
Improving Kernel Performance by Unmapping the
Page Cache

James Bottomley
SteelEye Technology, Inc.

James.Bottomley@SteelEye.com

Abstract

The current DMA API is written on the found-
ing assumption that the coherency is being
done between the device and kernel virtual ad-
dresses. We have a different API for coherency
between the kernel and userspace. The upshot
is that every Process I/O must be flushed twice:
Once to make the user coherent with the kernel
and once to make the kernel coherent with the
device. Additionally, having to map all pages
for I/O places considerable resource pressure
on x86 (where any highmem page must be sep-
arately mapped).

We present a different paradigm: Assume that
by and large, read/write data is only required
by a single entity (the major consumers of large
multiply shared mappings are libraries, which
are read only) and optimise the I/O path for this
case. This means that any other shared con-
sumers of the data (including the kernel) must
separately map it themselves. The DMA API
would be changed to perform coherence to the
preferred address space (which could be the
kernel). This is a slight paradigm shift, because
now devices that need to peek at the data may
have to map it first. Further, to free up more
space for this mapping, we would break the as-
sumption that any page in ZONE_NORMAL
is automatically mapped into kernel space.

The benefits are that I/O goes straight from
the device into the user space (for processors

that have virtually indexed caches) and the ker-
nel has quite a large unmapped area for use in
kmapping highmem pages (for x86).

1 Introduction

In the Linux kernel1 there are two addressing
spaces: memory physical which is the location
in the actual memory subsystem and CPU vir-
tual, which is an address the CPU’s Memory
Management Unit (MMU) translates to a mem-
ory physical address internally. The Linux ker-
nel operates completely in CPU virtual space,
keeping separate virtual spaces for the kernel
and each of the current user processes. How-
ever, the kernel also has to manage the map-
pings between physical and virtual spaces, and
to do that it keeps track of where the physical
pages of memory currently are.

In the Linux kernel, memory is split into zones
in memory physical space:

• ZONE_DMA: A historical region where
ISA DMAable memory is allocated from.
On x86 this is all memory under 16MB.

• ZONE_NORMAL: This is where normally
allocated kernel memory goes. Where

1This is not quite true, there are kernels for proces-
sors without memory management units, but these are
very specialised and won’t be considered further



104 • Linux Symposium 2004 • Volume One

this zone ends depends on the architec-
ture. However, all memory in this zone
is mapped in kernel space (visible to the
kernel).

• ZONE_HIGHMEM: This is where the rest
of the memory goes. Its characteristic is
that it is not mapped in kernel space (thus
the kernel cannot access it without first
mapping it).

1.1 The x86 and Highmem

The main reason for the existence ofZONE_
HIGHMEMis a peculiar quirk on the x86 pro-
cessor which makes it rather expensive to have
different page table mappings between the ker-
nel and user space. The root of the problem
is that the x86 can only keep one set of physi-
cal to virtual mappings on-hand at once. Since
the kernel and the processes occupy different
virtual mappings, the TLB context would have
to be switched not only when the processor
changes current user tasks, but also when the
current user task calls on the kernel to per-
form an operation on its behalf. The time taken
to change mappings, called the TLB flushing
penalty, contributes to a degradation in process
performance and has been measured at around
30%[1]. To avoid this penalty, the Kernel and
user spaces share a partitioned virtual address
space so that the kernel is actually mapped into
user space (although protected from user ac-
cess) and vice versa.

The upshot of this is that the x86 userspace
is divided 3GB/1GB with the virtual ad-
dress range 0x00000000-0xbfffffff
being available for the user process and
0xc0000000-0xffffffff being reserved
for the kernel.

The problem, for the kernel, is that it now only
has 1GB of virtual address to play withinclud-
ing all memory mapped I/O regions. The re-
sult being thatZONE_NORMALactually ends

at around 850kb on most x86 boxes. Since
the kernel must also manage the mappings for
every user process (and these mappings must
be memory resident), the larger the physical
memory of the kernel becomes, the less of
ZONE_NORMALbecomes available to the ker-
nel. On a 64GB x86 box, the usable mem-
ory becomes minuscule and has lead to the
proposal[2] to use a 4G/4G split and just ac-
cept the TLB flushing penalty.

1.2 Non-x86 and Virtual Indexing

Most other architectures are rather better im-
plemented and are able to cope easily with sep-
arate virtual spaces for the user and the ker-
nel without imposing a performance penalty
transitioning from one virtual address space to
another. However, there are other problems
the kernel’s penchant for keeping all memory
mapped causes, notably with Virtual Indexing.

Virtual Indexing[3] (VI) means that the CPU
cache keeps its data indexed by virtual address
(rather than by physical address like the x86
does). The problem this causes is that if multi-
ple virtual address spaces have the same physi-
cal address mapped, but at different virtual ad-
dresses then the cache may contain duplicate
entries, called aliases. Managing these aliases
becomes impossible if there are multiple ones
that become dirty.

Most VI architectures find a solution to the
multiple cache line problem by having a “con-
gruence modulus” meaning that if two virtual
addresses are equal modulo this congruence
(usually a value around 4MB) then the cache
will detect the aliasing and keep only a single
copy of the data that will be seen by all the vir-
tual addresses.

The problems arise because, although archi-
tectures go to great lengths to make sure all
user mappings are congruent, because the ker-



Linux Symposium 2004 • Volume One • 105

nel memory is always mapped, it is highly un-
likely that any given kernel page would be con-
gruent to a user page.

1.3 The solution: UnmappingZONE_NORMAL

It has already been pointed out[4] that x86
could recover some of its preciousZONE_
NORMALspace simply by moving page table
entries into unmapped highmem space. How-
ever, the penalty of having to map and unmap
the page table entries to modify them turned
out to be unacceptable.

The solution, though, remains valid. There
are many pages of data currently inZONE_
NORMALthat the kernel doesn’t ordinarily use.
If these could be unmapped and their vir-
tual address space given up then the x86 ker-
nel wouldn’t be facing quite such a memory
crunch.

For VI architectures, the problems stem from
having unallocated kernel memory already
mapped. If we could keep the majority of ker-
nel memory unmapped, and map it only when
we really need to use it, then we would stand
a very good chance of being able to map the
memory congruently even in kernel space.

The solution this paper will explore is that of
keeping the majority of kernel memory un-
mapped, mapping it only when it is used.

2 A closer look at Virtual Indexing

As well as the aliasing problem, VI architec-
tures also have issues with I/O coherency on
DMA. The essence of the problem stems from
the fact that in order to make a device ac-
cess to physical memory coherent, any cache
lines that the processor is holding need to be
flushed/invalidates as part of the DMA trans-
action. In order to do DMA, a device simply
presents a physical address to the system with

a request to read or write. However, if the pro-
cessor indexes the caches virtually, it will have
no idea whether it is caching this physical ad-
dress or not. Therefore, in order to give the
processor an idea of where in the cache the data
might be, the DMA engines on VI architectures
also present a virtual index (called the “coher-
ence index”) along with the physical address.

2.1 Coherence Indices and DMA

The Coherence Index is computed by the pro-
cessor on a per page basis, and is used to iden-
tify the line in the cache belonging to the phys-
ical address the DMA is using.

One will notice that this means the coherence
index must be computed oneveryDMA trans-
action for aparticular address space (although,
if all the addresses are congruent, one may sim-
ply pick any one). Since, at the time the dma
mapping is done, the only virtual address the
kernel knows about is the kernel virtual ad-
dress, it means that DMA is always done co-
herently with the kernel.

In turn, since the kernel address is pretty much
not congruent with any user address, before the
DMA is signalled as being completed to the
user process, the kernel mapping and the user
mappings must likewise be made coherent (us-
ing theflush_dcache_page() function).
However, since the majority of DMA transac-
tions occur onuserdata in which the kernel has
no interest, the extra flush is simply an unnec-
essary performance penalty.

This performance penalty would be eliminated
if either we knew that the designated kernel ad-
dress was congruent to all the user addresses
or we didn’t bother to map the DMA region
into kernel space and simply computed the co-
herence index from a given user process. The
latter would be preferable from a performance
point of view since it eliminates an unneces-



106 • Linux Symposium 2004 • Volume One

sary map and unmap.

2.2 Other Issues with Non-Congruence

On the parisc architecture, there is an architec-
tural requirement that we don’t simultaneously
enable multiple read and write translations of
a non-congruent address. We can either enable
a single write translation or multiple read (but
no write) translations. With the current manner
of kernel operation, this is almost impossible
to satisfy without going to enormous lengths in
our page translation and fault routines to work
around the issues.

Previously, we were able to get away with
ignoring this restriction because the machine
would only detect it if we allowed multiple
aliases to become dirty (something Linux never
does). However, in the next generation sys-
tems, this condition will be detected when it
occurs. Thus, addressing it has become criti-
cal to providing a bootable kernel on these new
machines.

Thus, as well as being a simple performance
enhancement, removing non-congruence be-
comes vital to keeping the kernel booting on
next generation machines.

2.3 VIPT vs VIVT

This topic is covered comprehensively in [3].
However, there is a problem in VIPT caches,
namely that if we are reusing the virtual ad-
dress in kernel space, we must flush the pro-
cessor’s cache for that page on this re-use oth-
erwise it may fall victim to stale cache refer-
ences that were left over from a prior use.

Flushing a VIPT cache is easier said than done,
since in order to flush, a valid translation must
exist for the virtual address in order for the
flush to be effective. This causes particular
problems for pages that were mapped to a user

space process, since the address translations
are destroyedbeforethe page is finally freed.

3 Kernel Virtual Space

Although the kernel is nominally mapped in
the same way the user process is (and can the-
oretically be fragmented in physical space), in
fact it is usually offset mapped. This means
there is a simple mathematical relation be-
tween the physical and virtual addresses:

virtual = physical + __PAGE_OFFSET

where __PAGE_OFFSETis an architecture
defined quantity. This type of mapping makes
it very easy to calculate virtual addresses from
physical ones and vice versa without having to
go to all the bother (and CPU time) of having
to look them up in the kernel page tables.

3.1 Moving away from Offset Mapping

There’s another wrinkle on some architectures
in that if an interruption occurs, the CPU
turns off virtual addressing to begin process-
ing it. This means that the kernel needs to
save the various registers and turn virtual ad-
dressing back on, all in physical space. If
it’s no longer a simple matter of subtracting
__PAGE_OFFSETto get the kernel stack for
the process, then extra time will be consumed
in the critical path doing potentially cache cold
page table lookups.

3.2 Keeping track of Mapped pages

In general, when mapping a page we will ei-
ther require that it goes in the first available
slot (for x86), or that it goes at the first avail-
able slot congruent with a given address (for VI
architectures). All we really require is a sim-
ple mechanism for finding the first free page



Linux Symposium 2004 • Volume One • 107

virtual address given some specific constraints.
However, since the constraints are architecture
specific, the specifics of this tracking are also
implemented in architectures (see section 5.2
for details on parisc).

3.3 Determining Physical address from Virtual
and Vice-Versa

In the Linux kernel, the simple macros
__pa() and__va() are used to do physical
to virtual translation. Since we are now filling
the mappings in randomly, this is no longer a
simple offset calculation.

The kernel does have help for finding the vir-
tual address of a given page. There is an
optional virtual entry which is turned on
and populated with the page’s current virtual
address when the architecture definesWANT_

PAGE_VIRTUAL. The__va() macro can be
programmed simply to do this lookup.

To find the physical address, the best method is
probably to look the page up in the kernel page
table mappings. This is obviously less efficient
than a simple subtraction.

4 Implementing the unmapping of
ZONE_NORMAL

It is not surprising, given that the entire kernel
is designed to operate withZONE_NORMAL
mapped it is surprising that unmapping it turns
out to be fairly easy. The primary reason for
this is the existence of highmem. Since pages
in ZONE_HIGHMEMare always unmapped and
since they are usually assigned to user pro-
cesses, the kernel must proceed on the assump-
tion that it potentially has to map into its ad-
dress space any page from a user process that
it wishes to touch.

4.1 Booting

The kernel has an entire bootmem API whose
sole job is to cope with memory allocations
while the system is booting and before paging
has been initialised to the point where normal
memory allocations may proceed. On parisc,
we simply get the available page ranges from
the firmware, map them all and turn them over
lock stock and barrel to bootmem.

Then, when we’re ready to begin paging, we
simply release all the unallocated bootmem
pages for the kernel to use from itsmem_map2

array of pages.

We can implement the unmapping idea simply
by covering all our page ranges with an offset
map for bootmem, but then unmapping all the
unreserved pages that bootmem releases to the
mem_maparray.

This leaves us with the kernel text and data sec-
tions contiguously offset mapped, and all other
boot time

4.2 Pages Coming From User Space

The standard mechanisms for mapping poten-
tial highmem pages from user space for the
kernel to see arekmap, kunmap, kmap_
atomic , and kmap_atomic_to_page .
Simply hijacking them and divorcing their im-
plementation fromCONFIG_HIGHMEMis suf-
ficient to solve all user to kernel problems
that arise because of the unmapping ofZONE_
NORMAL.

4.3 In Kernel Problems: Memory Allocation

Since now every free page in the system will
be unmapped, they will have to be mapped

2This global array would be a set of per-zone arrays
on NUMA



108 • Linux Symposium 2004 • Volume One

before thekernel can use them (pages allo-
cated for use in user space have no need to
be mapped additionally in kernel space at al-
location time). The engine for doing this is a
single point in__alloc_pages() which is
the central routine for allocating every page in
the system. In the single successful page re-
turn, the page is mapped for the kernel to use it
if __GFP_HIGHis not set—this simple test is
sufficient to ensure that kernel pages only are
mapped here.

The unmapping is done in two separate rou-
tines: __free_pages_ok() for freeing bulk
pages (accumulations of contiguous pages) and
free_hot_cold_page() for freeing single
pages. Here, since we don’t know the gfp mask
the page was allocated with, we simply check
to see if the page is currently mapped, and un-
map it if it is before freeing it. There is another
side benefit to this: the routine that transfers all
the unreserved bootmem to themem_mapar-
ray does this via__free_pages() . Thus,
we additionally achieve the unmapping of all
the free pages in the system after booting with
virtually no additional effort.

4.4 Other Benefits: Variable size pages

Although it wasn’t the design of this structure
to provide variable size pages, one of the ben-
efits of this approach is now that the pages that
are mapped as they are allocated. Since pages
in the kernel are allocated with a specified or-
der (the power of two of the number of con-
tiguous pages), it becomes possible to cover
them with a TLB entry that is larger than the
usual page size (as long as the architecture sup-
ports this). Thus, we can take theorder ar-
gument to__alloc_pages() and work out
the smallest number of TLB entries that we
need to allocate to cover it.

Implementation of variable size pages is actu-
ally transparent to the system; as far as Linux

is concerned, the page table entries it deal with
describe 4k pages. However, we add additional
flags to the pte to tell the software TLB routine
that actually we’d like to use a larger size TLB
to access this region.

As a further optimisation, in the architecture
specific routines that free the boot mem, we can
remap the kernel text and data sections with the
smallest number of TLB entries that will en-
tirely cover each of them.

5 Achieving The VI architecture
Goal: Fully Congruent Aliasing

The system possesses every attribute it now
needs to implement this. We no-longer map
any user pages into kernel space unless the ker-
nel actually needs to touch them. Thus, the
pages will have congruent user addresses allo-
cated to them in user spacebeforewe try to
map them in kernel space. Thus, all we have
to do is track up the free address list in incre-
ments of the congruence modulus until we find
an empty place to map the page congruently.

5.1 Wrinkles in the I/O Subsystem

The I/O subsystem is designed to operate with-
out mapping pages into the kernelat all. This
becomes problematic for VI architectures be-
cause we have to know the user virtual address
to compute the coherence index for the I/O.
If the page is unmapped in kernel space, we
can no longer make it coherent with the kernel
mapping and, unfortunately, the information in
the BIO is insufficient to tell us the user virtual
address.

The proposal for solving this is to add an ar-
chitecture defined set of elements tostruct
bio_vec and an architecture specific func-
tion for populating this (possibly empty) set of
elements as the biovec is created. In parisc,



Linux Symposium 2004 • Volume One • 109

we need to add an extra unsigned long for
the coherence index, which we compute from
a pointer to the mm and the user virtual ad-
dress. The architecture defined components are
pulled into struct scatterlist by yet
another callout when the request is mapped for
DMA.

5.2 Tracking the Mappings in ZONE_DMA

Since the tracking requirements vary depend-
ing on architectures: x86 will merely wish to
find the first free pte to place a page into; how-
ever VI architectures will need to find the first
free pte satisfying the congruence requirements
(which vary by architecture), the actual mech-
anism for finding a free pte for the mapping
needs to be architecture specific.

On parisc, all of this can be done inkmap_
kernel() which merely uses rmap[5] to de-
termine if the page is mapped in user space
and find the congruent address if it is. We
use a simple hash table based bitmap with one
bucket representing the set of available congru-
ent pages. Thus, finding a page congruent to
any given virtual address is the simple compu-
tation of finding the first set bit in the congru-
ence bucket. To find an arbitrary page, we keep
a global bucket counter, allocating a page from
that bucket and then incrementing the counter3.

6 Implementation Details on PA-
RISC

Since the whole thrust of this project was to im-
prove the kernel on PA-RISC (and bring it back
into architectural compliance), it is appropriate
to investigate some of the other problems that
turned up during the implementation.

3This can all be done locklessly with atomic incre-
ments, since it doesn’t really matter if we get two allo-
cations from the same bucket because of race conditions

6.1 Equivalent Mapping

The PA architecture has a software TLB mean-
ing that in Virtual mode, if the CPU accesses
an address that isn’t in the CPU’s TLB cache,
it will take a TLB fault so the software routine
can locate the TLB entry (by walking the page
tables) and insert it into the CPU’s TLB. Ob-
viously, this type of interruption must be han-
dled purely by referencing physical addresses.
In fact, the PA CPU is designed to have fast and
slow paths for faults and interruptions. The fast
paths (since they cannot take another interrup-
tion, i.e. not a TLB miss fault) must all operate
on physical addresses. To assist with this, the
PA CPU even turns off virtual addressing when
it takes an interruption.

When the CPU turns off virtual address trans-
lation, it is said to be operating in absolute
mode. All address accesses in this mode are
physical. However, all accesses in this mode
also go through the CPU cache (which means
that for this particular mode the cache is ac-
tually Physically Indexed). Unfortunately, this
can also set up unwanted aliasing between the
physical address and its virtual translation. The
fix for this is to obey the architectural definition
for “equivalent mapping.” Equivalent mapping
is defined as virtual and physical addresses be-
ing equal; however, we benefit from the obvi-
ous loophole in that the physical and virtual ad-
dresses don’t have to be exactly equal, merely
equal modulo the congruent modulus.

All of this means that when a page is allocated
for use by the kernel, we must determine if it
will ever be used in absolute mode, and make it
equivalently mapped if it will be. At the time of
writing, this was simply implemented by mak-
ing all kernel allocated pages equivalent. How-
ever, really all that needs to be equivalently
mapped is

1. the page tables (pgd, pmd and pte),



110 • Linux Symposium 2004 • Volume One

2. the task structure and

3. the kernel stacks.

6.2 Physical to Virtual address Translation

In the interruption slow path, where we save
all the registers and transition to virtual mode,
there is a point where execution must be
switched (and hence pointers moved from
physical to virtual). Currently, with offset
mapping, this is simply done by and addition
of __PAGE_OFFSET. However, in the new
scheme we cannot do this, nor can we call
the address translation functions when in ab-
solute mode. Therefore, we had to reorgan-
ise the interruption paths in the PA code so
that both the physical and virtual address was
available. Currently parisc uses a control reg-
ister (%cr30 ) to store the virtual address of
thestruct thread_info . We altered all
paths to change%cr30 to contain the physi-
cal address ofstruct thread_info and
also added a physical address pointer to the
struct task_struct to the thread info.
This is sufficient to perform all the necessary
register saves in absolute addressing mode.

6.3 Flushing on Page Freeing

as was documented in section 2.3, we need to
find a way of flushing a user virtual addressaf-
ter its translation is gone. Actually, this turns
out to be quite easy on PARISC. We already
have an area of memory (called the tmpalias
space) that we use to copy to priming the user
cache (it is simply a 4MB memory area we dy-
namically program to map to the page). There-
fore, as long as we know the user virtual ad-
dress, we can simply flush the page through
the tmpalias space. In order to confound any
attempted kernel use of this page, we reserve
a separate 4MB virtual area that produces a
page fault if referenced, and point the page’s

virtual address into this when it isremoved
from process mappings (so that any kernel at-
tempt to use the page produces an immediate
fault). Then, when the page is freed, if its
virtual pointer is within this range, we con-
vert it to a tmpalias address and flush it using
the tmpalias mechanism.

7 Results and Conclusion

The best result is that on a parisc machine, the
total amount of memory the operational kernel
keeps mapped is around 10MB (although this
alters depending on conditions).

The current implementation makes all pages
congruent or equivalent, but the allocation rou-
tine containsBUG_ON()asserts to detect if we
run out of equivalent addresses. So far, under
fairly heavy stress, none of these has tripped.

Although the primary reason for the unmap-
ping was to move parisc back within its archi-
tectural requirements, it also produces a knock
on effect of speeding up I/O by eliminating the
cache flushing from kernel to user space. At
the time of writing, the effects of this were still
unmeasured, but expected to be around 6% or
so.

As a final side effect, the flush on free necessity
releases the parisc from a very stringent “flush
the entire cache on process death or exec” re-
quirement that was producing horrible laten-
cies in the parisc fork/exec. With this code in
place, we see a vast (50%) improvement in the
fork/exec figures.

References

[1] Andrea Arcangeli3:1 4:4 100HZ
1000HZ comparison with the HINT
benchmark7 April 2004
http://www.kernel.org/pub/



Linux Symposium 2004 • Volume One • 111

linux/kernel/people/andrea/
misc/31-44-100-1000/
31-44-100-1000.html

[2] Ingo Molnar[announce, patch] 4G/4G
split on x86, 64 GB RAM (and more)
support8 July 2003
http://marc.theaimsgroup.
com/?t=105770467300001

[3] James E.J. BottomleyUnderstanding
CachingLinux Journal January 2004,
Issue 117 p58

[4] Ingo Molnar[patch] simpler ‘highpte’
design18 February 2002
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
101406121032371

[5] Rik van RielRe: Rmap code?22 August
2001http:
//marc.theaimsgroup.com/?l=
linux-mm&m=99849912207578



112 • Linux Symposium 2004 • Volume One



Proceedings of the
Linux Symposium

Volume One

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


