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Abstract

A large amount of work has gone into the
memory management subsystem during the 2.5
series of Linux® kernels, and it is more sta-
ble under a wide variety of workloads than the
2.4 VM (virtual memory subsystem). Many
scalability problems have been solved, mak-
ing memory managment perform much better
on larger machines (meaning either with more
than 1GB of RAM, or more than one processor,
or both). Some of these changes also benefit
smaller machines.

During the 2.4 series of kernels, the main
Linux distributions diverged massively from
the mainline kernel, particularly in the area of
VM. This causes ongoing maintainance prob-
lems, and wasted duplicated effort in problem
solving and feature implementation. Many of
the enhancements made by the distributions
have been brought back into the mainline ker-
nel during the 2.5 series, under the leadership
of Andrew Morton, providing a solid base for
future development, and a greater potential for
co-operative work.

This paper discusses the changes made to the
Linux VM system during 2.5 that will signif-
icantly impact larger machines. It also covers
changes that are proposed for the future, most
of which are currently available as separate
patches. Larger machines also have to cope
with a larger number of simultaneous tasks—
I have focused on up to 5000.

For the sake of simplicity, clarity, and
brevity, we assume an IA32 machine with
PAE mode (3 level pagetables) and normal
memory layout settings throughout the pa-
per. Unless otherwise specified, measurements
were taken on a 16-CPU NUMA-Q® system
(PIII/700MHz/2MB L2 cache) with 16GB of
RAM.

1 Introduction

Market economics dictate the prevalance of
large 32 bit systems, despite the software com-
plexity involved. Though cheap 64 bit chips
are beginning to appear, they are still not avail-
able as large systems. However, the techniques
and discoveries described in this paper are by
no means only applicable to such machines.

2 The global kernel virtual area

The fundamental problem with 32 bit machines
is the lack of virtual address space for both user
processes and the kernel—32 bits limits us to
4GB total. Each user processes’ address space
is local to that process, but the kernel address
space is global. In order to ensure efficient op-
eration, the user address space is shared with
the global kernel address space (see Figure 1).

The default address space split for Linux 2.4
and 2.5 is 3GB user: 1GB kernel. It is
possible to change this split, but it is of-
ten not desirable—some applications (such as



Linux Symposium 51

Figure 1: The process address space

databases) want as much address space for the
process as possible for the application, whilst
the kernel also wants as much space as possi-
ble for its data structures.

The first 896MB of physical memory is
mapped 1:1 into the shared global kernel ad-
dress space. This memory range is known as
low memory (ZONE_NORMAL), and mem-
ory above the 896MB boundary is known as
high memory (ZONE_HIGHMEM). The more
physical memory we add to the machine, the
bigger the kernel control structures need to be,
but the control area is fixed size by the virtual
space limitation.

Thus the more RAM we add to the machine,
the more pressure there is on the global kernel
area. The standard Linux 2.4 kernel copes very
badly with large amounts of memory, perhaps
limited to 4GB at best. The Linux 2.4 enter-
prise distributions will work with 16–32GB of
memory, depending on the distribution. Linux
2.5 will cope with approximately 32GB of
memory.

Unfortunately, most of the data that is put into
the kernel address space is not swapable, and
the Linux kernel often does not shrink the data
gracefully under memory pressure. Thus, the
failure condition is often difficult to diagnose;
kswapd goes into a flat spin, all kernel mem-
ory allocations stop, and the system appears to
have hung. Monitoring the “lowfree” field of
/proc/meminfo in the runup to the system hang
will often help to detect this condition.

The main space consumers for the kernel space
are:

• mem_map (physical page control struc-
tures)

• Slab caches, particularly:

– buffer_head

– dentry_cache

– inode_cache

• Pagetables

mem_map is an array of page control struc-
tures, one for each physical page of RAM on
the system. On a 16GB machine, that takes
19% of the kernel’s address space. For 64GB,
it takes 78% of all the space we have, leaving
insufficient space for the normal kernel text and
data. Whilst the machine may boot, it will not
be usable.

William Irwin and Hugh Dickins are imple-
menting a technology called “page clustering,”
that makes one page control structure govern
a group of pages, thus dramatically reducing
the space taken (e.g. 8 page groups reduces us
from 78% of space to 9%).

3 kmap

The kernel has permanent direct access to low
memory, but needs to perform special opera-
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tions to map high memory (however, note that
user space can directly map high memory).
High memory is usually mapped one 4K page
at a time, via two main mechanisms: persistent
kmap, and atomic kmap.

Persistent kmap uses a pool of 512 entries. All
entries start out as clean; each entry is used in
turn, and has a usage count associated with it.
As entries are freed (usage count falls to 0) they
are marked as dirty. When we reach the end
of the pool, all dirty entries with 0 usage are
marked as clean, a system-wide tlbflush is in-
voked, and now the buffers may be reused. All
of these operations are global, and done under
a global lock (kmap_lock).

Atomic kmap has a small number of entries
per CPU—one for each of a few specific op-
erations (that may need to be done in conjunc-
tion, so one entry is not sufficient). To reuse
an atomic kmap slot, a single TLB entry needs
to be flushed, and only on 1 CPU. This allows
lockless operation, and CPU local data man-
agement (i.e., no cacheline bouncing). How-
ever, due to the CPU-local nature of the map-
ping, it is not possible to sleep, or reschedule
onto another CPU whilst holding the mapping.

The problem comes in that persistent kmap
turns out to be heavily used and rather slow.
Not only is the data & locking global, but the
global TLB flushes are very expensive (par-
ticular on machines without tlb_flush_range,
such as IA32). Persistent kmap scales as O(N2)
where N is the number of CPUs in the sys-
tem (N times the frequency that the pool is
exhausted * N times the impact from the tlb
flushes). As CPU:memory speed ratios con-
tinue to grow, the caches become ever more
important, and such algorithms are not suitable
for heavy use.

The heaviest users were copy_to/from_user
and related functions (copying data between
kernel and userspace). It is possible that

these operations would take a pagefault on the
userspace page, and thus sleep (and thus cannot
directly use atomic kmap). Other heavy users
included one implementation of putting user
pagetables into highmem—workloads with
heavy pagetable manipulation (e.g. kernel
compiles) were observed to spend more than
half of their time just mapping and unmapping
pte pages.

After much discussion on the subject dur-
ing 2002, the following solution was agreed
upon, and Andrew Morton implemented it. In
essence, we now use atomic kmap for opera-
tions such as copy_to/from_user, but touch the
page first to ensure it is faulted in, making it ex-
tremely unlikely that we will take a pagefault.
In the unlikely event that a pagefault does oc-
cur, we handle the fault, then retry the copy
operation using persistent kmap (in practice,
this was never found to occur). Truly persistent
global operations (typically for the lifetime of
the OS instance) where performance it is not a
concern can still use persistent kmap.

4 Pagetables

The pagetables map the process’ virtual ad-
dresses to the physical addresses of the ma-
chine. For an IA32 machine with PAE, each
PTE entry controlling a 4K page consumes 8
bytes of space, resulting in a fully populated
3GB process address space consuming 6MB of
PTE entries. In other words, the overhead of
PTEs is 0.2% of physical RAM if we have no
sharing going on.

In most workloads, however, there is signif-
icant amounts of space shared between pro-
cesses, either in shared libraries, or as shared
memory segments. In particular, database
workloads often use large shared segments
(e.g. 2GB) shared between large numbers of
processes. Whilst the memory itself is shared
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between processes, the pagetables are dupli-
cated; one copy for each process. Thus for
5000 processes sharing a 2GB shmem seg-
ment, the PTE overhead for that segment is
now 20GB of RAM (i.e. the overhead is
1000% of the consumed space).

These levels of heavy sharing are for real work-
loads analysed, not a theoretical projection,
and for a machine that might otherwise run
happily with 8GB of RAM.There are two ob-
vious ways to reduce the overhead: either we
share the pagetables, or we reduce the size of
each copy substantially.

Sharing the PTE level of the pagetables
has been implemented by Dave McCracken.
This enables us to share identical mappings
over large areas between different processes,
thereby reducing the mapping overhead for the
case under consideration from 20GB to 4MB.
It is totally transparent to applications, but is
not currently in the 2.5 kernel as of 2.5.68.

The locking required for shared pagetables
makes the patch slightly complex, and sharing
can only occur on a pte-page sized basis (2MB
of memory). Due to the mechanisms of shared
libraries writing to certain areas of the shlib
(and thus causing a copy-on-write split for the
2MB area) and the alignment requirements, it
is not generally useful as a mechanism for re-
ducing the overhead of shared libraries. It is,
however, extremely effective on large shared
memory segments, and reduces the overhead
of fork+exec for large processes.

Support for large hardware pagesizes (aka
hugetlbfs) can dramatically reduce the over-
head of each process’ pagetables. On IA32
PAE, there is only 1 large page size available
(2MB), and this reduces the overhead by a fac-
tor of approximately 512. Memory consump-
tion for the case under consideration is reduced
for this case from 20GB to about 60MB. This is
in the Linux 2.5 kernel, but requires small mod-

ifications to applications in order to use this fa-
cility.

A static pool of memory reserved for large
pages is established at boot time, and handed
out to applications that request it via a flag to
shared memory create calls. Future work is
planned to make a more flexible mechanism,
whereby it is not necessary to reserve a static
number of pages, and the kernel automatically
uses large pages where appropriate.

In order to accomodate the large numbers of
pagetables that are potentially needed on larger
systems, it is possible to put the third level of
the pagetables (PTEs) into the high memory
area, rather than the main global kernel space.
While this can greatly alleviate the space con-
sumption problem, it comes at a price in terms
of time.

Though modern implementations of highmem
pagetables use atomic kmap, the cost of setting
up the mappings for access, and the subsequent
TLB flush is still expensive for such heavy us-
age, especially for workloads that create and
destroy processes frequently. For kernel com-
piliation, the overhead of highpte was an in-
crease of approximately 8% of system time.

5 UKVA

The shortage of virtual space on IA32 keeps
the kernel from directly mapping everything
that it might like to, especially things which
are in high memory. We have mecha-
nisms to do this temporarily with kmap() and
kmap_atomic(), but both of these mechanisms
impose significant overhead in data manage-
ment and tlb flushing.

For workloads with large numbers of pro-
cesses, one of the largest consumers of virtual
space is page tables, specifically the bottom-
level PTE pages. There is an option (high-
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pte) in the kernel to put these pages in high
memory and map them via kmap_atomic() as
needed, but this incurs an 8% increase in sys-
tem overhead. It would be much more efficient
to permanently map the PTE pages, but into a
per-process area instead of a global one, thus
giving efficient operation without wasting large
amounts of virtual space.

UKVA (User-kernel virtual addressing) pro-
vides a per-process kernel memory area. The
same virtual space in each process is mapped to
different physical pages, just like the userspace
addresses (thus the “U”), but with the protec-
tions of kernel space (hence the “K”). A previ-
ous implementation actually located this area
in the current user area. However, that imple-
mentation would have made it difficult to lo-
cate things other than user PTEs in the area.
The implementation described here will locate
the area inside the current kernel virtual area,
and concentrate on locating PTEs in the area.

The first question is, “How big does it need to
be?” An IA32 machine with PAE enabled has
4k pages, each controlled by a 8-byte pte en-
try. Each process will only need enough UKVA
space to map in its own page tables.

4GB / (4K / page) = 1M pages

1M pages * 8 bytes/pte = 8MB of virtual space
for ptes

For the purpose of this example, this space will
be from 4G–8MB through 4GB; however, it
does not really matterwherethis area is. It does
notneedto be aligned in a certain way, but this
does make it easier to work with. First, the area
should be aligned on a PTE page/PMD entry
boundary (2MB with PAE). This will make it
certain that the whole area can itself be mapped
with only 4 PTE pages (more on this below).
Secondly, the area should not straddle a PMD
boundary, to avoid the initial setup being re-
quired to map more than 1 page, which makes

it more expensive.

To map the required 8MB of virtual space, we
require 2048 4K page table entries. We can fit
512 pte entries per 4K page, thus we require 4
UKVA PTE pages. Each time a pte page needs
to be mapped in to the UKVA area, one of these
2048 pte entries contained in the 4 UKVA PTE
pages will need to be set.

5.1 Initialization

Since the UKVA area will be the primary
means for access to all PTE pages, it must
be available for the entire life of the process’s
pagetables. For this reason, the initialization
will occur in pgd_alloc(), at the same time as
the top level pagetable entry is created.

On IA32, a pmd entry and a pte entry are the
same size and PTRS_PER_PMD (the count
of pmd entries per pmd page) is the same as
PTRS_PER_PTE (the count of pte entries per
pte page). Also, every time a pte page is al-
located, a pmd entry is pointed to it. Each
time you want to map an allocated PTE page,
a pte entry is made, somewhere (highpte uses
kmap() to do this). Instead of setting kmap()
ptes, we will use UKVA ptes. This means
there will be a 1:1 relationship between PMD
pages/entries and UKVA PTE pages/entries.

During pgd_alloc(), the 4 UKVA PTE pages
are allocated as soon as the PMD page which
will point to them is allocated. The 4 pmd en-
tries are made for the 4 pte pages, as are the
corresponding 4 pte entries. However, mak-
ing the PTE entries is slightly complex. One
of the goals of UKVA is to replace HIGHPTE,
which means that all of the PTE pages will be
allocated in highmem, including the special 4
UKVA PTE pages. This means that the pte
page that contains the 4 pte entries will need
to be mapped via atomic kmap to make the en-
tries. However, after this is done, they may
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be accessed directly, without ever using kmap
again.

This is the time where keeping the 8MB area
from crossing a PMD boundary is important.
Because of the 1:1 relationship, if the 4 pages
are covered by more than 1 PMD page, they
will also be covered by more than 1 PTE page,
possibly doubling the amount of number of
kmap calls which must occur.

5.2 Runtime

The bulk of the UKVA work is done in pte_
alloc_map(). In keeping with the 1:1 relation-
ship, each time a pmd_populate() is done, a
UKVA PTE is also set. However, there are 2
possible ways to set a PTE with UKVA.

The first method is to simply index into the
UKVA area, and set the PTE directly. Since
the UKVA area is virtually contiguous, it can
be accessed just like an array of every PTE in
the system. The PTE contolling the first page
of memory is at the start of the UKVA PTE
space, just as the last PTE in the space con-
trols the last page of RAM. It will always be
known where the PTE for any given virtual ad-
dress will be mapped. This also means the the 4
UKVA PTE pages themselves will be mapped
to constant, known places.

The second method is used when pte_alloc_
map() is asked to allocate a PTE for another
process. Since the UKVA only contains the
current process’s pagetables, the pagetables of
the other process must be walked, and appro-
priate entries made. During the walking pro-
cess, the UKVE PTE pages must be mapped
via kmap_atomic() so that they can be altered.

6 Hot & Cold pages

As the ratio of CPU speed to memory speed
grows over time and CPU architectures change

in ways such as pipelining, the efficient utilisa-
tion of processor caches becomes increasingly
important. The hot and cold pages mechanism
in Linux 2.5 (and its predecessors such as per-
cpu pages) provide an important way to help
increase the efficiency of the data cache. This
is important for UP systems, but provides even
greater benefit on SMP.

For each CPU in the system, for each zone
of memory, we provide two queues for data
pages: a hot queue, and a cold queue. The gen-
eral precept is that pages in the hot queue are
cache hot on that CPU, and pages on the cold
queue are cache cold. Only 0-order pages (sin-
gle page groups) are kept in these queues, the
higher order allocations (multipage groups) are
managed directly by the buddy allocator.

Both the hot and cold page lists allocate pages
and free pages en masse from the buddy allo-
cator for greater efficiency. This allows us to
take multiple pages under one holding of the
lock, whilst those codepaths and data manage-
ment elements are cache hot. The lists have
low watermarks, below which they will be re-
filled, and high watermarks, above which they
will be emptied. Default batch size for allo-
cations is 16 pages at a time; watermarks are
32–96 pages for the hotlists, and 0–32 pages
for the cold lists.

The hot queue is managed as a LIFO stack—
pages freed via the normal free_pages() route
are pushed onto the hot stack (i.e. assumed
to be cache warm). Further tuning in this area
may be needed—the caller has better informa-
tion about the cache warmth of the pages they
are freeing than the generic routines. By de-
fault, page allocations come out of the hot list,
unless __GFP_COLD is specified.

The cold list basically just functions as a batch-
ing mechanism for page allocations. It is used
for pages that will not be first touched by the
CPU in question (e.g. pagecache pages that
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will be filled by DMA before they are read).
This preserves the valuable cache hot pages for
other uses, and saves cacheline invalidates for
the CPU’s cache. shrink_list(), shrink_cache(),
and refill_inactive_zone() all free pages back
into the cold list via the pagevec mechanism.

Below is a comparison of the kernel profiles of
an equivalent workload (kernel compile) with
and without the hot & cold pages mechanism,
measuring how many ticks are spent in each
routine, and which routines see the greatest
change. Those labelled ’+’ get more expen-
sive with hot & cold pages, those labelled ’- ’
get cheaper. The 17.5% overall reduction in the
total number of ticks spent is evident.

Ticks Percent Routine
+243 0.0% buffered_rmqueue
+197 6.6% page_remove_rmap
+131 0.0% handle_mm_fault
+116 0.0% fget

...
-77 -15.7% release_pages
-78 -34.4% atomic_dec_and_lock
-89 -18.5% d_lookup
-97 -16.2% __get_page_state

-155 -35.6% link_path_walk
-155 -23.8% copy_page_range
-178 -27.8% shmem_getpage
-193 -24.6% do_no_page
-209 -100.0% pte_alloc_one
-210 -26.0% zap_pte_range
-303 -100.0% pgd_alloc
-365 -100.0% __free_pages_ok
-532 -28.0% do_anonymous_page
-650 -37.0% do_wp_page
-700 -100.0% rmqueue

-4595 -17.5% total

The cost of rmqueue, pgd_alloc, pte_alloc_
one, and __free_pages_ok has shifted into
buffered_rmqueue, but it takes much less time
to execute. The main cost for do_anonymous_
page was in zeroing newly allocated pages, and
the cost of do_wp_page is in copying pages
from one to the other. Both obviously bene-
fit greatly from the better cache warmth of the

system. The profiles only show kernel time—
userspace is actually the biggest beneficiary
from this mechanism.

7 Page reclaim

In 2.5, the LRU lists were converted from
global to per-zone. This makes it easier
to free up one particular type of memory
(e.g. ZONE_NORMAL) without affecting
other types. It also breaks up the global locks
and reduces cross-node cacheline traffic for
NUMA machines. Following is the most sig-
nificant elements from kernel profile data from
a 2.4.18 kernel + NUMA patches doing a ker-
nel compile on a 16-way NUMA-Q:

2763 _text_lock_dcache
2499 _text_lock_swap
1199 do_anonymous_page

763 d_lookup
651 lru_cache_add
646 __free_pages_ok
612 do_generic_file_read
573 lru_cache_del

...

The _text_lock_swap entry is the pagemap_
lru_lock

The page-reclaim daemon (kswapd) must
touch large amounts of data, both the user
pages being manipulated, and their control
structures (e.g. the LRU lists). However, on
NUMA systems this is extremely problematic,
as it causes a lot of cross-node memory traffic.
Hence the global daemon was replaced with
a per-node daemon, each of which only scans
its own nodes pages, which is much more effi-
cient.

One of the last major global locks in the
VM was pagemap_lru_lock. Andrew Morton’s
pagevec implementation reduced contention on
it by 98% by batching page operations together
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into ‘pagevecs’—vectors of pages that could
be manipulated together as groups more effi-
ciently.

8 rmap

Whilst the pagetables of each process provide
a mapping from that virtual address space to
the physical addresses backing it, in Linux 2.4,
there is no easy way to map back from a phys-
ical address to a virtual address. This is what
rmap provides—a “reverse” mapping from the
physical address back to the set of virtual ad-
dresses mapping it.

To reclaim memory, 2.4 used a “virtual
scan”—walk each process, and see if we can
unmap the physical pages it is using. 2.5 uses
“physical scan”—walk each page of RAM, and
see if it can be freed (this requires the rmap
mechanism). This new mechanism has sev-
eral advantages, perhaps the most important
of which is stability. It has proven signifi-
cantly more robust under pressure than the vir-
tual scan in 2.4 code.

Whilst the usage of the rmap mechanism has
remained fairly stable, the method of keeping
the data for the reverse mapping has been a
source of more contention and trouble. The
current 2.5 code as of 2.5.68 uses a mecha-
nism called “pte-chains” which keeps (for each
physical page) a simple linked list of pointers
back to the pte entries of the processes map-
ping each page.

These pte-chains have several problems:

• Locking

• Space consumption

• Time consumtion

The locking was at first implemented as a
global lock, which was actually shared with

the worst existing global VM lock (pagemap_
lru_lock). This caused massive lock contention
(data from a 12-way NUMA-Q), as seen in Ta-
ble 1.

Therefore, the locking was changed to a per-
chain lock, which was subsequently compacted
into a 1 bit lock embedded in the flags field of
the struct page to avoid more space consump-
tion problems. This reduced kernel compile
times by more than half on 16-way NUMA-Q
(from 85s to 40s).

The next problem with pte-chains is the space
consumption. A simple singly linked list will
consume 4 bytes per entry for the pointer to the
PTE and 4 bytes per entry for the pointer to the
next entry. Two methods were used to alleviate
this:

1. Pages with only a single mapping can use
the “page-direct” optimisation—instead
of storing the pointer to the linked list in
the struct page, we use the same space to
point directly to the only PTE by using the
pte union introduced into struct page:

union {
struct pte_chain *chain;
pte_addr_t direct;

} pte;

And this switch is governed by the
PG_direct flag from the flags field in the
struct page.

2. The lists are grouped by cacheline, allow-
ing multiple PTE pointers per ‘list next’
pointer. Not only does this reduce the size
of the linked list by almost half (assum-
ing sufficient grouping), but it also greatly
increase the data locality and cache effi-
ciency for walking the chain.

Moreover, this space consumption all comes
from low memory, an extremely precious re-
source on large 32-bit machines. To take
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SPINLOCKS HOLD WAIT

UTIL CON MEAN MAX MEAN MAX % CPU TOTAL NOWAIT SPIN NAME

45.5% 72.0% 8.5us 341us 138us 11ms 44.3% 3067414 28.0% 72.0% pagemap_lru_lock
0.03% 31.7% 5.2us 30us 139us 3473us 0.02% 3204 68.3% 31.7% deactivate_page+0xc
6.0% 78.3% 6.8us 87us 162us 9847us 9.4% 510349 21.7% 78.3% lru_cache_add+0x2c
6.7% 73.2% 7.6us 180us 120us 8138us 6.4% 506534 26.8% 73.2% lru_cache_del+0xc

12.7% 64.2% 7.1us 151us 140us 10ms 13.4% 1023578 35.8% 64.2% page_add_rmap+0x2c
20.1% 76.0% 11us 341us 133us 11ms 15.0% 1023749 24.0% 76.0% page_remove_rmap+0x3c

Table 1: Massive lock contention on 12-way NUMA-Q

Pointer to PTE

chain->next

mem_map pte_chains

PG_direct!

Figure 2: pte-chain based rmap

our example of 5000 processes sharing a
2GB memory segment again, not only do we
now have 20GB of pagetables, but 10GB of
pte_chains. Whilst the 20GB of pagetables can
at least be moved off into high memory, this
is not easy to do for pte chains. In order to
move the chains into high memory, the “next
element” pointers would need to become phys-
ical addresses, instead of virtual ones. Not only
are these larger (36 bits instead of 32), they also
need to be mapped into virtual addresses be-
fore use, an incredibly expensive procedure for
walking the linked lists.

Last, but not least, of the problems is the time
consumption. For every page used, and for ev-
ery process that uses it, we must take a lock
(using an expensive atomic operation) and cre-
ate a page entry. Worse still, when we tear
down the mapping, we must take that same
lock, and then walk the pte-chain looking for
the element to free. This takes approximately a
linear amount of time, depending on the num-
ber of elements sharing that page. Even for
just a load of 128 on SDET, the kernel profile
shows the rmap functions massively dominat-
ing:

86159 page_remove_rmap
38690 page_add_rmap
17976 zap_pte_range
14431 copy_page_range
10953 __d_lookup

9978 release_pages
9369 find_get_page
7483 atomic_dec_and_lock
6924 __copy_to_user_ll
6830 kmem_cache_free

The problem is especially acute under a work-
load such as SDET that does significant
amounts of fork/exec/exit traffic, where map-
pings must be continually built up and then
torn down again. I see this problem as fun-
damental with a page based approach; though
it may be alleviated somewhat by tuning, it is
still a per-page operation, and thus too expen-
sive. Even for a simple kernel compile, the
page_remove_rmap is still the most expensive
function in the whole kernel:
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23222 page_remove_rmap
14034 do_anonymous_page

7638 __d_lookup
6406 page_add_rmap
5188 __copy_to_user_ll
3656 find_get_page
3429 __copy_from_user_ll
3126 zap_pte_range
2108 do_page_fault
1925 atomic_dec_and_lock
1852 path_lookup

8.1 rmap shadow pages

Ingo Molnar has proposed a new rmap method
which I shall call “rmap shadow pages,” which
alleviates some of the problems with pte-
chains, but is still page based. At the time of
writing, there is no implementation available,
but some of its properties may be determined
by analysis.

Instead of the chains being allocated as needed
on a cacheline sized block, it is proposed to al-
locate two “shadow pages” for each pte-page
(page filled with PTE entries). These would
form a doubly-linked list with other shadow
pages. To retrieve the list of PTE entries for
a particular page, one would consult the pte-
chain pointer in the relevant struct page, and
walk the list (similarly to PTE-chains).

The PTE entry itself need not be stored in-
side the rmap shadow page, but the rmap pages
are implicitly “linked” to the pte page in some
fashion (e.g. being placed together in some
contiguous group of two pages). However, the
cacheline locality characteristics seem to be
against this method for scanning, as it involves
touching a separate cacheline for every element
in the list.

To add a page to the linked list, we would take
the pte_chain lock, and add ourselves to the
head of the list (one modification to the shadow
page, plus one to the struct page). To remove
a page from the list would not require walking

PTE pages

rmap shadow pages

prev next prev next

Page B

Page A
Page B

Page A

A prev A next

B prev B next

A prev A next

B prev B next

Figure 3: rmap shadow pages

the list (as for pte_chains), but we would tra-
verse from the PTE page to the corresponding
shadow page, map both its prev and next ele-
ment pages, and perform a regular unlink for a
doubly-linked list.

One of the major advantages of the rmap
shadow pages method is that the rmap data can
be more easily moved into the highmem area.
However, this is not without cost—each page
accessed must be mapped via kmap, which has
proven expensive for PTE pages in the highpte
implementation.

Whilst rmap shadow pages may fix some of the
problems of pte-chains, it is still page-based,
and thus requires a large amount of data ma-
nipulation. It is therefore unlikely to solve the
fundmantal time and space problem, though
moving the chains into high memory may be
worthwhile.
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8.2 Object based rmap

Other operating systems have taken a differ-
ent approach to the physical to virtual address
mapping problem. K42 has taken an approach
based on file objects (akin to the Linux ad-
dress_space structure), which seemed to be
promising after initial discussions with Orran
Krieger and other K42 engineers.

Instead of keeping a reverse mapping for each
page in the system, we can discover the list
of virtual addresses by going from the struct
page to the address_space object. From the
address_space object, we can walk a list of
vmas—areas of process virtual memory which
map that object. By adding the offset within
the file (stored in struct page as “index”) to the
base virtual address of each vma, we can derive
the virtual address within each process. From
there, we can walk the pagetables to find the
appropriate PTE.

The key advantage of this method is that there
is no overhead at all for the setup and tear-
down of each page. This comes at the cost of
higher overhead to find the PTEs at scanning
time (the list of VMAs and the pagetables for
each process must be walked). However, many
workloads will run without memory pressure,
or only have pressure on the caches, which are
easily freed, so the approach seems promising.

However, there are a few fundamental prob-
lems with an object-based approach within
Linux. For one, there is not a backing file ob-
ject for every page in the system, some pages
(e.g. private process data allocated via mal-
loc/sbrk) are anonymous, i.e. not associated
with any file. Whilst it would be possible to
create a file object for anonymous pages, this
would not be a simple change.

Another problem is that the calculation of
adding the offset to the base virtual address
within the process assumes that the vma is lin-

ear. Whilst this used to be true, the 2.5 kernel
contains a new mechanism called “sys_remap_
file_pages” that allows for non-linear VMAs.

Bearing in mind that pte_chains are most ex-
pensive under heavy sharing (the linked list
must be walked for page_remove_rmap), some
analysis was taken of the length of the pte-
chains for both file-backed and anonymous ob-
jects. This showed that the anonymous objects
were only mapped once for nearly all pages,
and the shared mappings were nearly all file-
backed.

Based on these observations, and the simplicity
of implementation, a “partially object-based”
scheme was proposed. This used the object-
based mappings for file-backed pages, and
the pte-chains method for anonymous mem-
ory (and for nonlinear mappings). Dave Mc-
Cracken implemented this scheme, and it was
very effective in reducing both the space and
time taken by pte-chains.

Kernbench-16: (make -j 256 vmlinux)
Elapsed User System CPU

pte-chains 47.21 569.17 139.55 1500.67
partial objrmap 46.09 568.19 121.83 1496.67

Note the 12% drop in total system time.

SDET 64 (see disclaimer)
Throughput Std. Dev

2.5.68 100.0% 0.2%
2.5.68-objrmap 121.2% 0.3%

Again, kernel profiles clearly show the reduc-
tion:

-30518 -78.9% page_add_rmap
-72197 -83.8% page_remove_rmap

Partial objrmap also drastically reduced the
number of pte_chain objects in the slab cache,
graphically demonstrating that file_backed
chains are predomininant. For amake
-j256 vmlinux :
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pte-chains 24116 pte_chain objects in slab cache
objrmap 716 pte_chain objects in slab cache

(a 97% reduction).

However, at the time of writing, there are still
a couple of remaining objections to partial ob-
jrmap:

1. The interaction with sys_remap_file_
page’s nonlinear vmas is complex and
convoluted due to the conversion to and
from pte_chains which may be necessary.
However, it is generally recongnised that
sys_remap_file_pages is a special case.
If those vmas are pre-declared as non-
linear, most of the problems disappear.
Furthermore, for the intended use of sys_
remap_file_pages (windowing onto large
database shared segments), it is accept-
able to lock those pages into memory (this
is normally done in any case), in which
case none of this information will ever be
needed, so it is not necessary to keep it.

2. If 100 processes each map 100 vmas onto
the same address space, then objrmap
would have to scan 10,000 regions, not
simply the 100 mappings that the page-
based methods might have had for their
chains. Whether this corner case is im-
portant or not is a matter of debate, as
it was exactly the case that sys_remap_
file_pages was designed to fix, and callers
should be using that method for such an
unusual situation. However, a simple opti-
misation is proposed that should alleviate
the problem in any case:

For each distinct range of addresses mapped by
a vma inside the address_space, we define an
address_range. This takes advantage of the fact
that we are likely to remap the same range re-
peatedly (e.g. for shared libraries). From each

shared range, we attatch a list of vmas that map
that range. Furthermore, we sort the list of ad-
dress ranges by start address.

address
space

R RRR

V

V

V

V V

V

V

V

R = address_range

V = vma V

Figure 4: list of lists

struct address_range {
unsigned long start;
unsigned long end;
struct list_head ranges;
struct list_head vmas;

};

9 NUMA support

On NUMA systems, it is more efficient to ac-
cess node-local memory than remote memory.
Thus Linux tries to allocate memory to a pro-
cess from the node it is currently running on,
providing for more efficient performance. This
also allows for locality of memory and control
structures, reducing cross-node cacheline traf-
fic.

By default, we allocate memory from the lo-
cal node (if some is free), then round robin
amongst the remaining nodes by node number,
starting at the local node, and progressing up-
wards. Kernel code can also request memory
on specific nodes via alloc_pages_node().

Matt Dobson has created a simple NUMA
binding interface for userspace, allowing pro-
cesses to request memory from a specific node,
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or group of nodes. This is very useful for large
database applications, which wish to bind “par-
titions” of the database to certain nodes.

Several critical control structures (e.g. the
mem_map array—the control structures for the
physical RAM pages, and the pgdat—the node
control structure) are now allocated on the
nodes own memory, providing for better per-
formance on NUMA systems. More items (e.g.
the scheduler data, and per-cpu data) should be
migrated into node-local memory in the future.

Of the three main memory allocators (al-
loc_pages, vmalloc, slab cache), only the slab
cache is not NUMA aware. Manfred Spraul
has created patches to do this, but we have not
seen observeable performance benefits from
this method yet. Part of the problem is the in-
herently global nature of many of the caches
(eg the directory cache), which will need to be
attacked first.

Some of the kernel architectures (ones with
hardware assistance from the CPU) have kernel
text replication functioning. This makes a copy
of the kernel data to each node, and processes
will use their own node’s local copy of the
data, reducing backplane traffic, and intercon-
nect cache pollution. Replicating the read-only
portion of shared libraries also seems promis-
ing, though this has not yet been implemented
in Linux. Replicating any data that is not read-
only is likely to be too complex to be benefi-
cial.

10 Legal

This work represents the view of the authors and
does not necessarily represent the view of IBM.

SPEC is a registered trademark and the benchmark
name SDET is a trademark of the Standard Perfor-
mance Evaluation Corporation. This benchmarking
was performed for research purposes only and the

run results are non-complaint and not-comparable
with any published results.

NUMA-Q is a registered trademark of Interna-
tional Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.
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