
Improving enterprise database performance on
Intel Itanium ® architecture

Ken Chen, Rohit Seth, Hubert Nueckel
Intel Corporation

Software and Solutions Group

Abstract

In this paper, we will present several operating
system features that improved database per-
formance under OLTP1 workload significantly,
such as Huge TLB2 page to reduce DTLB3

misses as database uses large amount of shared
memory and asynchronous I/O to accommo-
date high amount of random I/O without in-
troducing the overhead of many I/O processes.
We will also present many other kernel opti-
mizations that were developed by Intel, Red
Hat and the Linux community that improved
the scalability and performance of Linux ker-
nel, specifically the areas are: raw vary I/O,
kernel data structure footprint reduction, global
io_request_lock reduction, and storage device
driver optimization.

1 Introduction

Linux has been receiving a great deal of at-
tention in the past few years. The popular-
ity is propelled by wide range of adoption of
Linux for enterprise computing. Major soft-
ware vendors have been supporting their prod-
ucts on Linux for many years. As the enter-
prise software solution stack builds up every-
day, it is crucial that Linux kernel develop-

1On-Line Transaction Processing
2Translation Lookaside Buffer
3Data TLB

ment takes this opportunity to ensure that ker-
nel provides key necessary infrastructure for
enterprise application to excel. This means de-
veloping enterprise focused operating system
(OS) features, improving performance by ex-
tending the scalability, and many other areas.

Relational database management systems
(RDBMS) are complex server applications
that solve the problems of information man-
agement. The RDBMS reliably manages large
amount of data in a multi-user environment
such that users can concurrently access shared
data. While it is required to maintain con-
sistent data between users, it is also required
to deliver high performance. All these re-
quirements need high-quality infrastructure
provided by the operating system. Some of
the examples are virtual memory manage-
ment for managing vast amount of physical
memory, scalable I/O subsystem, robust / high
performance storage subsystem, light-weight
inter-process communication, and robust /
high performance networking subsystem.

Recent Linux kernel development has ad-
dressed many of the areas with a focus to
provide key functionality for enterprise work-
loads. The rest of the paper will discuss new
kernel features as well as performance en-
hancements in the context of database running
OLTP workload.

Linux Symposium 99

2 Overview

On-line transaction processing refers to a class
of applications that facilitates and manages
transaction-oriented operation, typically for
data entry and retrieval transactions in a num-
ber of industries. The basic skeleton of
OLTP environment consists of multi-tier soft-
ware applications that allow thousands of users
to concurrently execute transactions against a
database. Typically transactions are either ex-
ecuted on-line or queued for deferred execu-
tion and have certain characteristics on the dis-
tribution between a mixture of different types.
Because of the complexity and overall execu-
tion behavior of OLTP workload, the workload
characteristics can be summarized as:

• Simultaneous execution of multiple types
of transactions that span a breadth of com-
plexity

• On-line and deferred transaction execu-
tion

• Significant random disk input/output

• Transaction integrity

• Unique distribution of data access

• Contention on data access and update

From system architecture perspective, the
OLTP workload exercises a breadth of system
components associated with the environment.
Database server application and the underly-
ing operating system software are the key soft-
ware components to provide high performance.
Earlier evaluation of Linux kernel under OLTP
workload revealed several hot spots or limita-
tions from performance point of view, such as
large execution time spent in low level TLB
miss handling, large number of process context
switch due to blocking synchronous I/O, large

execution time on functions related to I/O ele-
vator algorithm, and large execution time spent
on spinning on a highly contended lock like
global io_request_lock. In the following sec-
tions, we will examine how features like Huge
TLB and asynchronous I/O allow database ap-
plication to exploit maximum hardware capa-
bility with minimum overhead from Linux ker-
nel and how Linux I/O subsystem is improved
to reduce kernel execution time.

3 Huge TLB Support in Linux

3.1 Motivation of Huge TLB page

A TLB (Translation Lookaside Buffer) is a
hardware structure for virtual-to-physical ad-
dress translations that supports high perfor-
mance paged virtual memory system. Typi-
cally it is a scarce resource on a processor. Op-
erating systems always try to make best use
of the limited number of available TLB en-
tries on a system. Orthogonally, with advance-
ment of semiconductor technology that result-
ing in ever growing memory capacity, it be-
comes more and more feasible both technically
and economically to populate tens of gigabytes
of memory on a server. For example, HP server
rx5670 can be populated with 48 GB of mem-
ory with 1GB DIMM4, or even 96 GB with lat-
est 2GB DIMM.

Database server applications generally use
large amounts of system memory in order to
efficiently manage the actual databases that
are usually much larger than system memory.
It typically utilizes shared memory segments
among multiple database processes. The first
area in shared memory segments, usually the
largest, is the database buffer cache. It holds
copies of data blocks read from datafiles. A
data block is the smallest unit of storage space

4dual in-line memory module

Linux Symposium 100

managed by database server. The RDBMS ac-
tively manages the data blocks in the buffer
cache. When a user process requires a particu-
lar piece of data, it searches through the buffer
cache. If the data is already in the cache (a
cache hit), it will read the data directly from
memory. Otherwise data block will be copied
from datafile on disk into memory (a cache
miss). It is well known that accessing data
from memory is several orders of magnitude
faster than accessing data from disk. Therefore
in production environment, system administra-
tor will typically allocate as much memory as
possible for shared memory segments in order
to improve cache hit rate by maximizing buffer
cache size. However, accessing large amount
of memory combined with random data access
pattern of OLTP workload, it puts lots of pres-
sure on CPU’s TLB resource. For example, as-
suming 16K page size for Linux-IA64, a 48 GB
of process memory would need 3 million TLB
translations. Or to look at from hardware point
of view, an Itanium 2 processor’s internal TLB
resource would only cover 2 MB of virtual ad-
dress space with 16 KB page size.

With vast amount of memory each applica-
tion process access, there is a need to make
each TLB mapping as large as possible to re-
duce TLB pressure. Large contiguous regions
in a process address space, such as contigu-
ous data, may be mapped by using small num-
ber of large pages rather than large number of
small pages. It is also important to note here
that OS kernel cannot blindly pick up a larger
page size for all applications because it may
cause lots of fragmentation and very poor uti-
lization of large amount of physical address
space. Thus a requirement for having a sepa-
rate large page size facility from the operating
system becomes more and more important in
terms of functionality and performance.

3.2 Design and Implementation

To support large page size for user application
to utilize processor’s capability, Intel worked
with the Linux community to introduce a new
OS feature that exposes the hardware architec-
ture for application to benefit from using huge
page size without affecting many other aspects
of the OS. This new feature is called Huge TLB
page. Specifically the Huge TLB support is at-
tempting to solve the following problems:

• Increase CPU TLB coverage / Reduce
data TLB miss rate

• Reduce process’s page table memory re-
quirement

• Pin data pages in physical memory

The design goal of Huge TLB interface is to
expose the hardware architecture to applica-
tion. Mapping the kernel, or specialized de-
vices such as frame buffers by using large map-
ping is a relatively straightforward exercise. It
only affects very limited portions of the oper-
ating system code. However, virtual memory
implementation in Linux kernel makes the ba-
sic assumption that there is only one page size
for user applications. This one size is related to
MMU page size supported by a specific archi-
tecture. For example, on IA-32 this page size
is 4K, and on Itanium-based system, user page
size is configurable at kernel build time to be
either 4K, 8K, 16K or 64K. Itanium 2 proces-
sor actually provides concurrent multiple page
size support (4K, 8K, 16K, 64K, 256K, 1M,
4M, 16M, 256M, 1G and 4G). The current VM
system is not suited for supporting multiple
user page sizes because the knowledge of one
page size is ingrained in several subsystems
within the kernel. It is important to note that
supporting multiple page sizes affects both ar-
chitecture dependent and independent portions

Linux Symposium 101

of the Linux kernel. That is, a clean separa-
tion of architecture dependent and independent
code in kernel is not enough to mitigate the dif-
ficulties of supporting multiple page sizes.

The allocation of Huge TLB page is performed
in two phases. First a system administrator re-
quests the kernel to reserve a set of memory
in a special huge TLB page pool. The reser-
vation of each huge TLB page is constrained
that memory to be physically contiguous. Once
huge TLB pages are reserved by the operat-
ing system, they can be used by application
through two well defined system interfaces, ei-
ther by mmap interface or through the stan-
dard System V shared memory interface. Note,
application changes are required to use Huge
TLB pages.

3.3 Application Benefit

To quantify the speed up of RDBMS under
OLTP workload, we setup an experimental en-
vironment similar to industry standard OLTP
benchmark on a Itanium 2 processor based
platform.

First a baseline result is established with stan-
dard 16K page size. We then ran experi-
ment with 256 MB page size while holding to-
tal memory in shared memroy segments con-
stant. Throughput is then normalized to base-
line. Figure 3.1 depicts the result.

We can easily see that with each incremental
increase in page size used for data pages in
shared memory segments, the speed up is no-
tably at 11% overall for 256 MB huge TLB
page size.

To further study how various page size speeds
up the overall OLTP throughput at hardware
micro-architecture level, we used Itanium-
processor’s hardware performance monitoring
unit (PMU) to measure TLB pressure with var-
ious page size. The usage model of PMU

0.00

0.25

0.50

0.75

1.00

1.25

16 KB
 256 MB

page size

no
rm

al
iz

ed
 th

ro
ug

hp
ut

Figure 3.1: Relative OLTP throughput with
various page size while holding database buffer
cache size constant

are described in detail in several publications
[1][2].

Again a baseline is established and data were
collected for each page size. To measure hard-
ware TLB pressure, we measured with met-
ric of DTLB miss rate, or inverse of average
number of data references per DTLB miss. As
shown from figure 3.2, there is significant re-
duction in data TLB miss rate by using huge
page size. For 256 MB page size, the DTLB
miss rate is reduced by 65%, or inversely, the
number of data references between successive
TLB misses increases by 280%.

1.00

0.35

0.00

0.20

0.40

0.60

0.80

1.00

1.20

16 KB
 256 MB

page size

D
TL

B
 m

is
s

ra
te

Figure 3.2: DTLB miss rate comparison

It is also interesting to observe that TLB pres-

Linux Symposium 102

sure for OLTP workload on Itanium 2 based
system does not vary much with respect to to-
tal memory size, it is more or less a function of
I/O load. For example, two experiments were
conducted such that one with 16 GB database
buffer cache while the other has 32 GB. The
micro-architecture DTLB miss rate for both
configurations are well within a couple of per-
centage points. This experiment points out that
even at different OLTP throughput due to dif-
ferent size of database buffer cache, the benefit
of using larger page size is equally significant.
With 256 MB page size, the hardware TLB re-
source on Itanium 2 processor would be able
to cover up to 32 GB of memory and primary
source of TLB misses are shifted to data access
to process’s local data and task context switch-
ing.

DTLB miss rate vs. memory size

0

0.2

0.4

0.6

0.8

1

1.2

16 GB
 32 GB

Total Database Cache Size

D
TL

B
 m

is
s

ra
te

Figure 3.3: DTLB miss rate vs. memory size

A second benefit of using huge TLB feature is
that the memory usage for process’s page ta-
ble is significantly reduced. Taking a 48 GB
system as an example, if 45 GB is allocated as
180 256MB huge TLB pages, memory for page
table covers that 45 GB of vma is only 1440
byte. For 100 processes that shares the 45 GB
of shared memory segment, total memory for
page table is 1.6 MB considering each process
round up 1440 byte to one page. In the case
of using normal 16 K page size, the memory
requirement grows to 2250 MB (3 million en-
tries * 8 bytes/entry * 100 processes, ignoring

first and second level page table structure for
simplicity). A secondary effect is that this 2.2
GB of memory reduced from page table can be
better utilized by application to further increase
application’s performance.

A third benefit of huge TLB feature is that
memory allocated for huge TLB page is pinned
in physical memory and is not considered for
swapping. This eliminates the chance of swap-
ping physical pages that are being used for
holding critical application data.

4 Linux I/O Subsystem

4.1 Dynamic vs. Static kiobuf allocation

Direct device access via raw devices partition
improves database performance. A raw device
partition is a contiguous region of a disk that
can be accessed via a character device inter-
face (/dev/raw on Linux). Such access typi-
cally bypasses the file system buffering. Since
RDBMS does its own memory cache and I/O
management, there is no need to have operat-
ing system to perform another level of caching
and buffering. In fact, it is better to leave that
task to application because it has much better
information to determine optimal I/O strategy.

In a large OLTP workload configuration, due
to sheer number of disk drives and the need
to spread I/O load onto large number of disk
drives, a database server typically opens large
amount of data files where these data files re-
side on raw devices. Independent processes
within the database server application will each
open same set of data files.

The existing raw I/O code will statically allo-
cate one kiobuf and its associated structures
(mainly buffer_head structure, abbreviated as
bh hereafter) upon every raw device open.
There are 1024 bh allocated for each kiobuf.
In a benchmark configuration, the memory re-

Linux Symposium 103

quirement just for the bh structure is calculated
as following:

150 raw devices * 120 db processes * 1024 bh
* 192 byte/bh = 3534 MB

However, since each process can have only one
outstanding synchronous I/O at any given time,
the active memory required for 120 processes
are:

120 db processes * 1024 bh * 192 byte/bh = 24
MB

There are massive amount of memory being
set aside by the bh structure and only 0.67%
of them are being actively used. This large
amount of under-utilized memory can be better
devoted for other part of the system, for exam-
ple, database buffer cache.

The cause of the issue is that each kiobuf struc-
ture is associated with a file descriptor. Al-
though in certain cases, static bh allocation
avoids the overhead of dynamic allocation, this
static allocation scheme actually hurts perfor-
mance for OLTP workload due to displacement
of memory allocated for bh structure but other-
wise can be used for database buffer cache.

To enable large number of raw devices to
be opened simultaneously, we removed the
static kiobuf allocation in raw_open function
and at each invocation of rw_raw_dev func-
tion, kiobuf is dynamically allocated and freed
for each raw I/O request. In order to re-
duce the prohibitive amount of overhead with
dynamic allocation of all the memory arrays
in kiobuf, we treat kiobuf and its associated
member arrays as one entity. With the aid
of constructor and destructor API provided by
the kernel slab allocator, member arrays of
kiobuf are allocated and initialized upon the
creation of kiobuf object. Subsequent dy-
namic allocation would only incur one level
of kmem_cache_alloc and kmem_cache_free

overhead for such large data structure. With the
per-CPU slab allocation area, the cost of dy-
namic allocation is even more affordable. The
overhead of this dynamic kiobuf allocation is
measured at 0.8 % for 2 KB I/O size and 0.1%
for 128 KB I/O size.

It should be noted that even though the size of
kiobuf structure is small (128 byte on Linux-
IA64), the entire kiobuf entity is fairly large
at 200KB. The per-CPU array for kiobuf slab
cache should be managed pro-actively. With
default parameter that calculates the per-CPU
array size based on object size, there will be
maximum 252 objects allocated on per-CPU
array and on a 4 CPU system, this leads to 1008
kiobuf entity, or 200MB memory allocation. A
small burden to the system administrator.

4.2 Variable size Block I/O

A second enhancement made to the raw de-
vice layer is to enhance the effectiveness for
the raw vary I/O on Linux-IA64. The exist-
ing code restricts the sector combining to max-
imum size of RAWIO_BLOCKSIZE (4KB).
The user pointer is also restricted to be aligned
on that boundary (4K aligned). Both restric-
tions are sub optimal on Linux-IA64 because
they reject many scenarios that can be put into
speed path.

The implementation can be modified to be run
time page size aware instead of hard coded
constant value. The concept is to combine all
sectors within a page to send down to sub-
mit_bh. For example, on a system with de-
fault page size of 16KB, a raw I/O request with
16KB size would be broken down to 4-4-4-
4KB with existing code where it could be com-
bined optimally as one 16KB request to sub-
mit_bh. The user pointer should only be re-
stricted to sector aligned. For example, again
on a system with page size of 16KB, a raw
I/O request of 4 KB I/O size with user pointer

Linux Symposium 104

aligned on 2KB into a page would be rejected
by the existing code for fast path consideration
where technically it could be in the fast path.
We measured the speed up varies from 10% to
280% with micro-benchmark depending on the
I/O size and buffer alignment for this enhance-
ment.

Again, using OLTP workload to measure how
well the raw vary I/O and the enhancements
measure up in production environment, we ran
two experiments, one with and one without
raw vary I/O. It was measured that raw vary
I/O gives 4% performance advantage over one
without for OLTP workload.

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

without raw vary io
 with raw vary io

no
rm

al
iz

ed
 th

ro
ug

hp
ut

Figure 4.1: Comparison of raw vary I/O under
OLTP workload

4.3 Relieve global lock contention

Another area of improvement in block
I/O subsystem was the reduction of global
io_request_lock usage. Much work has been
done in this area [4] and the result of the work
is incorporated in products released by several
major Linux OS distributors. In earlier releases
of Linux kernel 2.4, I/O requests are queued
one at a time while holding the global lock
io_request_lock. The Linux community has
implemented many iterations/versions to break
the global lock to per device lock. With the
optimization, I/O requests are queued while
holding a lock specific to the queue associated

with the request. This improves concurrent
I/O queuing and significantly improves I/O
throughput.

5 Asynchronous I/O

5.1 History of AIO implementation

Several asynchronous I/O implementations fol-
lowing the POSIX standard were developed
during the Linux kernel 2.3 development cy-
cle. The implementations were either in ker-
nel space or user space. Both of them em-
ployed an idea of an I/O queue with N number
of helper threads that issues synchronous I/O
to the underlying OS. However, there are sev-
eral drawbacks with this approach for database
application. First of all, even though the inter-
face is asynchronous like, the I/O throughput is
severely limited due to another layer of queu-
ing. The optimum number of helper threads
also depends on the characteristics of I/O sub-
system and thus not flexible for wide range of
production environment. A second issue is that
the POSIX defined reap function aio_suspend()
has a worst case of O(n) operation and tends to
break down with large number of pending I/O.

5.2 A New paradigm

During the Linux 2.5 kernel development cy-
cle, Red Hat kernel developers implemented
a new AIO and its API based on the concept
of completion queue [3]. Subsequently Intel
worked with Red Hat to port and refined the
AIO design for Linux kernel 2.4 on Linux-
IA64.

The core of this kernel AIO implementation is
centered around the completion queue. It intro-
duces 5 new system calls for asynchronous op-
eration. The core is generic that the operation
is not just restricted to disk I/O, but also for
network and file system I/O. The completion

Linux Symposium 105

queue is created by system call io_queue_init
and destroyed via io_queue_release. New I/Os
are submitted via io_submit and queued only
if there is sufficient space in the completion
queue to receive resulting event. When I/O is
completed, a corresponding event is put into
the complete queue and can be reaped via
io_get_events. RDBMS application typically
uses unbuffered I/O and combined with AIO
infrastructure, disk I/Os are now being queued
directly at block layer to exploit maximum
concurrency for the capability of the underly-
ing hardware devices.

5.3 AIO Evaluation and Optimization

We first turn our attention to evaluate how
well does kernel asynchronous I/O performs
under heavy disk I/O workload using micro-
workload. The system under test has 3 fiber
channel host adaptors connected to 180-disk
Clariion towers. The disk towers are con-
figured as 10 hardware RAID-0 disk drives
and each RAID-0 drive has 10 raw partitions.
A micro-benchmark program is then request-
ing AIO randomly on the 180 raw partitions
with random offset (round to multiple of sector
size). The I/O size is limited to 2KB and 16KB
to limit the permutation of all other variables.

The micro benchmark basically throttles I/O to
keep the system busy with at least N number of
I/O pending at any given time. When number
of pending I/O reduces to N, test program will
batch next set of I/O with ‘B’ number of I/O
in one AIO io_submit call. Completed I/O also
gets reaped with each occurrence of AIO sub-
mit, i.e., program will reap approximately ‘B’
number of I/O in one io_get_events call.

The first experiment is to measure average
CPU time spent on processing one I/O in the
AIO request array. We sweep across the ‘B’ pa-
rameter from 32 to 1024 while holding N con-
stant at 1000. The data was measured with pure

CPU cycles spend on processing I/O excluding
the wait time due to disk access latency. Figure
5.1 depicts the result.

0

5

10

15

20

25

30

35

40

10
 100
 1000
 10000

of I/O submited per syscall

av
er

ag
e

pr
oc

es
si

ng
 ti

m
e

pe

r
I/O

 (u
s)

16K I/O size

2K I/O size

Figure 5.1: average AIO cost per I/O

For un-buffered I/O via raw device, the pro-
cessing cost per AIO request in the most ideal
case should be insensitive to the size of I/O.
However, the large differences in the average
cost between 2KB and 16 KB size in figure 4.1
indicate that there are some code path in the
system break down badly with large I/O size.
A kernel profiler showed that the elevator al-
gorithm was responsible for the extra cost in
the 16 KB case. It was apparent that raw vary
I/O is also needed for asynchronous I/O path
on raw device. Enhancements in addtion to raw
vary I/O were also made in the generic AIO
layer. Figure 5.2 illustrates the result of opti-
mizations.

With raw vary I/O optimization, the cost of
AIO on raw device is now quite consistent for
different I/O size which matches to our expec-
tation. The overall optimization improves 16
KB I/O size by 400% and 27% for 2 KB I/O
size.

5.4 Application benefit

With all these fancy analysis done with micro-
benchmark, the next question is how does

Linux Symposium 106

0

5

10

15

20

25

30

35

40

10
 100
 1000
 10000

of I/O submited per syscall

av
er

ag
e

C
P

U
 ti

m
e

pe
r

I/O
 (u

s)

16K-orig

2K-orig

16K-varyio

2K-varyio

Figure 5.2: average AIO cost per I/O with op-
timization

AIO and the optimizations measure up in
a real world production environment, like
RDBMS with OLTP workload? Most I/O
cache schemes employ deferred I/O operations
and periodically sync up memory content with
persistent data storage. A write back pro-
cess is typically woken up on various condi-
tions. One condition is database checkpoint
where the process will write modified database
records to persistent media in order to bring
those copies of record in the persistent media
current.

At high transaction rate and especially large
percentage of update intensive queries in the
OLTP transactions, the amount of modified
database records existed in the buffer cache are
high at the time when checkpointing initiates.
It is essential that a write back process write
those records to disks as quickly as possible to
minimize amount of CPU processing time con-
sumed on checkpoint task. Since the purpose
of checkpoint is to sync-up persistent data file
with content in memory, it actually has very
little data dependency on when the blocks are
being written, as long as database server gets
notified that the writes are completed. This re-

quirement fits perfectly with the non-blocking
semantics of asynchronous I/O.

There are two ways for the writeback pro-
cess to submit I/O to the OS. One is an inter-
nal RDBMS facility that distributes I/O among
multiple helper processes for system that lacks
the native AIO implementation. This facility is
similar to I/O queue and help threads described
earlier. The other is to submit I/O to the OS via
native AIO interface. Again, two experiments
were conducted, first with I/O helper threads
configuration to establish a baseline result and
second with native AIO configuration. Figure
5.3 depicts the result.

comparison of io threads vs. AIO

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0
 10
 20
 30
 40
 50

run time (minutes)

no
rm

al
iz

ed
 th

ro
ug

hp
ut

aio

io threads

Figure 5.3: Benefit of AIO for OLTP workload

Several points worth noting here. At steady
state, configuration with AIO is 10% higher in
OLTP throughput compare to without AIO. It
is due to combination of reduction in I/O pro-
cesses’ overhead and efficient OS I/O queuing
and event reaping. Second note is that in the
I/O helper thread configuration, system takes
extra overhead in context switching between
the helper threads and other active processes.
Not only the helper thread takes a penalty hit
with process context switch, it also puts more
pressure on the CPU’s data cache because more
processes are actively running on the system.
In the asynchronous I/O case, disk I/Os are

Linux Symposium 107

submitted directly to OS, thus reduces number
of context switches. As illustrated from figure
5.4, the number of process context switches is
reduced by 12 % with asynchronous I/O.

system context switch rate

0.80

0.85

0.90

0.95

1.00

1.05

without AIO
 with AIO

N
or

m
al

iz
ed

 to
 b

as
el

in
e

Figure 5.4: system context switch rate with and
without AIO

There are many other secondary effects indi-
rectly improving overall system performance
by using AIO. System memory consumption
is reduced because there aren’t any I/O helper
threads at all. OS scheduler will have less pres-
sure because less number of active tasks it need
to manage, and lastly inter-process communi-
cation overhead between the helper threads are
eliminated. All of these translate into highly
efficient scalable asynchronous I/O layer and
higher OLTP throughput.

6 Storage Device Driver Optimiza-
tion

While most I/O enhancements outlined in pre-
vious section are more or less transparent to
storage device driver, some still do require co-
operation from each individual driver to en-
able specific optimization. One example would
be HP’s smart array family of disk controllers.
Since this driver hooks directly into Linux I/O
block layer, it missed out all the enabling in-
frastructures for the raw vary I/O and the global

io_request_lock optimization implemented for
SCSI devices.

Both optimizations are fairly straightforward to
enable. What we did was at the time of the
controller’s initialization, we initialize a per-
controller raw vary I/O capability array and
then hook that array into the blkdev_varyio de-
fined in the block layer. To enable per de-
vice request lock, two locks are added in the
controller’s data structure, one lock for I/O re-
quest queue, and one for the controller itself.
Locking primitives are then modified to use the
corresponding request queue lock in the case
of I/O queuing/dequeuing. For operations that
pertain to controller, the controller lock will be
used.

Other optimizations that were also actively
worked on for this particular storage device
driver are interrupt coalescing, 32-bit DMA
command pool, and Itanium architecture spe-
cific command structure alignment.

7 Conclusions

In this paper we have outlined some of the
key operating system requirements for running
a high performance database on Linux. Im-
plementations of huge TLB support and asyn-
chronous I/O have been described along with
how these features perform to expectation un-
der OLTP workloads. The I/O subsystem for
the Linux kernel 2.4 has been improved signif-
icantly to achieve high concurrency and effi-
ciency for high demand I/O workload. Storage
device driver optimizations are also shown to
be equally important to materialize optimiza-
tions done at generic layer.

8 Acknowledgement

The authors of this paper would like to thank
the following people who enthusiastically con-

Linux Symposium 108

tribute directly or indirectly to this paper, in no
particular order: Asit Mallick, Arun Sharma,
Tony Luck, Sunil Saxena, Mark Gross and sev-
eral other groups at Intel Corporation; Red Hat
kernel developers; Linux community around
the world.

References

[1] Intel Itanium Architecture Software
Developer’s Manual, Volume 1-3.

[2] David Mosberger and Stephane Eranian,
ia-64 linux kernel design and
implementation., Prentice Hall, 1st
edition, 2002.

[3] Benjamin LaHaise,An AIO
Implementation and its Behavior, Ottawa
Linux Symposium proceedings 2002.

[4] Peter Wai Yee Wong, et al.,Improving
Linux Block I/O for Enterprise Workloads,
Ottawa Linux Symposium proceedings
2002.

Trademarks

Itanium is a registered trademark of Intel Corpora-
tion or its subsidiaries in the United States and other
countries.

Other names and brands are the property of their
respective owners.

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

