it’s possible to write device
drivers that live in user space for whole new
classes of devices. Of course, some device
drivers (Xfree, in particular) have always run
in user space, with a little bit of kernel support.
With a little bit more kernel support (a way to
set up and tear down DMA safely, and a gen-
eralised way to be informed of and control in-
terrupts) almost any PCI bus-mastering device
could have a user-mode device driver.

I shall talk about the benefits and drawbacks
of device drivers being in user space or ker-
nel space, and show that performance concerns
are not really an issue—in fact, on some plat-
forms, our user-mode IDE driver out-performs
the in-kernel one. I shall also present profiling
and benchmark results that show where time is
spent in in-kernel and user-space drivers, and
describe the infrastructure I’ve added to the
Linux kernel to allow portable, efficient user-
space drivers to be written.

∗This work was funded by HP, National ICT Aus-
tralia, the ARC, and the University of NSW through the
Gelato programme (http://www.gelato.unsw.
edu.au)

1 Introduction

Normal device drivers in Linux run in the ker-
nel’s address space with kernel privilege. This
is not the only place they can run—see Fig-
ure 1.

Kernel

Own

Client

A

B C

D

UserKernel

Privilege

A
dd

re
ss

 S
pa

ce

Figure 1: Where a Device Driver can Live

Point A is the normal Linux device driver,
linked with the kernel, running in the kernel
address space with kernel privilege.

Device drivers can also be linked directly with
the applications that use them (Point B)—
the so-called ‘in-process’ device drivers pro-
posed by [Keedy, 1979]—or run in a separate
process, and be talked to by an IPC mech-
anism (for example, an X server, point D).
They can also run with kernel privilege, but
with a separate kernel address space (Point

150 • Linux Symposium 2004 • Volume One

C) (as in the Nooks system described by
[Swift et al., 2002]).

2 Motivation

Traditionally, device drivers have been devel-
oped as part of the kernel source. As such, they
haveto be written in the C language, and they
have to conform to the (rapidly changing) in-
terfaces and conventions used by kernel code.
Even though drivers can be written as mod-
ules (obviating the need to reboot to try out
a new version of the driver1), in-kernel driver
code has access to all of kernel memory, and
runs with privileges that give it access to all in-
structions (not just unprivileged ones) and to
all I/O space. As such, bugs in drivers can eas-
ily cause kernel lockups or panics. And various
studies (e.g., [Chou et al., 2001]) estimate that
more than 85% of the bugs in an operating sys-
tem are driver bugs.

Device drivers that run as user code, how-
ever, can use any language, can be developed
using any IDE, and can use whatever inter-
nal threading, memory management, etc., tech-
niques are most appropriate. When the infras-
tructure for supporting user-mode drivers is ad-
equate, the processes implementing the driver
can be killed and restarted almost with im-
punity as far as the rest of the operating system
goes.

Drivers that run in the kernel have to be up-
dated regularly to match in-kernel interface
changes. Third party drivers are therefore usu-
ally shipped as source code (or with a compi-
lable stub encapsulating the interface) that has
to be compiled against the kernel the driver is
to be installed into.

This means that everyone who wants to run a

1except that many drivers currently cannot be un-
loaded

third-party driver also has to have a toolchain
and kernel source on his or her system, or ob-
tain a binary for their own kernel from a trusted
third party.

Drivers for uncommon devices (or devices that
the mainline kernel developers do not use reg-
ularly) tend to lag behind. For example, in the
2.6.6 kernel, there are 81 drivers known to be
broken because they have not been updated to
match the current APIs, and a number more
that are still using APIs that have been depre-
cated.

User/kernel interfaces tend to change much
more slowly than in-kernel ones; thus a
user-mode driver has much more chance of
not needing to be changed when the kernel
changes. Moreover, user mode drivers can be
distributed under licences other than the GPL,
which may make them more attractive to some
people2.

User-mode drivers can be either closely or
loosely coupled with the applications that use
them. Two obvious examples are the X server
(XFree86) which uses a socket to communicate
with its clients and so has isolation from ker-
nel and client address spaces and can be very
complex; and the Myrinet drivers, which are
usually linked into their clients to gain perfor-
mance by eliminating context switch overhead
on packet reception.

The Nooks work [Swift et al., 2002] showed
that by isolating drivers from the kernel ad-
dress space, the most common programming
errors could be made recoverable. In Nooks,
drivers are insulated from the rest of the kernel
by running each in a separate address space,
and replacing the driver↔ kernel interface
with a new one that uses cross-domain pro-
cedure calls to replace any procedure calls in
the ABI, and that creates shadow copies of any

2for example, the ongoing problems with the Nvidia
graphics card driver could possibly be avoided.

Linux Symposium 2004 • Volume One • 151

shared variables in the protected address space
of the driver.

This approach provides isolation, but also has
problems: as the driver model changes, there
is quite a lot of wrapper code that has to be
changed to accommodate the changed APIs.
Also, the value of any shared variable is frozen
for the duration of a driver ABI call. The
Nooks work is uniprocessor only; locking is-
sues therefore have not yet been addressed.

Windriver [Jungo, 2003] allows development
of user mode device drivers. It loads a pro-
prietary device module/dev/windrv6 ; user
code can interact with this device to setup and
teardown DMA, catch interrupts, etc.

Even from user space, of course, it is possi-
ble to make your machine unusable. Device
drivers have to be trusted to a certain extent to
do what they are advertised to do; this means
that they can program their devices, and possi-
bly corrupt or spy on the data that they transfer
between their devices and their clients. Mov-
ing a driver to user space does not change this.
It does however make it less likely that a fault
in a driver will affect anything other than its
clients

3 Existing Support

Linux has good support for user-mode drivers
that do not need DMA or interrupt handling—
see, e.g., [Nakatani, 2002].

The ioperm() andiopl() system calls al-
low access to the first 65536 I/O ports; and,
with a patch from Albert Calahan3 one can
map the appropriate parts of/proc/bus/pci/...to
gain access to memory-mapped registers. Or
on some architectures it is safe tommap()
/dev/mem.

3http://lkml.org/lkml/2003/7/13/258

It is usually best to use MMIO if it is avail-
able, because on many 64-bit platforms there
are more than 65536 ports—the PCI specifi-
cation says that there are232 ports available—
(and on many architectures the ports are emu-
lated by mapping memory anyway).

For particular devices—USB input devices,
SCSI devices, devices that hang off the paral-
lel port, and video drivers such as XFree86—
there is explicit kernel support. By opening a
file in /dev, a user-mode driver can talk through
the USB hub, SCSI controller, AGP controller,
etc., to the device. In addition, theinput han-
dler allows input events to be queued back into
the kernel, to allow normal event handling to
proceed.

libpci allows access to the PCI configuration
space, so that a driver can determine what in-
terrupt, IO ports and memory locations are be-
ing used (and to determine whether the device
is present or not).

Other recent changes—an improved scheduler,
better and faster thread creation and synchro-
nisation, a fully preemptive kernel, and faster
system calls—mean that it is possible to write
a driver that operates in user space that is al-
most as fast as an in-kernel driver.

4 Implementing the Missing Bits

The parts that are missing are:

1. the ability to claim a device from user
space so that other drivers do not try to
handle it;

2. The ability to deliver an interrupt from a
device to user space,

3. The ability to set up and tear-down DMA
between a device and some process’s
memory, and

152 • Linux Symposium 2004 • Volume One

4. the ability to loop a device driver’s con-
trol and data interfaces into the appropri-
ate part of the kernel (so that, for exam-
ple, an IDE driver can appear as a standard
block device), preferably without having
to copy any payload data.

The work at UNSW covers only PCI devices,
as that is the only bus available on all of the
architectures we have access to (IA64, X86,
MIPS, PPC, alpha and arm).

4.1 PCI interface

Each device should have only a single driver.
Therefore one needs a way to associate a driver
with a device, and to remove that association
automatically when the driver exits. This has
to be implemented in the kernel, as it is only
the kernel that can be relied upon to clean up
after a failed process. The simplest way to
keep the association and to clean it up in Linux
is to implement a new filesystem, using the
PCI namespace. Open files are automatically
closed when a process exits, so cleanup also
happens automatically.

A new system call,usr_pci_open(int
bus, int slot, int fn) returns a file
descriptor. Internally, it callspci_enable_
device() andpci_set_master() to set
up the PCI device after doing the standard
filesystem boilerplate to set up a vnode and a
struct file .

Attempts to open an already-opened PCI de-
vice will fail with -EBUSY.

When the file descriptor is finally closed, the
PCI device is released, and any DMA map-
pings removed. All files are closed when a pro-
cess dies, so if there is a bug in the driver that
causes it to crash, the system recovers ready for
the driver to be restarted.

4.2 DMA handling

On low-end systems, it’s common for the PCI
bus to be connected directly to the memory
bus, so setting up a DMA transfer means
merely pinning the appropriate bit of memory
(so that the VM system can neither swap it out
nor relocate it) and then converting virtual ad-
dresses to physical addresses.

There are, in general, two kinds of DMA, and
this has to be reflected in the kernel interface:

1. Bi-directional DMA, for holding scatter-
gather lists, etc., for communication with
the device. Both the CPU and the device
read and write to a shared memory area.
Typically such memory is uncached, and
on some architectures it has to be allo-
cated from particular physical areas. This
kind of mapping is calledPCI-consistent;
there is an internal kernel ABI function to
allocate and deallocate appropriate mem-
ory.

2. Streaming DMA, where, once the device
has either read or written the area, it has
no further immediate use for it.

I implemented a new system call4, usr_pci_
map() , that does one of three things:

1. Allocates an area of memory suitable for a
PCI-consistent mapping, and maps it into
the current process’s address space; or

2. Converts a region of the current process’s
virtual address space into a scatterlist in
terms of virtual addresses (one entry per
page), pins the memory, and converts the

4Although multiplexing system calls are in general
deprecated in Linux, they are extremely useful while de-
veloping, because it is not necessary to change every
architecture-dependententry.Swhen adding new func-
tionality

Linux Symposium 2004 • Volume One • 153

scatterlist into a list of addresses suitable
for DMA (by calling pci_map_sg() ,
which sets up the IOMMU if appropriate),
or

3. Undoes the mapping in point 2.

The file descriptor returned fromusr_pci_
open() is an argument tousr_pci_
map() . Mappings are tracked as part of the
private data for that open file descriptor, so that
they can be undone if the device is closed (or
the driver dies).

Underlyingusr_pci_map() are the kernel
routinespci_map_sg() andpci_unmap_
sg() , and the kernel routinepci_alloc_
consistent() .

Different PCI cards can address different
amounts of DMA address space. In the kernel
there is an interface to request that the dma ad-
dresses supplied are within the range address-
able by the card. The current implementation
assumes 32-bit addressing, but it would be pos-
sible to provide an interface to allow the real
capabilities of the device to be communicated
to the kernel.

4.2.1 The IOMMU

Many modern architectures have an IO mem-
ory management unit (see Figure 2), to convert
from physical to I/O bus addresses—in much
the same way that the processor’s MMU con-
verts virtual to physical addresses—allowing
even thirty-two bit cards to do single-cycle
DMA to anywhere in the sixty-four bit mem-
ory address space.

On such systems, after the memory has been
pinned, the IOMMU has to be set up to trans-
late from bus to physical addresses; and then
after the DMA is complete, the translation can
be removed from the IOMMU.

Device 1

Device 2

Device 3

IOMMU
Main

Memory

PCI bus

Figure 2: The IO MMU

The processor’s MMU also protects one virtual
address space from another. Currently ship-
ping IOMMU hardware does not do this: all
mappings are visible to all PCI devices, and
moreover for some physical addresses on some
architectures the IOMMU is bypassed.

For fully secure user-space drivers, one would
want this capability to be turned off, and also
to be able to associate a range of PCI bus ad-
dresses with a particular card, and disallow ac-
cess by that card to other addresses. Only thus
could one ensure that a card could perform
DMA only into memory areas explicitly allo-
cated to it.

4.3 Interrupt Handling

There are essentially two ways that interrupts
can be passed to user level.

They can be mapped onto signals, and sent
asynchronously, or a synchronous ‘wait-for-
signal’ mechanism can be used.

A signal is a good intuitive match for what an
interruptis, but has other problems:

1. One is fairly restricted in what one can do
in a signal handler, so a driver will usually

154 • Linux Symposium 2004 • Volume One

have to take extra context switches to re-
spond to an interrupt (into and out of the
signal handler, and then perhaps the inter-
rupt handler thread wakes up)

2. Signals can be slow to deliver on busy sys-
tems, as they require the process table to
be locked. It would be possible to short
circuit this to some extent.

3. One needs an extra mechanism for regis-
tering interest in an interrupt, and for tear-
ing down the registration when the driver
dies.

For these reasons I decided to map interrupts
onto file descriptors./proc already has a di-
rectory for each interrupt (containing a file that
can be written to to adjust interrupt routing to
processors); I added a new file to each such di-
rectory. Suitably privileged processes can open
and read these files. The files have open-once
semantics; attempts to open them while they
are open return−1 with EBUSY.

When an interrupt occurs, the in-kernel inter-
rupt handler masks just that interrupt in the in-
terrupt controller, and then does anup() op-
eration on a semaphore (well, actually, the im-
plementation now uses a wait queue, but the
effect is the same).

When a process reads from the file, then kernel
enables the interrupt, then callsdown() on a
semaphore, which will block until an interrupt
arrives.

The actual data transferred is immaterial, and
in fact none ever is transferred; theread()
operation is used merely as a synchronisation
mechanism.

poll() is also implemented, so a user pro-
cess is not forced into the ‘wait for interrupt’
model that we use.

Obviously, one cannot share interrupts be-

tween devices if there is a user process in-
volved. The in-kernel driver merely passes
the interrupt onto the user-mode process; as it
knows nothing about the underlying hardware,
it cannot tell if the interrupt isreally for this
driver or not. As such it always reports the in-
terrupt as ‘handled.’

This scheme works only for level-triggered in-
terrupts. Fortunately, all PCI interrupts are
level triggered.

If one really wants a signal when an interrupt
happens, one can arrange for aSIGIO using
fcntl() .

It may be possible, by more extensive rear-
rangement of the interrupt handling code, to
delay the end-of-interrupt to the interrupt con-
troller until the user process is ready to get an
interrupt. As masking and unmasking inter-
rupts is slow if it has to go off-chip, delay-
ing the EOI should be significantly faster than
the current code. However, interrupt delivery
to userspace turns out not to be a bottleneck,
so there’s not a lot of point in this optimisa-
tion (profiles show less than 0.5% of the time
is spent in the kernel interrupt handler and de-
livery even for heavy interrupt load—around
1000 cycles per interrupt).

5 Driver Structure

The user-mode drivers developed at UNSW are
structured as a preamble, an interrupt thread,
and a control thread (see Figure 3).

The preamble:

1. Useslibpci.a to find the device or devices
it is meant to drive,

2. Calls usr_pci_open() to claim the
device, and

3. Spawns the interrupt thread, then

Linux Symposium 2004 • Volume One • 155

Generic
IRQ Handler

usrdrv
Driver

Architecture−dependent
DMA support

Driver

pci_map_sg()
pci_unmap_sg()

pci_map()
pci_unmap()

Client

IPC or
function calls

pci_read_config()

read()

User

Kernel

libpci

Figure 3: Architecture of a User-Mode Device
Driver

4. Goes into a loop collecting client requests.

The interrupt thread:

1. Opens/proc/irq/irq /irq

2. Loops callingread() on the resulting
file descriptor and then calling the driver
proper to handle the interrupt.

3. The driver handles the interrupt, calls out
to the control thread(s) to say that work is
completed or that there has been an error,
queues any more work to the device, and
then repeats from step 2.

For the lowest latency, the interrupt thread can
be run as a real time thread. For our bench-
marks, however, this was not done.

The control thread queues work to the driver
then sleeps on a semaphore. When the driver,
running in the interrupt thread, determines that
a request is complete, it signals the semaphore

so that the control thread can continue. (The
semaphore is implemented as a pthreads mu-
tex).

The driver relies on system calls and threading,
so the fast system call support now available
in Linux, and the NPTL are very important to
get good performance. Each physical I/O in-
volves at least three system calls, plus what-
ever is necessary for client communication: a
read() on the interrupt FD, calls to set up
and tear down DMA, and maybe afutex()
operation to wake the client.

The system call overhead could be reduced by
combining DMA setup and teardown into a
single system call.

6 Looping the Drivers

An operating system has two functions with re-
gard to devices: firstly to drive them, and sec-
ondly to abstract them, so that all devices of the
same class have the same interface. While a
standalone user-level driver is interesting in its
own right (and could be used, for example, to
test hardware, or could be linked into an appli-
cation that doesn’t like sharing the device with
anyone), it is much more useful if the driver
can be used like any other device.

For the network interface, that’s easy: use
the tun/tap interface and copy frames between
the driver and/dev/net/tun. Having to copy
slows things down; others on the team here are
planning to develop a zero-copy equivalent of
tun/tap.

For the IDE device, there’s no standard Linux
way to have a user-level block device, so I im-
plemented one. It is a filesystem that has pairs
of directories: a master and a slave. When
the filesystem is mounted, creating a file in the
master directory creates a set of block device
special files, one for each potential partition, in

156 • Linux Symposium 2004 • Volume One

the slave directory. The file in the master di-
rectory can then be used to communicate via
a very simple protocol between a user level
block device and the kernel’s block layer. The
block device special files in the slave directory
can then be opened, closed, read, written or
mounted, just as any other block device.

The main reason for using a mounted filesys-
tem was to allow easy use of dynamic major
numbers.

I didn’t bother implementing ioctl; it was not
necessary for our performance tests, and when
the driver runs at user level, there are cleaner
ways to communicate out-of-band data with
the driver, anyway.

7 Results

Device drivers were coded up by
[Leslie and Heiser, 2003] for a CMD680
IDE disc controller, and by another PhD
student (Daniel Potts) for a DP83820 Gigabit
ethernet controller. Daniel also designed and
implemented the tuntap interface.

7.1 IDE driver

The disc driver was linked into a program that
read 64 Megabytes of data from a Maxtor 80G
disc into a buffer, using varying read sizes.
Measurements were also made using Linux’s
in-kernel driver, and a program that read 64M
of data from the same on-disc location using
O_DIRECTand the same read sizes.

We also measured write performance, but the
results are sufficiently similar that they are not
reproduced here.

At the same time as the tests, a low-
priority process attempted to increment a 64-
bit counter as fast as possible. The number of
increments was calibrated to processor time on

an otherwise idle system; reading the counter
before and after a test thus gives an indication
of how much processor time is available to pro-
cesses other than the test process.

The initial results were disappointing; the
user-mode drivers spent far too much time
in the kernel. This was tracked down to
kmalloc() ; so theusr_pci_map() func-
tion was changed to maintain a small cache
of free mapping structures instead of calling
kmalloc() and kfree() each time (we
could have used the slab allocator, but it’s eas-
ier to ensure that the same cache-hot descriptor
is reused by coding a small cache ourselves).
This resulted in the performance graphs in Fig-
ure 4.

The two drivers compared are the new
CMD680 driver running in user space, and
Linux’s in-kernel SIS680 driver. As can be
seen, there is very little to choose between
them.

The graphs show average of ten runs; the stan-
dard deviations were calculated, but are negli-
gible.

Each transfer request takes five system calls to
do, in the current design. The client queues
work to the driver, which then sets up DMA for
the transfer (system call one), starts the trans-
fer, then returns to the client, which then sleeps
on a semaphore (system call two). The in-
terrupt thread has been sleeping inread() ,
when the controller finishes its DMA, it cause
an interrupt, which wakes the interrupt thread
(half of system call three). The interrupt thread
then tears down the DMA (system call four),
and starts any queued and waiting activity, then
signals the semaphore (system call five) and
goes back to read the interrupt FD again (the
other half of system call three).

When the transfer is above 128k, the IDE con-
troller can no longer do a single DMA opera-

Linux Symposium 2004 • Volume One • 157

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 4096 16384 65536
 0

 10

 20

 30

 40

 50
C

P
U

 (%
)

Th
ro

ug
hp

ut
 (M

iB
/s

)

Transfer size (k)

kernel read
user read

Figure 4: Throughput and CPU usage for the user-mode IDE driver on Itanium-2, reading from a
disk

tion, so has to generate multiple transfers The
Linux kernel splits DMA requests above 64k,
thus increasing the overhead.

The time spent in this driver is divided as
shown in Figure 5.

Signal
Client

UserMode
Handler

Work

Queue
NewScheduler

Latency

IRQ

2.2 1

DMA...

Scheduler LatencyHardware

Kernel Stub 0.4

Figure 5: Timeline (inµseconds)

7.2 Gigabit Ethernet

The Gigabit driver results are more interest-
ing. We tested these using [ipbench, 2004]
with four clients, all with pause control turned
off. We ran three tests:

1. Packet receive performance, where pack-
ets were dropped and counted at the layer
immediately above the driver

2. Packet transmit performance, where pack-
ets were generated and fed to the driver,
and

3. Ethernet-layer packet echoing, where the
protocol layer swapped source and desti-
nation MAC-addresses, and fed received
packets back into the driver.

We did not want to start comparing IP stacks,
so none of these tests actually use higher level
protocols.

We measured three different configurations: a
standalone application linked with the driver,
the driver looped back into/dev/net/tapand
the standard in-kernel driver, all with interrupt

158 • Linux Symposium 2004 • Volume One

holdoff set to 0, 1, or 2. (By default, the normal
kernel driver sets the interrupt holdoff to 300
µseconds, which led to too many packets be-
ing dropped because of FIFO overflow) Not all
tests were run in all configurations—for exam-
ple the linux in-kernel packet generator is suf-
ficiently different from ours that no fair com-
parison could be made.

For the tests that had the driver residing in or
feeding into the kernel, we implemented a new
protocol module to count and either echo or
drop packets, depending on the benchmark.

In all cases, we used the amount of work
achieved by a low priority process to measure
time available for other work while the test was
going on.

The throughput graphs in all cases are the
same. The maximum possible speed on the
wire is given for raw ethernet by109 × p/(p +
38) bits per second (the parameter38 is the
ethernet header size (14 octets), plus a4 octet
frame check sequence, plus a7 octet pream-
ble, plus a 1 octet start frame delimiter plus
the minimum12 octet interframe gap;p is the
packet size in octets). For large packets the per-
formance in all cases was the same as the the-
oretical maximum. For small packet sizes, the
throughput is limited by the PCI bus; you’ll no-
tice that the slope of the throughput curve when
echoing packets is around half the slope when
discarding packets, because the driver has to do
twice as many DMA operations per packet.

The user-mode driver (‘Linux user’ on the
graph) outperforms the in-kernel driver
(‘Linux orig’)—not in terms of throughput,
where all the drivers perform identically, but
in usingmuchless processing time.

This result was so surprising that we repeated
the tests using an EEpro1000, purportedly a
card with a much better driver, but saw the
same effect—in fact the achieved echo perfor-

mance is worse than for the in-kernel ns83820
driver for some packet sizes.

The reason appears to be that our driver has
a fixed number of receive buffers, which are
reused when the client is finished with them—
they are allocated only once. This is to pro-
vide congestion control at the lowest possible
level—the card drops packets when the upper
layers cannot keep up.

The Linux kernel drivers have an essentially
unlimited supply of receive buffers. Overhead
involved in allocating and setting up DMA for
these buffers is excessive, and if the upper lay-
ers cannot keep up, congestion is detected and
the packets dropped in the protocol layer—
after significant work has been done in the
driver.

One sees the same problem with the user mode
driver feeding the tuntap interface, as there is
no feedback to throttle the driver. Of course,
here there is an extra copy for each packet,
which also reduces performance.

7.3 Reliability and Failure Modes

In general the user-mode drivers are very re-
liable. Bugs in the drivers that would cause
the kernel to crash (for example, a null pointer
reference inside an interrupt handler) cause the
driver to crash, but the kernel continues. The
driver can then be fixed and restarted.

8 Future Work

The main foci of our work now lie in:

1. Reducing the need for context switches
and system calls by merging system calls,
and by trying new driver structures.

2. A zero-copy implementation of tun/tap.

Linux Symposium 2004 • Volume One • 159

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600
 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

C
P

U
 (%

)

Th
ro

ug
hp

ut
 (b

/s
)

Packet size (octets)

Theoretical Max
Kernel EEPRO1000 driver

User mode driver, 100usec holdoff
Kernel NS83820 driver, 100usec holdoff

Figure 6: Receive Throughput and CPU usage for Gigabit Ethernet drivers on Itanium-2

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600
 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

C
P

U
 (%

)

Th
ro

ug
hp

ut
 (b

/s
)

Packet size (octets)

Theoretical Max
User mode driver, 200 usec interrupt holdoff
User mode driver, 100 usec interrupt holdoff

User mode driver, 0 usec interrupt holdoff

Figure 7: Transmit Throughput and CPU usage for Gigabit Ethernet drivers on Itanium-2

160 • Linux Symposium 2004 • Volume One

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600
 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

C
P

U
 (%

)

Th
ro

ug
hp

ut

Packet size

Theoretical Max
User mode driver

In-kernel EEPRO1000 driver
Normal kernel driver

user-mode driver -> /dev/tun/tap0

Figure 8: MAC-layer Echo Throughput and CPU usage for Gigabit Ethernet drivers on Itanium-2

3. Improving robustness and reliability of
the user-mode drivers, by experimenting
with the IOMMU on the ZX1 chipset of
our Itanium-2 machines.

4. Measuring the reliability enhancements,
by using artificial fault injection to see
what problems that cause the kernel to
crash are recoverable in user space.

5. User-mode filesystems.

In addition there are some housekeeping tasks
to do before this infrastructure is ready for in-
clusion in a 2.7 kernel:

1. Replace the ad-hoc memory cache with a
proper slab allocator.

2. Clean up the system call interface

9 Where d’ya Get It?

Patches against the 2.6 kernel are sent to the
Linux kernel mailing list, and are onhttp://
www.gelato.unsw.edu.au/patches

Sample drivers will be made available from the
same website.

10 Acknowledgements

Other people on the team here did much work
on the actual implementation of the user level
drivers and on the benchmarking infrastruc-
ture. Prominent among them were Ben Leslie
(IDE driver, port of our dp83820 into the ker-
nel), Daniel Potts (DP83820 driver, tuntap in-
terface), and Luke McPherson and Ian Wien-
and (IPbench).

Linux Symposium 2004 • Volume One • 161

References

[Chou et al., 2001] Chou, A., Yang, J., Chelf,
B., Hallem, S., and Engler, D. R. (2001).
An empirical study of operating systems
errors. InSymposium on Operating
Systems Principles, pages 73–88.
http://citeseer.nj.nec.com/
article/chou01empirical.html .

[ipbench, 2004] ipbench (2004). ipbench — a
distributed framework for network
benchmarking.

http://ipbench.sf.net/ .

[Jungo, 2003] Jungo (2003). Windriver.

http://www.jungo.com/
windriver.html .

[Keedy, 1979] Keedy, J. L. (1979). A
comparison of two process structuring
models. MONADS Report 4, Dept.
Computer Science, Monash University.

[Leslie and Heiser, 2003] Leslie, B. and
Heiser, G. (2003). Towards untrusted
device drivers. Technical Report
UNSW-CSE-TR-0303, Operating Systems
and Distributed Systems Group, School of
Computer Science and Engineering, The
University of NSW. CSE techreports
website,
ftp://ftp.cse.unsw.edu.au/
pub/doc/papers/UNSW/0303.pdf .

[Nakatani, 2002] Nakatani, B. (2002).
ELJOnline: User mode drivers.

http://www.linuxdevices.com/
articles/AT5731658926.html .

[Swift et al., 2002] Swift, M., Martin, S.,
Leyand, H. M., and Eggers, S. J. (2002).
Nooks: an architecture for reliable device
drivers. InProceedings of the Tenth ACM
SIGOPS European Workshop,
Saint-Emilion, France.

162 • Linux Symposium 2004 • Volume One

Proceedings of the
Linux Symposium

Volume One

July 21st–24th, 2004
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

