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Abstract

In January 2003, SGI announced the SGI® Al-
tix® 3000 family of servers. As announced,
the SGI Altix 3000 system supported up to
64 Intel® Itanium® 2 processors and 512 GB
of main memory in a single Linux® image.
Altix now supports up to 256 processors in
a single Linux system, and we have a few
early-adopter customers who are running 512
processors in a single Linux system; others
are running with as much as 4 terabytes of
memory. This paper continues the work re-
ported on in our 2003 OLS paper by describ-
ing the changes necessary to get Linux to effi-
ciently run high-performance computing work-
loads on such large systems.

Introduction

At OLS 2003 [1], we discussed changes to
Linux that allowed us to make Linux scale to
64 processors for our high-performance com-
puting (HPC) workloads. Since then, we have
continued our scalability work, and we now
support up to 256 processors in a single Linux
image, and we have a few early-adopter cus-
tomers who are running 512 processors in a
single-system image; other customers are run-
ning with as much as 4 terabytes of memory.

As can be imagined, the type of changes neces-
sary to get a single Linux system to scale on a
512 processor system or to support 4 terabytes
of memory are of a different nature than those
necessary to get Linux to scale up to a 64 pro-
cessor system, and the majority of this paper
will describe such changes.

While much of this work has been done in
the context of a Linux 2.4 kernel, Altix is
now a supported platform in the Linux 2.6 se-
ries (www.kernel.org versions of Linux
2.6 boot and run well on many small to mod-
erate sized Altix systems), and our plan is to
port many of these changes to Linux 2.6 and
propose them as enhancements to the commu-
nity kernel. While some of these changes will
be unique to the Linux kernel for Altix, many
of the changes we propose will also improve
performance on smaller SMP and NUMA sys-
tems, so should be of general interest to the
Linux scalability community.

In the rest of this paper, we will first provide
a brief review of the SGI Altix 3000 hard-
ware. Next we will describe why we believe
that very large single-system image, shared-
memory machine can be more effective tools
for HPC than similar sized non-shared mem-
ory clusters. We will then discuss changes that
we made to Linux for Altix in order to make
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that system a more effective system for HPC
on systems with as many as 512 processors.
A second large topic of discussion will be the
changes to support high-performance I/O on
Altix and some of the hardware underpinnings
for that support. We believe that the latter set
of problems are general in the sense that they
apply to any large scale NUMA system and the
solutions we have adopted should be of general
interest for this reason.

Even though this paper is focused on the
changes that we have made to Linux to ef-
fectively support very large Altix platforms, it
should be remembered that the total number of
such changes is small in relation to the over-
all size of the Linux kernel and its support-
ing software. SGI is committed to support-
ing the Linux community and continues to sup-
port Linux for Altix as a member of the Linux
family of kernels, and in general to support bi-
nary compatibility between Linux for Altix and
Linux on other Itanium Processor Family plat-
forms.

In many cases, the scaling changes described in
this paper have already been submitted to the
community for consideration for inclusion in
Linux 2.6. In other cases, the changes are un-
der evaluation to determine if they need to be
added to Linux 2.6, or whether they are fixes
for problems in Linux 2.4.21 (the current prod-
uct base for Linux for Altix) that are no longer
present in Linux 2.6.

Finally, this paper contains forward-looking
statements regarding SGI® technologies and
third-party technologies that are subject to
risks and uncertainties. The reader is cautioned
not to rely unduly on these forward-looking
statements, which are not a guarantee of future
or current performance, nor are they a guaran-
tee that features described herein will or will
not be available in future SGI products.

The SGI Altix Hardware

This section is condensed from [1]; the reader
should refer to that paper for additional details.

An Altix system consists of a configurable
number of rack-mounted units, each of which
SGI refers to as abrick. The most common
type of brick is the C-brick (or compute brick).
A fully configured C-brick consists of two sep-
arate dual-processor Intel Itanium 2 systems,
each of which is a bus-connected multiproces-
sor ornode.

In addition to the two processors on the bus,
there is also a SHUB chip on each bus. The
SHUB is a proprietary ASIC that (1) acts as
a memory controller for the local memory,
(2) provides the interface to the interconnec-
tion network, (3) manages the global cache co-
herency protocol, and (4) some other functions
as discussed in [1].

Memory accesses in an Altix system are either
local (i.e., the reference is to memory in the
same node as the processor) or remote. The
SHUB detects whether a reference is local, in
which case it directs the request to the mem-
ory on the node, or remote, in which case it
forwards the request across the interconnection
network to the SHUB chip where the memory
reference will be serviced.

Local memory references have lower latency;
the Altix system is thus a NUMA (non-uniform
memory access) system. The ratio of remote to
local memory access times on an Altix system
varies from 1.9 to 3.5, depending on the size
of the system and the relative locations of the
processor and memory module involved in the
transfer.

The cache-coherency policy in the Altix sys-
tem can be divided into two levels:local
andglobal. The local cache-coherency proto-
col is defined by the processors on the local
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bus and is used to maintain cache-coherency
between the Itanium processors on the bus.
The global cache-coherency protocol is imple-
mented by the SHUB chip. The global proto-
col is directory-based and is a refinement of the
protocol originally developed for DASH [2].

The Altix system interconnection network uses
routing bricks to provide connectivity in sys-
tem sizes larger than 16 processors. In systems
with 128 or more processors a second layer
of routing bricks is used to forward requests
among subgroups of 32 processors each. The
routing topology is a fat-tree topology with ad-
ditional “express” links being inserted to im-
prove performance.

Why Big SSI?

In this section we discuss the rationale for
building such a large single-system image
(SSI) box as an Altix system with 512 CPU’s
and (potentially) several TB of main memory:

(1) Shared memory systems are more flexible
and easier to manage than a cluster. One can
simulate message passing on shared memory,
but not the other way around. Software for
cluster management and system maintenance
exists, but can be expensive or complex to use.

(2) Shared memory style programming is gen-
erally simpler and more easily understood than
message passing. Debugging of code is often
simpler on a SSI system than on a cluster.

(3) It is generally easier to port or write
codes from scratch using the shared memory
paradigm. Additionally it is often possible to
simply ignore large sections of the code (e.g.
those devoted to data input and output) and
only parallelize the part that matters.

(4) A shared memory system supports eas-
ier load balancing within a computation. The

mapping of grid points to a node determines
the computational load on the node. Some grid
points may be located near more rapidly chang-
ing parts of computation, resulting in higher
computational load. Balancing this over time
requires moving grid points from node to node
in a cluster, where in a shared memory system
such re-balancing is typically simpler.

(5) Access to large global data sets is simpli-
fied. Often, the parallel computation depends
on a large data set describing, for example, the
precise dimensions and characteristics of the
physical object that is being modeled. This
data set can be too large to fit into the node
memories available on a clustered machine, but
it can readily be loaded into memory on a large
shared memory machine.

(6) Not everything fits into the cluster model.
While many production codes have been con-
verted to message passing, the overall compu-
tation may still contain one or more phases that
are better performed using a large shared mem-
ory system. Or, there may be a subset of users
of the system who would prefer a shared mem-
ory paradigm to a message passing one. This
can be a particularly important consideration in
large data-center environments.

Kernel Changes

In this section we describe the most significant
kernel problems we have encountered in run-
ning Linux on a 512 processor Altix system.

Cache line and TLB Conflicts

Cache line conflicts occur in every cache-
coherent multiprocessor system, to one extent
or another, and whether or not the conflict ex-
hibits itself as a performance problem is depen-
dent on the rate at which the conflict occurs and
the time required by the hardware to resolve
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the conflict. The latter time is typically propor-
tional to the number of processors involved in
the conflict. On Altix systems with 256 proces-
sors or more, we have encountered some cache
line conflicts that can effectively halt forward
progress of the machine. Typically, these con-
flicts involve global variables that are updated
at each timer tick (or faster) by every processor
in the system.

One example of this kind of problem is the de-
fault kernel profiler. When we first enabled
the default kernel profiler on a 512 CPU sys-
tem, the system would not boot. The reason
was that once per timer tick, each processor
in the system was trying to update the pro-
filer bin corresponding to the CPU idle routine.
A work around to this problem was to initial-
ize prof_cpu_mask to CPU_MASK_NONE
instead of the default. This disables profil-
ing on all processors until the user sets the
prof_cpu_mask .

Another example of this kind of problem was
when we imported some timer code from
Red Hat® AS 3.0. The timer code included
a global variable that was used to account for
differences between HZ (typically a power of
2) and the number of microseconds in a sec-
ond (nominally 1,000,000). This global vari-
able was updated by each processor on each
timer tick. The result was that on Altix sys-
tems larger than about 384 processors, forward
progress could not be made with this version
of the code. To fix this problem, we made this
global variable a per processor variable. The
result was that the adjustment for the differ-
ence between HZ and microseconds is done on
a per processor rather than on a global basis,
and now the system will boot.

Still other cache line conflicts were remedied
by identifying cases of false cache line sharing
i.e., those cache lines that inadvertently contain
a field that is frequently written by one CPU

and another field (or fields) that are frequently
read by other CPUs.

Another significant bottleneck is the ia64
do_gettimeofday() with its use of
cmpxchg . That operation is expensive on
most architectures, and concurrentcmpxchg
operations on a common memory location
scale worse than concurrent simple writes from
multiple CPUs. On Altix, four concurrent user
gettimeofday() system calls complete in
almost an order of magnitude more time than a
singlegettimeofday() ; eight are 20 times
slower than one; and the scaling deteriorates
nonlinearly to the point where 32 concurrent
system calls is 100 times slower than one. At
the present time, we are still exploring a way to
improve this scaling problem in Linux 2.6 for
Altix.

While moving data to per-processor storage is
often a solution to the kind of scaling problems
we have discussed here, it is not a panacea,
particularly as the number of processors be-
comes large. Often, the system will want to
inspect some data item in the per-processor
storage of each processor in the system. For
small numbers of processors this is not a prob-
lem. But when there are hundreds of proces-
sors involved, such loops can cause a TLB miss
each time through the loop as well as a cou-
ple of cache-line misses, with the result that
the loop may run quite slowly. (A TLB miss
is caused because the per-processor storage ar-
eas are typically isolated from one another in
the kernel’s virtual address space.)

If such loops turn out to be bottlenecks, then
what one must often do is to move the fields
that such loops inspect out of the per-processor
storage areas, and move them into a global
static array with one entry per CPU.

An example of this kind of problem in Linux
2.6 for Altix is the current allocation scheme
of the per-CPU run queue structures. Each
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per-CPU structure on an Altix system requires
a unique TLB to address it, and each struc-
ture begins at the same virtual offset in a page,
which for a virtually indexed cache means that
the same fields will collide at the same in-
dex. Thus, a CPU scheduler that wishes to
do a quick peek at every other CPU’snr_
running or cpu_load will not only suffer a
TLB miss on every access, but will also likely
suffer a cache miss because these same virtual
offsets will collide in the cache. Cache col-
oring of these addresses would be one way to
solve this problem; we are still exploring ways
to fix this problem in Linux 2.6 for Altix.

Lock Conflicts

A cousin of cache line conflicts are the lock
conflicts. Indeed, the root mechanism of the
lock bottleneck is a cache line conflict. For
a spinlock_t the conflict is thecmpxchg
operation on the word that signifies whether or
not the lock is owned. For arwlock_t the
conflict is the cmpxchg or fetch-and-add op-
eration on the count of the number of read-
ers or the bit signifying whether or not the
lock is owned exclusively by a writer. For a
seqlock_t the conflict is the increment of
the sequence number.

For some lock conflicts, such as thercu_
ctrlblk.mutex , the remedy is to make the
spinlock more fine-grained, e.g., by making it
hierarchical or per-CPU. For other lock con-
flicts, the most effective remedy is to reduce
the use of the lock.

The O(1) CPU scheduler replaced the global
runqueue_lock with per-CPU run queue
locks, and replaced the global run queue with
per-CPU run queues. While this did substan-
tially decrease the CPU scheduling bottleneck
for CPU counts in the 8 to 32 range, additional
effort has been necessary to remedy additional
bottlenecks that appear with even large config-

urations.

For example, we discovered that at 256 pro-
cessors and above, we encountered a live lock
early in system boot because hundreds of idle
CPUs are load-balancing and are racing in con-
tention on one or a few busy CPUs. The con-
tention is so severe that the busy CPU’s sched-
uler cannot itself acquire its own run queue
lock, and thus the system live locks.

A remedy we applied in our Altix 2.4-based
kernel was to introduce a progressively longer
back off between successive load-balancing at-
tempts, if the load-balancing CPU continues
to be unsuccessful in finding a task to pull-
migrate. Perhaps all the busiest CPU’s tasks
are pinned to that CPU, or perhaps all the
tasks are still cache-hot. Regardless of the
reason, a load-balancing failure results in that
CPU delaying the next load-balance attempt
by another incremental increase in time. This
algorithm effectively solved the live lock, as
well as improved other high-contention con-
flicts on a busiest CPU’s run queue lock (e.g.,
always finding pinned tasks that can never be
migrated).

This load-balance back off algorithm did not
get accepted into the early 2.6 kernels. The lat-
est 2.6.7 CPU scheduler, as developed by Nick
Piggin, incorporates a similar back off algo-
rithm. However, this algorithm (at least as it
appears in 2.6.7-rc2) continues to cause a boot-
time live lock at 512 processors on Altix so we
are continuing to investigate this matter.

Page Cache

Managing the page cache in Altix has been a
challenging problem. The reason is that while
a large Altix system may have a lot of memory,
each node in the system only has a relatively
small fraction of that memory available as lo-
cal memory. For example, on a 512 CPU sys-
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tem, if the entire system has 512 GB of mem-
ory, each node on the system has only 2 GB of
local memory; less than 0.4% of the available
memory on the system is local. When you con-
sider that it is quite common on such systems
to deal with files that are tens of GB in size, it
is easy to understand how the page cache could
consume all of the memory on several nodes in
the system just doing normal, buffered-file I/O.

Stated another way, this is the challenge of a
large NUMA system: all memory is address-
able, but only a tiny fraction of that memory
is local. Users of NUMA systems need to
place their most frequently accessed data in lo-
cal memory; this is crucial to obtain the max-
imum performance possible from the system.
Typically this is done by allocating pages on a
first-touch basis; that is, we attempt to allocate
a page on the node where it is first referenced.
If all of the local memory on a node is con-
sumed by the page cache, then these local stor-
age allocations will spill over to other (remote)
nodes, the result being a potentially significant
impact on program performance.

Similarly, it is important that the amount of
free memory be balanced across idle nodes in
the system. An imbalance could lead to some
components of a parallel computation running
slower than others because not all components
of the computation were able to allocate their
memory entirely out of local storage. Since the
overall speed of parallel computation is deter-
mined by the execution of its slowest compo-
nent, the performance of the entire application
can be impacted by a non-local storage alloca-
tion on only a few nodes.

One might think thatbdflush or kupdated
(in a Linux 2.4 system) would be responsi-
ble for cleaning up unused page-cache pages.
As the OLS reader knows, these daemons
are responsible not for deallocating page-cache
pages, but cleaning them. It is the swap dae-

mon kswapd that is responsible for causing
page-cache pages to be deallocated. However,
in many situations we have encountered, even
though multiple nodes of the system would be
completely out of local memory, there would
still be lots of free memory elsewhere in the
system. As a result,kswapd will never start.
Once the system gets into such a state, the
local memory on those nodes can remain al-
located entirely to page-cache pages for very
long stretches of time since as far as the ker-
nel is concerned there is no memory “pres-
sure”. To get around this problem, particu-
larly for benchmarking studies, users have of-
ten resorted to programs that allocate and touch
all of the memory on the system, thus causing
kswapd to wake up and free unneeded buffer
cache pages.

We have dealt with this problem in a number
of ways, but the first approach was to change
page_cache_alloc() so that instead
of allocating the page on the local node, we
spread allocations across all nodes in the
system. To do this, we added a new GFP
flag: GFP_ROUND_ROBINand a new proce-
dure: alloc_pages_round_robin() .
alloc_pages_round_robin() main-
tains a counter in per-CPU storage; the
counter is incremented on each call to
page_cache_alloc() . The value of the
counter, modulus the number of nodes in
the system, is used to select thezonelist
passed to__alloc_pages() . Like other
NUMA implementations, in Linux for Altix
there is azonelist for each node, and the
zonelist s are sorted in nearest neighbor
order with thezone for the local node as the
first entry of thezonelist . The result is that
each timepage_cache_alloc() is called,
the returned page is allocated on the next node
in sequence, or as close as possible to that
node.

The rationale for allocating page-cache pages
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in this way is that while pages are local re-
sources, the page cache is a global resource, us-
able by all processes on the system. Thus, even
if a process is bound to a particular node, in
general it does not make sense to allocate page-
cache pages just on that node, since some other
process in the system may be reading that same
file and hence sharing the pages. So instead of
flooding the current node with the page-cache
pages for files that processes on that node have
opened, we “tax” every node in the system with
a fraction of the page-cache pages. In this
way, we try to conserve a scarce resource (local
memory) by spreading page-cache allocations
over all nodes in the system.

However, even this step was not enough to keep
local storage usage balanced among nodes in
the system. After reading a 10 GB file, for
example, we found that the node where the
reading process was running would have up to
40,000 pages more storage allocated than other
nodes in the system. It turned out the reason for
this was that buffer heads for the read opera-
tion were being allocated locally. To solve this
problem in our Linux 2.4.21 kernel for Altix,
we modifiedkmem_cache_grow() so that
it would pass theGFP_ROUND_ROBINflag to
kmem_getpages() with the result that the
slab caches on our systems are now also allo-
cated out of round-robin storage. Of course,
this is not a perfect solution, since there are sit-
uations where it makes perfect sense to allocate
a slab cache entry locally; but this was an expe-
dient solution appropriate for our product. For
Linux 2.6 for Altix we would like to see the
slab allocator be made NUMA aware. (Man-
fred Spraul has created some patches to do this
and we are currently evaluating these changes.)

The previous two changes solved many of the
cases where a local storage could be exhausted
by allocation of page-cache pages. However,
they still did not solve the problem of local al-
locations spilling off node, particularly in those

cases where storage allocation was tight across
the entire system. In such situations, the sys-
tem would often start running the synchronous
swapping code even though most (if not all) of
the page-cache pages on the system were clean
and unreferenced outside of the page-cache.
With the very-large memory sizes typical of
our larger Altix customers, entering the syn-
chronous swapping code needs to be avoided
if at all possible since this tends to freeze the
system for 10s of seconds. Additionally, the
round robin allocation fixes did not solve the
problem of poor and unrepeatable performance
on benchmarks due to the existence of signif-
icant amounts of page-cache storage left over
from previous executions.

To solve these problems, we introduced a rou-
tine calledtoss_buffer_cache_pages_
node() (referred to here astoss() , for
brevity). In a related change, we made the
active and inactive lists per node rather than
global. toss() first scans the inactive list
(on a particular node) looking for idle page-
cache pages to release back to the free page
pool. If not enough such pages are found
on the inactive list, then the active list is
also scanned. Finally, iftoss() has not
called shrink_slab_caches() recently,
that routine is also invoked in order to more
aggressively free unused slab-cache entries.
toss() was patterned after the main loop
of shrink_caches() except that it would
never callswap_out() and if it encountered
a page that didn’t look to be easily free able, it
would just skip that page and go on to the next
page.

A call to toss() was added in__alloc_
pages() in such a way that if allocation on
the current node fails, then before trying to al-
locate from some other node (i. e. spilling
to another node), the system will first see if
it can free enough page-cache pages from the
current node so that the current node alloca-
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tion can succeed. In subsequent allocation
passes,toss() is also called to free page-
cache pages on nodes other than the current
one. The result of this change is that clean
page-cache pages are effectively treated as free
memory by the page allocator.

At the same time that thetoss() code
was added, we added a new user com-
mandbcfree that could be used to free all
idle page-cache pages. (On the__alloc_
pages() path, toss() would only try to
free 32 pages per node.) Thebcfree com-
mand was intended to be used only for reset-
ting the state of the page cache before running a
benchmark, and in lieu of rebooting the system
in order to get a clean system state. However,
our customers found that this command could
be used to reduce the size of the page cache
and to avoid situations where large amounts
of buffered-file I/O could force the system to
begin swapping. Sincebcfree kills the en-
tire page-cache, however, this was regarded
as a substandard solution that could also hurt
read performance of cached data and we began
looking for another way to solve this “BIGIO”
problem.

Just to be specific, the BIGIO problem we were
trying to solve was based on the behavior of our
Linux 2.4.21 kernel for Altix. A customer re-
ported that on a 256 GB Altix system, if 200
GB were allocated and 50 GB free, that if the
user program then tried to write 100 GB of data
out to disk, the system would start to swap,
and then in many cases fill up the swap space.
At that point our Out-of-memory (OOM) killer
would wake up and kill the user program! (See
the next section for discussion of our OOM
killer changes.)

Initially we were able to work around this
problem by increasing the amount of swap
space on the system. Our experiments showed
that with an amount of swap space equal to

one-quarter the main memory size, the 256 GB
example discussed above would continue to
completion without the OOM killer being in-
voked. I/O performance during this phase was
typically one-half of what the hardware could
deliver, since two I/O operations often had to
be completed: one to read the data in from
the swap device, and one to write the data to
the output file. Additionally, while the swap
scan was active, the system was very sluggish.
These problems led us to search for another so-
lution.

Eventually what we developed is an aggressive
method of trimming the page cache when it
started to grow too big. This solution involved
several steps:

(1) We first added a new page list, the
reclaim_list . This increased the size of
struct page by another 16 bytes. On our
system,struct page is allocated on cache-
aligned boundaries anyway, so this really did
not cause an increase in storage, since the cur-
rent struct page size was less than 112
bytes. Pages were added to the reclaim list
when they were inserted into the page cache.
The reclaim list is per node, with per node
locking. Pages were removed from the reclaim
list when they were no longer reclaimable; that
is, they were removed from the reclaim list
when they were marked as dirty due to buffer
file-I/O or when they were mapped into an ad-
dress space.

(2) We rewrotetoss() to scan the reclaim list
instead of the inactive and active lists. Herein
we will refer to the new version oftoss() as
toss_fast() .

(3) We introduced a variant ofpage_cache_
alloc() called page_cache_alloc_
limited() . Associated with this new
routine were two control variables settable
via sysctl() : page_cache_limit and
page_cache_limit_threshold .
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(4) We modified the generic_file_
write() path to call page_cache_
alloc_limited() instead of page_
cache_alloc() . page_cache_alloc_
limited() examines the size of the page
cache. If the total amount of free memory
in the system is less thanpage_cache_
limit_threshold and the size of the page
cache is larger thanpage_cache_limit ,
then page_cache_alloc_limited()
calls page_cache_reduce() to free
enough page-cache pages on the system to
bring the page cache size down belowpage_
cache_limit . If this succeeds, thenpage_
cache_alloc_limited() calls page_
cache_alloc to allocate the page. If not,
then we wakeupbdflush and the current
thread is put to sleep for 30ms (a tunable
parameter)

The rationale for thereclaim_list and
toss_fast() was that when we needed to
trim the page cache, practically all pages in
the system would typically be on the inactive
list. The existingtoss() routine scanned
the inactive list and thus was too slow to call
from generic_file_write . Moreover,
most of the pages on the inactive list were
not reclaimable anyway. Most of the pages
on thereclaim_list are reclaimable. As
a resulttoss_fast() runs much faster and
is more efficient at releasing idle page-cache
pages than the old routine.

The rationale for thepage_cache_limit_
threshold in addition to the page_
cache_limit is that if there is lots of free
memory then there is no reason to trim the page
cache. One might think that because we only
trim the page cache on the file write path that
this approach would still let the page cache
to grow arbitrarily due to file reads. Unfortu-
nately, this is not the case, since the Linux ker-
nel in normal multiuser operation is constantly
writing something to the disk. So, a page cache

limit enforced at file write time is also an effec-
tive limit on the size of the page cache due to
file reads.

Finally, the rationale for delaying the calling
task whenpage_cache_reduce() fails is
that we do not want the system to start swap-
ping to make space for new buffered I/O pages,
since that will reduce I/O bandwidth by as
much as one-half anyway, as well as take a lot
of CPU time to figure out which pages to swap
out. So it is better to reduce the I/O bandwidth
directly, by limiting the rate of requested I/O,
instead of allowing that I/O to proceed at rate
that causes the system to be overrun by page-
cache pages.

Thus far, we have had good experience with
this algorithm. File I/O rates are not substan-
tially reduced from what the hardware can pro-
vide, the system does not start swapping, and
the system remains responsive and usable dur-
ing the period of time when the BIGIO is run-
ning.

Of course, this entire discussion is specific to
Linux 2.4.21. For Linux 2.6, we have plans to
evaluate whether this is a problem in the sys-
tem at all. In particular, we want to see if an
appropriate setting forvm_swappiness to
zero can eliminate the “BIGIO causes swap-
ping” problem. We also are interested in eval-
uating the recent set of VM patches that Nick
Piggin [6] has assembled to see if they elimi-
nate this problem for systems of the size of a
large Altix.

VM and Memory Allocation Fixes

In addition to the page-cache changes de-
scribed in the last section, we have made a
number of smaller changes related to virtual
memory and paging performance.

One set of such changes increased the paral-
lelism of page-fault handling for anonymous
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pages in multi-threaded applications. These
applications allocate space using routines that
eventually call mmap() ; the result is that
when the application touches the data area for
the first time, it causes a minor page fault.
These faults are serviced while holding the
address space’spage_table_lock . If the
address space is large and there are a large
number of threads executing in the address
space, this spinlock can be an initialization-
time bottleneck for the application. Examina-
tion of the handle_mm_fault() path for
this case shows that thepage_table_lock
is acquired unconditionally but then released as
soon as we have determined that this is a not-
present fault for an anonymous page. So, we
reordered the code checks inhandle_mm_
fault() to determine in advance whether or
not this was the case we were in, and if so, to
skip acquiring the lock altogether.

The second place thepage_table_lock
was used on this path was in
do_anonymous_page() . Here, the
lock was re-acquired to make sure that the
process of allocating a page frame and filling
in the pte is atomic. On Itanium, stores to
page-table entries are normal stores (that is,
the set_pte macro evaluates to a simple
store). Thus, we can usecmpxchg to update
the pte and make sure that only one thread
allocates the page and fills in the pte. The
compare and exchange effectively lets us lock
on each individual pte. So, for Altix, we
have been able to completely eliminate the
page_table_lock from this particular
page-fault path.

The performance improvement from this
change is shown in Figure 1. Here we show the
time required to initially touch 96 GB of data.
As additional processors are added to the prob-
lem, the time required for both the baseline-
Linux and Linux for Altix versions decrease
until around 16 processors. At that point the

page_table_lock starts to become a sig-
nificant bottleneck. For the largest number of
processors, even the time for the Linux for Al-
tix case is starting to increase again. We be-
lieve that this is due to contention for the ad-
dress space’smmapsemaphore.
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Figure 1:Time to initially touch 96 GB of data.

This is particularly important for HPC applica-
tions since OpenMP™[5], a common parallel
programming model for FORTRAN, is imple-
mented using a single address space, multiple-
thread programming model. The optimization
described here is one of the reasons that Al-
tix has recently set new performance records
for the SPEC® SPEComp® L2001 benchmark
[7].

While the above measurements were taken us-
ing Linux 2.4.21 for Altix, a similar problem
exists in Linux 2.6. For many other architec-
tures, this same kind of change can be made;
i386 is one of the exceptions to this statement.
We are planning on porting our Linux 2.4.21
based changes to Linux 2.6 and submitting the
changes to the Linux community for inclusion
in Linux 2.6. This may require moving part
of do_anonymous_page() to architecture
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dependent code to allow for the fact that not
all architectures can use the compare and ex-
change approach to eliminate the use of the
page_table_lock in do_anonymous_
page() . However, the performance improve-
ment shown in Figure 1 is significant for Altix
so we would we would like to explore some
way of incorporating this code into the main-
line kernel.

We have encountered similar scalability lim-
itations for other kinds of page-fault behav-
ior. Figure 2 shows the number of page faults
per second of wall clock time measured for
multiple processes running simultaneously and
faulting in a 1 GB/dev/zero mapping. Un-
like the previous case described here, in this
case each process has its own private mapping.
(Here the number of processes is equal to the
number of CPUs.) The dramatic difference be-
tween the baseline 2.4 and 2.6 cases and Linux
for Altix is due to elimination of a lock in the
super block for/dev/zero .
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Figure 2: Page Faults per Second of Wall Clock
Time.

The lock in the super block protects two
counts: One count limits the maximum num-
ber of /dev/zero mappings to263; the sec-

ond count limits the number of pages assigned
to a /dev/zero mapping to263. Neither
one of these counts is particularly useful for
a /dev/zero mapping. We eliminated this
lock and obtained a dramatic performance im-
provement for this micro-benchmark (at 512
CPUs the improvement was in excess of 800x).
This optimization is important in decreasing
startup time for large message-passing appli-
cations on the Altix system.

A related change is to distribute the count of
pages in the page cache from a single global
variable to a per node variable. Because ev-
ery processor in the system needs to update
the page-cache count when adding or remov-
ing pages from the page cache, contention for
the cache line containing this global variable
becomes significant. We changed this global
count to a per-node count. When a page is in-
serted into (or removed from) the page cache,
we update the page cache-count on the same
node as the page itself. When we need the
total number of pages in the page cache (for
example if someone reads/proc/meminfo )
we run a loop that sums the per node counts.
However, since the latter operation is much less
frequent than insertions and deletions from the
page cache, this optimization is an overall per-
formance improvement.

Another change we have made in the VM
subsystem is in the out-of-memory (OOM)
killer for Altix. In Linux 2.4.21, the
OOM killer is called from the top of
memory-free and swap-out call chain.oom_
kill() is called from try_to_free_
pages_zone() when calls to shrink_
caches() at memory priority levels 6
through 0 have all failed. Insideoom_kill()
a number of checks are performed, and if any
of these checks succeed, the system is declared
to not be out-of-memory. One of those checks
is “if it has been more than 5 seconds since
oom_kill() was last called, then we are not
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OOM.” On a large-memory Altix system, it can
easily take much longer than that to complete
the necessary calls toshrink_caches() .
The result is that an Altix system never goes
OOM in spite of the fact that swap space is full
and there is no memory to be allocated.

It seemed to us that part of the problem here
is the amount of time it can take for a swap
full condition (readily detectable intry_
to_swap_out() to bubble all the way up
to the top level intry_to_free_pages_
zone() , especially on a large memory ma-
chine. To solve this problem on Altix, we
decided to drive the OOM killer directly off
of detection of swap-space-full condition pro-
vided that the system also continues to try to
swap out additional pages. A count of the
number of successful swaps and unsuccess-
ful swap attempts is maintained intry_to_
swap_out() . If, in a 10 second interval, the
number of successful swap outs is less than
one percent of the number of attempted swap
outs, and the total number of swap out attempts
exceeds a specified threshold, thentry_to_
swap_out() ) will directly wake the OOM
killer thread (also new in our implementation).
This thread will wait another 10 seconds, and
if the out-of-swap condition persists, it will in-
vokeoom_kill() to select a victim and kill
it. The OOM killer thread will repeat this sleep
and kill cycle until it appears that swap space
is no longer full or the number of attempts to
swap out new pages (since the thread went to
sleep) falls below the threshold.

In our experience, this has made invocation of
the OOM killer much more reliable than it was
before, at least on Altix. Once again, this im-
plementation was for Linux 2.4.21; we are in
the process of evaluating this problem and the
associated fix on Linux 2.6 at the present time.

Another fix we have made to the VM sys-
tem in Linux 2.4.21 for Altix is in handling

of HUGETLB pages. The existing implemen-
tation in Linux 2.4.21 allocates HUGETLB
pages to an address space atmmap() time (see
hugetlb_prefault() ); it also zeroes the
pages at this time. This processing is done by
the thread that makes themmap() call. In
particular, this means that zeroing of the al-
located HUGETLB pages is done by a sin-
gle processor. On a machine with 4 TB of
memory and with as much memory allocated
to HUGETLB pages as possible, our measure-
ments have shown that it can take as long as
5,000 seconds to allocate and zero all available
HUGETLB pages. Worse yet, the thread that
does this operation holds the address space’s
mmap_semand thepage_table_lock for
the entire 5,000 seconds. Unfortunately, many
commands that query system state (such asps
andw) also wish to acquire one of these locks.
The result is that the system appears to be hung
for the entire 5,000 seconds.

We solved this problem on Altix by changing
the implementation of HUGETLB page allo-
cation fromprefault to allocate on fault. Many
others have created similar patches; our patch
was unique in that it also allowed zeroing of
pages to occur in parallel if the HUGETLB
page faults occurred on different processors.
This was crucial to allow a large HUGETLB
page region to be faulted into an address space
in parallel, using as many processors as possi-
ble. For example, we have observed speedups
of 25x using 16 processors to touch O(100 GB)
of HUGETLB pages. (The speedup is super
linear because if you use just one processor
it has to zero many remote pages, whereas if
you use more processors, at least some of the
pages you are zeroing are local or on nearby
nodes.) Assuming we can achieve the same
kind of speedup on a 4 TB system, we would
reduce the 5,000 second time stated above to
200 seconds.

Recently, we have worked with Kenneth Chen
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to get a similar set of changes proposed for
Linux 2.6 [3]. Once this set of changes is ac-
cepted into the mainline this particular problem
will be solved for Linux 2.6. These changes are
also necessary for Andi Kleen’s NUMA place-
ment algorithms [4] to apply to HUGETLB
pages, since otherwise pages are placed at
hugetlb_prefault() time.

A final set of changes is related to large kernel
tables. As previously mentioned, on an Altix
system with 512 processors, less than 0.4% of
the available memory is local. Certain tables in
the Linux kernel are sized to be on the order of
one percent of available memory. (An exam-
ple of this is the TCP/IP hash table.) Allocat-
ing a table of this size can use all of the local
memory on a node, resulting in exactly the kind
of storage-allocation imbalance we developed
the page-cache changes to solve. To avoid this
problem, we also implement round-robin allo-
cation of these large tables. Our current tech-
nique usesvm_alloc() to do this. Unfor-
tunately, this is not portable across all archi-
tectures, since certain architectures have lim-
ited amounts of space that can be allocated by
vm_alloc() . Nonetheless, this is a change
that we need to make; we are still exploring
ways of making this change acceptable to the
Linux community.

Once we have solved the initial allocation
problem for these tables, there is still the prob-
lem of getting them appropriately sized for an
Altix system. Clearly if there are 4 TB of main
memory, it does not make much sense to allo-
cate a TCP/IP hash table of 40 GB, particularly
since the TCP/IP traffic into an Altix system
does not increase with memory size the way
one might expect it to scale with a traditional
Linux server. We have seen cases where sys-
tem performance is significantly hampered due
to lookups in these overly large tables. At the
moment, we are still exploring a solution ac-
ceptable to the community to solve this partic-

ular problem.

I/O Changes for Altix

One of the design goals for the Altix system
is that it support standard PCI devices and
their associated Linux drivers as much as pos-
sible. In this section we discuss the perfor-
mance improvements built into the Altix hard-
ware and supported through new driver inter-
faces in Linux that help us to meet this goal
with excellent performance even on very large
Altix systems.

According to the PCI specification, DMA
writes and PIO read responses are strongly or-
dered. On large NUMA systems, however,
DMA writes can take a long time to complete.
Since most PIO reads do not imply completion
of a previous DMA write, relaxing the ordering
rules of DMA writes and PIO read responses
can greatly improve system performance.

Another large system issue relates to initiating
PIO writes from multiple CPUs. PIO writes
from two different CPUs may arrive out of or-
der at a device. The usual way to ensure order-
ing is through a combination of locking and a
PIO read (see Documentation/io_ordering.txt).
On large systems, however, doing this read can
be very expensive, particularly if it must be or-
dered with respect to unrelated DMA writes.

Finally, the NUMA nature of large machines
make some optimizations obvious and desir-
able. Many devices use so-called consis-
tent system memory for retrieving commands
and storing status information; allocating that
memory close to its associated device makes
sense.

Making non–dependent PIO reads fast

In its I/O chipsets, SGI chose to relax the order-
ing between DMAs and PIOs, instead adding
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a barrier attribute to certain DMA writes (to
consistent PCI allocations on Altix) and to in-
terrupts. This works well with controllers that
use DMA writes to indicate command com-
pletions (for example a SCSI controller with a
response queue, where the response queue is
allocated usingpci_alloc_consistent ,
so that writes to the response queue have the
barrier attribute). When we ported Linux to
Altix, this behavior became a problem, be-
cause many Linux PCI drivers use PIO read re-
sponses to imply a status of a DMA write. For
example, on an IDE controller, a bit status reg-
ister read is performed to find out if a command
is complete (command complete status implies
that DMA writes of that command’s data are
completed). As a result, SGI had to implement
a rather heavyweight mechanism to guarantee
ordering of DMA writes and PIO reads. This
mechanism involves doing an explicit flush of
DMA write data after each PIO read.

For the cases in which strong ordering of PIO
read responses and DMA writes are not nec-
essary, a new API was needed so that drivers
could communicate that a given PIO read re-
sponse could used relaxed ordering with re-
spect to prior DMA writes. Theread_
relaxed API [8] was added early in the 2.6
series for this purpose, and mirrors the normal
read routines, which have variants for various
sized reads.

The results below show how expensive a nor-
mal PIO read transaction can be, especially on
a system doing a lot of I/O (and thus DMA).

Type of PIO Time (ns)
normal PIO read 3875
relaxed PIO read 1299

Table 1: Normal vs. relaxed PIO reads on an
idle system

It remains to be seen whether this API will also
apply to the newly added RO bit in the PCI-

Type of PIO Time (ns)
normal PIO read 4889
relaxed PIO read 1646

Table 2: Normal vs. relaxed PIO reads on a
busy system

X specification—the author is hopeful! Either
way, it does give hardware vendors who want
to support Linux some additional flexibility in
their design.

Ordering posted writes efficiently

On many platforms, PIO writes from different
CPUs will not necessarily arrive in order (i.e.,
they may be intermixed) even when locking is
used. Since the platform has no way of know-
ing whether a given PIO read depends on pre-
ceding writes, it has to guarantee that all writes
have completed before allowing a read trans-
action to complete. So performing a read prior
to releasing a lock protecting a region doing
writes is sufficient to guarantee that the writes
arrive in the correct order.

However, performing PIO reads can be an ex-
pensive operation, especially if the device is on
a distant node. SGI chipset designers foresaw
this problem, however, and provided a way to
ensure ordering by simply reading a register
from the chipset on the local node. When the
register indicates that all PIO writes are com-
plete, it means they have arrived at the chipset
attached to the device, and so are guaranteed
to arrive at the device in the intended order.
The SGI sn2 specific portion of the Linux ia64
port (sn2 is the architecture name for Altix in
the Linux kernel source tree) provides a small
function,sn_mmiob() (for memory–mapped
I/O barrier, analogous to themb() macro), to
do just that. It can be used in place of reads
that are intended to deal with posted writes and
provides some benefit:
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Type of flush Time (ns)
regular PIO read 5940
relaxed PIO read 2619
sn_mmiob() 1610
(local chipset read alone) 399

Table 3: Normal vs. fast flushing of 5 PIO
writes

Adding this API to Linux (i.e., making it non-
sn2-specific) was discussed some time ago [9],
and may need to be raised again, since it does
appear to be useful on Altix, and is probably
similarly useful on other platforms.

Local allocation of consistent DMA mappings

Consistent DMA mappings are used frequently
by drivers to store command and status buffers.
They are frequently read and written by the
device that owns them, so making sure they
can be accessed quickly is important. The ta-
ble below shows the difference in the num-
ber of operations per second that can be
achieved using local versus remote allocation
of consistent DMA buffers. Local alloca-
tions were guaranteed by changing thepci_
alloc_consistent function so that it calls
alloc_pages_node using the node closest
to the PCI device in question.

Type I/Os per second
Local consistent buffer 46231
Remote consistent buffer 41295

Table 4: Local vs. remote DMA buffer alloca-
tion

Although this change is platform specific, it
can be made generic if apci_to_node or
pci_to_nodemask routine is added to the
Linux topology API.

Concluding Remarks

Today, our Linux 2.4.21 kernel for Altix pro-
vides a productive platform for our high-
performance-computing users who desire to
exploit the features of the SGI Altix 3000 hard-
ware. To achieve this goal, we have made a
number of changes to our Linux for Altix ker-
nel. We are now in the process of either moving
those changes forward to Linux 2.6 for Altix,
or of evaluating the Linux 2.6 kernel on Altix
in order to determine if these changes are in-
deed needed at all. Our goal is to develop a
version of the Linux 2.6 kernel for Altix that
not only supports our HPC customers equally
well as our existing Linux 2.4.21 kernel, but
also consists as much as possible of commu-
nity supported code.
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