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Abstract

One of the main problems with IP has been its
lack of security. Although IPSec and DNSSec
have provided some level of security to IP, the
notion of a true identity for hosts is still miss-
ing. Typically, the IP address of the host has
been used as the host identity, regardless of
the fact that it is nothing more than routing in-
formation. The purpose of the Host Identity
Payload/Protocol (HIP) architecture is to add a
cryptographically based name space, the Host
Identity, to the IP protocol. The Host Identity
serves as the identity of the host, whereas the
IP address is merely used for routing purposes.
In this paper, we describe the HIP architecture
further, and present our IPv6 based implemen-
tation of HIP for Linux.

1 Introduction

The lack of security has been one of the main
problems with IP. Although IPSec [8] and
DNSSec [14] have provided some level of se-
curity to IP, such as data origin authentication,
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confidentiality, integrity, and so forth, the no-
tion of a true identity for hosts is still miss-
ing. The IP address has typically been used
both to identify the host and to provide rout-
ing information. This has led to the misuse
of IP addresses for identification purposes in
many security schemes. To overcome the prob-
lems related to the current use of IP addresses,
the Host Identity Payload/Protocol (HIP) archi-
tecture adds a cryptographically based name
space, the Host Identity, to the IP protocol.
Each host (or more specifically, its network-
ing kernel or stack) is assigned at least one
Host Identity, which can be either public or
anonymous. The Host Identity can be used
for authentication purposes to support trust
between systems, enhance mobility and dy-
namic IP renumbering, aid in protocol transla-
tion/transition and reduce denial-of-service at-
tacks. Furthermore, as all of the higher proto-
cols are bound to the Host Identity instead of
the IP address, the IP address can now be used
solely for routing purposes.

In this paper, we describe the HIP architecture
and present our IPv6 [6] based implementation
of HIP for Linux. The rest of the paper is struc-
tured as follows: in Section 2, the HIP architec-
ture and the Host Layer Protocol is described.
Section 3 describes our implementation, and
Section 4 concludes the paper.
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2 The HIP architecture

There are two name spaces in use in the In-
ternet today: IP addresses and domain names.
IP addresses have been used both to identify
the network interface of the host and the rout-
ing direction vector. The three main prob-
lems with the current name spaces are that
dynamic readdressing cannot be directly man-
aged, anonymity is not provided in a consis-
tent and trustable manner, and authentication
for systems and datagrams is not provided.

In [10][11][12], the HIP architecture is intro-
duced. HIP introduces a new cryptographically
based name space, the Host Identity (HI), and
adds a Host Layer between the network and the
transport layer in the IP stack.

The modification to the IP stack is depicted in
Figure 1. In the current architecture, each pro-
cess is identified by a process ID (PID). The
process may establish transport layer connec-
tions to other hosts (or to the host itself), and
the transport layer connection is then identi-
fied using the source and destination IP ad-
dresses as well as the source and destination
ports. On the IP layer, the IP address is used as
the endpoint identifier, and on the MAC layer,
the hardware address is used. In HIP, the trans-
port layer is modified so that the connections
are identified using the source and destination
HIs as well as the source and destination ports.
HIP then provides a binding between the HIs
and the IP addresses, e.g. using DNS [9].

The HI is typically a cryptographic public key,
which serves as the endpoint identifier of the
node. Each host will have at least one HI as-
signed to its networking kernel or stack. The
HI can be either public or anonymous. Public
HIs may be stored in directories, such as DNS,
in order to allow the host to be contacted by
other hosts. A host may have several HIs, and
it may also generate temporary (anonymous)
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Figure 1: The current IP stack and the HIP
based stack

HIs on the fly for establishing connections to
other hosts. The main purpose of anonymous
HIs is to provide privacy protection to the host,
should the host not wish to use its public HI(s).

The HI is never directly used in any Internet
protocol. It is stored in a repository, and is
passed in HIP. Protocols use a 128-bit Host
Identity Tag (HIT), which is a hash of the HI.
Another representation of the HI is the Local
Scope Identity (LSI), which has a size of 32
bits, but is local to the host. Its main purpose
is to support backwards compatibility with the
IPv4 API.

The main advantages of using HIT in proto-
cols instead of the HI is that its fixed length
makes protocol coding easier and also does not
add as much overhead to the data packets as a
public key would. It also presents a consistent
format to the protocol regardless of the under-
lying identity technology used. HIT functions
much like the SPI does in IPSec, but instead of
being an arbitrary 32-bit value that identifies
the Security Association for a datagram (to-
gether with the destination IP address and se-
curity protocol), HIT identifies the public key
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that can validate the packet authentication.

The probability that a collision will occur is ex-
tremely small. However, should there be two
public keys for one HIT, the HIT acts as a hint
for the correct public key to use.

The HIP architecture basically solves the prob-
lems of dynamic readdressing, anonymity, and
authentication. As the IP address no longer
functions as an endpoint identifier, the prob-
lem of mobility becomes trivial, as the node
may easily change its HI and IP address bind-
ings as it moves. Anonymity is provided by
temporary and anonymous HIs. Furthermore,
as the name space is cryptographically based,
it becomes possible to perform authentication
based on the HIs. In [13], the concept of in-
tegrating security, mobility, and multi-homing
based on HIP is discussed further.

2.1 The Host Layer Protocol

The Host Layer Protocol (HLP) is a signal-
ing protocol between the communicating end-
points. The main purpose of the protocol is to
perform mutual end-to-end authentication and
to create IPSec ESP [7] Security Associations
to be used for integrity protection and possibly
also encryption. Furthermore, the protocol per-
forms reachability verification using a simple
challenge-response scheme.

The HLP protocol provides seven message
types, of which four are dedicated to the base
exchange. In Figure 2, the base exchange is de-
picted. In the first message,I1, the initiatorI
sends its own HIT and the HIT of the responder
to the responder. The responderR replies with
messageR1, which contains the HITs ofI and
itself as well as a puzzle based challenge for
I to solve. The purpose of the challenge is to
make the protocol resistant to denial-of-service
attacks. (Puzzle based schemes have been pre-
viously used for providing DoS protection to

I

I1: <HIT(I), HIT(R)>

R1: <HIT(I), HIT(R), challenge>

I2: <HIT(I), HIT(R), response, authentication>

R2: <HIT(I), HIT(R), authentication>

R

Figure 2: The base exchange of the Host Layer
Protocol

both authentication [3] and encryption [5] pro-
tocols.) I solves the puzzle and sends inI2
the HITs of itself andR as well as the solu-
tion to the puzzle, and performs the authenti-
cation. R2 now commits itself to the commu-
nication, and responds with the HITs ofI and
itself, and performs the authentication. After
this, I andR have performed the mutual au-
thentication and established Security Associa-
tions for ESP, and can now engage in secure
communications. Furthermore, reachability is
verified by the fact that the protocol has more
than two rounds.

If I does not have any prior information ofR, it
may retrieve the information from a repository,
such as DNS.I sends a lookup query to the
DNS server, which replies withR’s address,
HI, and HIT.

There are three other messages in the HLP. The
HIP New SPI Packet (NES) provides the peer
system with its new SPI, provides a new Diffie-
Hellman key to produce new keying material,
and provides any intermediate system with the
mapping of the old SPI to the new. The HIP
Readdress Packet (REA) allows a host to no-
tify its partners of a change of the IP address
(e.g. as a result of mobility). The HIP Boot-
strap Packet (BOS) is used when the initiator is
unable to learn a responders information from
a repository.
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3 Implementation

The protocol is implemented as a kernel mod-
ule which uses a user space daemon process for
some cryptographic operations, such as com-
putation and verification of DSA signatures.
Since the protocol is implemented as a ker-
nel module, the kernel can remain as intact
as possible, with only minor modifications.
The modifications are backwards compatible
so that normal TCP/IP connectivity without
HIP can still be used. The state information re-
quired by the protocol state machine is located
within the kernel module. The user space dae-
mon acts as a slave to the kernel module and
does not contain state.

The implementation is based on the Linux ker-
nel version 2.4.18 with USAGI [2] patches.
The implementation supports HIP only over
IPv6.

3.1 Network Socket API

The most important design goal in the network
socket API has been the transparent use of HIP
by legacy applications. Thus, the legacy appli-
cations do not need any changes in their source
code to utilize the benefits of HIP. On the other
hand, applications that are HIP aware should
be able to perform some additional tasks that
will not be available to legacy applications. For
example, a HIP aware application may require
or deny the use of HIP. A reason to require HIP
would be to benefit from the multihoming, se-
curity, and mobility features of HIP. A reason
to deny the use of HIP might be to avoid the
extra overhead caused by the cryptographic op-
erations in a device with limited computing ca-
pacity.

A typical network application does not usually
establish a network connection directly to an
IPv6 address. Instead, the application is usu-
ally given the hostname of the peer, which has

to be resolved to an IPv6 address from DNS.
The connection can then be established to the
IPv6 address.

When HIP is used, the network application
needs additional support in the resolver for two
different reasons. The first reason is that the re-
solver should return HITs instead of IPv6 ad-
dresses if HIP is being used transparently in a
legacy application. The second reason is that
a HIT to IPv6 address mapping should always
be sent to the kernel as a side effect of the do-
main name query. Otherwise the IPv6 layer in
the kernel does not have an address it can use
for routing packets.

The resolver interfaces are traditionally con-
tained in libc . The USAGI project has
its own modified version oflibc which is
also used in the implementation. Only the
getaddrinfo resolver interface is currently
supported in the implementation for experi-
mentation purposes.

Most of the legacy IPv6 applications, such as
telnet clients and web browsers, are able to use
HIP in transparent mode if they can access the
HIP enabled resolver. This means that they
should be relinked against the HIP patched US-
AGI libc . Firewalls, network address trans-
lators and other applications that handle raw
packets may need changes in application code
in order to utilize HIP.

3.2 Userspace daemon

A userspace daemon is required by the HIP
module for several reasons, of which the most
important reason is that the protocol requires
DSA and Diffie-Hellman cryptographic algo-
rithms which cannot easily be implemented
within the kernel. Unfortunately, there are no
known kernel cryptographic libraries support-
ing those algorithms, so those tasks have to be
done in user space libraries. The HIPL im-
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plementation uses the OpenSSL [1] library for
user space cryptographic operations.

The daemon is used by the kernel module to
perform many small operations on data. The
kernel module can send queries such assign
the given data with this DSA keyor solve
this cookieto the daemon. The daemon cal-
culates a response for the given query and
the response either contains the answer to the
query or an error message if something went
wrong. Messages between the kernel module
and the daemon are exchanged synchronously
in a request-response fashion.

The request-response communication is imple-
mented using a common interface in the kernel.
When a request is carried out in the kernel, the
current context of execution will be saved. The
contents of the context depends on the opera-
tion being executed, but a minimal context de-
fines at least a reference to a callback function.
The callback function is called after the request
has been served in the daemon and the daemon
has sent a response message to the kernel mod-
ule. The kernel module can restore its state
based on the information stored in the context
and then continue its execution where it left off.

The actual request-response communication is
implemented in a straightforward manner. The
implementation can serve only one daemon re-
quest at a time, and subsequent requests are
saved into a FIFO queue. An arriving response
message from the daemon triggers a new dae-
mon request from the top of the FIFO queue.

3.3 Networking Stack

Transport layer communications are bound to
HITs when HIP is used. When data is sent
over the transport layer connections, packets
are created and received as if they were using
HITs as the source and destination addresses in
the transport layer headers. As the packets are

passed up and down the protocol stack, they
will encounter a number of hooks that may in-
tercept the passing packet to the HIP module
for modifications. Currently, the implementa-
tion has three major entry points into the HIP
module from the IPv6 stack.

IPv6 output functions. The hooks in the out-
put functions are triggered after the packet
has been built and the packet has passed
IPsec ESP processing. If the packet be-
longs to a HIP connection, it has a HIT in-
stead of an IPv6 address as the destination
address in the IPv6 header. Such a packet
will be intercepted by the HIP module.
Other packets are allowed through intact.

When the HIP output functions receive a
packet, the module first checks whether
the packet belongs to an established HIP
connection by searching its table of estab-
lished connections using the source and
destination HITs as the key. If an exist-
ing connection is not found, the packet
is dropped and a HIP exchange is started
by sending an I1 packet. On the other
hand, if an existing connection is found,
the source and destination HITs in the
IPv6 header are replaced by the IPv6 ad-
dresses that are stored in the mapping ta-
ble in the kernel. Thus, even if connec-
tions are maintained using HITs as identi-
fiers in the transport layer, the actual pack-
ets that are sent to the network will still
always contain valid IPv6 addresses.

IPv6 ESP input functions. All received
packets that belong to an established
HIP connection will have an ESP header.
Therefore, it is only necessary to intercept
HIP packets from within ESP. Packets
that are received by ESP are classified
to those that belong to a HIP connection
and those that do not. The reverse of
the output mapping is performed. The
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correct mapping is located using the SPI
field in the ESP header, and if a mapping
is found, the source and destination
addresses in the packet are replaced by
the corresponding HITs before the packet
is forwarded to the actual ESP processing.
Again, the ESP processing only sees the
HITs, and not the IPv6 addresses.

HIP protocol input. A special case is re-
quired for HIP packets that are re-
ceived during the connection establish-
ment phase. The HIP module is registered
as a transport layer protocol and does not
actually require a special hook for this
functionality. This intercept point is used
to receive I1, R1, I2 and R2 packets, as
well as other HIP negotiation packets.

Also, a few other hooks are required in or-
der to, for example, make the neighbor discov-
ery in IPv6 work correctly with HIP. However,
these hooks are not relevant for this discussion.

3.4 Collaboration of Components

This section gives an overview of the collab-
oration of the components through an exam-
ple. Figure 3 represents an overview of the
system architecture and the logical connections
between the components.

For simplicity, only a minimalistic base ex-
change is demonstrated. For example, mobil-
ity and multihoming are not demonstrated here.
The configuration in this example consists of
two hosts which use legacy applications that
have not been designed for HIP, and therefore
the transparent mode is used. The host that
starts the HIP exchange will be referred to as
the initiator while the peer is known as the re-
sponder. The initiator is a host that wishes to
browse a web page from another host, and the
responder has a web server listening for incom-
ing requests. A DNS server in the domain of

HIP network
module

HIP daemon

USERSPACE

KERNEL

Figure 3: Collaboration of components

the responder is configured to return the IPv6
address and the HIT of the responder.

When the HIP module is loaded into the ker-
nel, it first queries a Host Identity from the dae-
mon. This identity will be used in all signed
HIP packets that are sent by the host. The ker-
nel module also generates a list of prebuilt R1
packets for quick sending. Finally, the module
registers its hooks into the kernel. HIP connec-
tions can now be established.

When the user of the initiator host inputs the
URL of the requested web page into the web
browser to view the web pages in the respon-
der’s web server, the browser queries DNS for
the name of the host using the resolver routine
getaddrinfo . Since the browser is linked
to the modifiedlibinet6 , the query is han-
dled by the modified resolver.

The resolver queries the DNS for the respon-
der’s hostname. When the resolver receives the
response from the DNS, it finds IPv6 addresses
as well as HITs in the reply. Two things are
done before the DNS reply is returned in a list
from the resolver to the web browser. First,
the resolver changes the order of the addresses
in the DNS reply list before returning them to
the application. The HITs of the responder are
placed in the beginning of the list before the
IPv6 addresses of the responder. Second, the
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kernel is notified about the mapping of the HIT
to the corresponding IPv6 address.

The result of the resolver call is a list contain-
ing first the HIT and then the IPv6 address of
the responder. The browser is assumed to make
the straightforward choice and select the first
address from the list, which is a HIT in this
case. The HIT is then used in the socket calls.
Because the browser uses the HTTP [4] proto-
col which runs over TCP, the browser passes
the HIT to the TCPconnect call in the net-
work socket API.

Theconnect call is handled by the TCP layer
in the kernel. The TCP layer begins a hand-
shake to establish a connection by generating a
SYN packet to be delivered to the web server.
When the SYN packet is encapsulated into an
IPv6 packet in the IPv6 layer, the packet is cap-
tured by the output hook of the HIP module.
The HIP module then examines the packet and
discovers that the addresses in the packets are
HITs instead of regular IPv6 addresses. The
module also attempts to lookup a previously
established HIP connection from its table of
established HIP connections. The lookup fails
because the connection attempt was a new one
and a HIP exchange is needed to establish the
new HIP connection. Since a HIP connection
between the client and the server does not ex-
ist, the TCP SYN packet cannot immediately
be delivered to the web server. For simplicity,
the SYN packet will be dropped. Retransmis-
sions will also be dropped until the base ex-
change has been completed.

To start the base exchange, the initiator sends
an I1 packet to the web server. R1, I2 and R2
packets are exchanged after this. The build-
ing and parsing of each of the R1, I2, and R2
packets requires the assistance of the HIP dae-
mon. For example, the daemon verifies the va-
lidity of the identity of the peer from DNS and
creates a symmetric Diffie-Hellman key for the

hosts during the base exchange.

Once the base exchange is completed, the hosts
will have generated a common secret that they
will be able to use to secure their communica-
tion. They will also have established IPsec Se-
curity Associations that will be used to encrypt
the communication between the hosts. The
TCP handshake can continue, and once it has
been completed, the initiator can receive web
pages from the web server at the responder. If
further TCP connections need to be established
between the two hosts, the HIP negotiation is
not needed to be performed again, but the ex-
isting security associations are reused for the
new connections.

4 Conclusion

In this paper, we described the HIP architec-
ture, which has been designed to overcome
problems mainly with respect to security, mo-
bility, and privacy in the current Internet. HIP
adds a new layer, the Host Layer, between the
networking and transport layer in the IP stack,
and introduces a Host Identity (HI) to serve as
an end-point identifier of the host. Typically,
the HI is represented by a public key. Each
host will have at least one HI assigned to its
networking kernel or stack. As the HI is used
to identify the hosts, the IP addresses are used
merely for routing purposes.

HIP defines a Host Layer Protocol to be used
as a signaling protocol between end hosts. The
purpose of the protocol is to perform mu-
tual end-to-end authentication and to establish
IPSec Security Associations. HLP consists of
seven message types, of which four are part of
the HIP base exchange.

As part of this paper, we presented our IPv6
based implementation of HIP for Linux. The
Host Layer Protocol is implemented as a ker-
nel module, which uses a user space daemon
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process to perform some cryptographic opera-
tions. The advantage of our approach is that
the kernel can remain as intact as possible,
with only minor modifications. Furthermore,
the modifications are backwards compatible so
that the host is able to do networking with-
out HIP. Our implementation is based on Linux
kernel version 2.4.18 with USAGI patches.
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