
Stressing Linux with Real-world Workloads

Mark Wong
Open Source Development Labs

markw@osdl.org

Abstract

Open Source Development Labs (OSDL™)
have developed three freely available real-
world database workloads to characterize the
performance of the Linux kernel. These cus-
tomizable workloads are modeled after the
Transaction Processing Performance Council’s
industry standard W, C, and H benchmarks,
and are intended for kernel developers with or
without database management experience. The
Scalable Test Platform can be used by those
who do not feel they have the resources to run a
large scale database workload to collect system
statistics and kernel profile data. This paper de-
scribes the kind of real world activities simu-
lated by each workload and how they stress the
Linux kernel.

1 Introduction

OSDL1 is dedicated to providing developers
with resources to build enterprise enhance-
ments into the Linux® kernel and its Open
Source solution stacks. This paper focuses
on real-world database workloads, based on
industry standard benchmarks, used to stress
Linux.

OSDL currently provides three workloads, de-
rived from specifications published by the
Transaction Processing Performance Council2

1http://www.osdl.org/
2http://www.tpc.org/

(TPC). TPC is a non-profit corporation created
to define database benchmarks with which per-
formance data can be disseminated to the in-
dustry.

TPC benchmarks are intended to be used as a
competitive tool. All published TPC bench-
mark results must comply with strict publi-
cation rules and auditing to ensure fair com-
parisons between competitors. Furthermore,
it is required that all the hardware and soft-
ware used in a benchmark must be commer-
cially available with a full disclosure report of
the pricing of all the products used as well as
support and maintenance costs.

As a basis for our three workloads, we used the
TPC Benchmark∗ W (TPC-W∗), TPC Bench-
mark C (TPC-C∗), and TPC Benchmark H
(TPC-H∗). Each benchmark is briefly de-
scribed here. TPC-W is a Web commerce
benchmark, simulating the activities of Web
browsers accessing an on-line book reseller for
browsing, searching or ordering. TPC-C is an
on-line transaction processing (OLTP) bench-
mark, simulating the activities of a supplier
managing warehouse orders and stock. TPC-
H is an ad hoc decision support benchmark,
simulating an application performing complex
business analyses that supports the making of
sound business decisions for a wholesale sup-
plier.

It is impractical for most Linux kernel devel-
opers to adhere to TPC rules, simply for cost
alone. The executive summaries of the pub-

Linux Symposium 471

lished results on the TPC Results Listing Web
page3 show system costs in the millions of dol-
lars.

To illustrate, the highest performing TPC-
W result at the 10,000 item scale fac-
tor4 [TPCW10K] uses forty-eight dual-
processor Web servers, twelve dual-processor
and two single-processor Web caches, and
one system with eight processors and ap-
proximately 150 hard drives for the database
management system. This does not include the
systems emulating Web browsers that drive the
benchmark.

The highest performing TPC-
C [TPCCRESULT] result uses thirty-two
eight-processor system with 108 hard drives
each, four four-processor systems with
fourteen hard drives each for the database
management system, and sixty-four dual-
processor clients. This does not include the
systems emulating the terminals required to
drive the benchmark.

The highest performing TPC-H result at the
10,000 GB scale factor [TPCH10000GB] uses
sixty-four dual-processor systems with four gi-
gabytes of memory each and a total of 896 hard
drives.

2 Database Test Suite

The Database Test Suite5 is a collection of
simplified derivatives of the TPC benchmarks
that simulate real-world workloads in smaller
scale environments than that of a full blown
TPC benchmark. These workloads are not very
well suited to compare databases or systems
because the variations allowed in running the

3Current results can be viewed on the Web at:
http://www.tpc.org/information/results.asp

4The scale factordetermines the initial size of the
database.

5http://www.osdl.org/projects/performance/

workload would result in an apples-to-oranges
comparison. However, these workloads can be
used to compare the performance between dif-
ferent Linux kernels on the same system.

The amount of database administration knowl-
edge and resources needed to run one of these
workloads may still be intimidating to some,
but the OSDL Scalable Test Platform6 (STP)
offsets these concerns. How the STP can be
used is discussed towards the end of this paper.

These tests were initially developed on Linux
with SAP DB but each test kit is designed to
allow them to be usable with any database,
such as MySQL7 or PostgreSQL8, with some
porting work. Members of the PostgreSQL
community are currently contributing to the
Database Test Suite so that it may be used with
PostgreSQL and also run on FreeBSD9.

Each test provides scripts to collect sys-
tem statistics using sar, iostat, and vmstat.
Database statistics for SAP DB are also col-
lected by using the tools that are provided with
the database. The data presented for each
workload in this paper are primarily profile
data to show what parts of the Linux kernel is
exercised. Keep in mind that the profile data
presented here characterizes the workload for
a specific set of parameters and system config-
urations. For example, as we review the profile
data we will see that Database Test 2 appears
to be stressing a SCSI disk controller driver,
yet the workload can be customized so that
the working set of data can fit completely into
memory to put the focus of the workload on the
system memory and processors as opposed to
the storage subsystem.

6STP can be accessed through the Web at
http://www.osdl.org/stp/

7http://www.mysql.com/
8http://www.postgresql.org/
9http://www.freebsd.org/

Linux Symposium 472

2.1 Database Test 1 (DBT-1)

Database Test 1 (DBT-1) is derived from the
TPC-W Specification [TPCW], which typi-
cally consists of an array of Web servers, host-
ing the on-line reseller’s store front, that in-
terfaces with a database management system,
shown in Figure 1. An array of systems is also
required to support the benchmark by simulat-
ing Web browsers accessing the Web site.

Figure 1: TPC-W Component Diagram

DBT-1, on the other hand, focuses on the ac-
tivities of the database. There are no Web
servers used, and a simple database caching ap-
plication can be used to simulate some of the
effects that a Web cache would have on the
database. Since no Web servers are used, emu-
lated Web browsers are not fully implemented.
Instead, a driver is implemented to simulate
users requesting the same interactions against
the database that a Web browser would make
against a Web server.

Figure 2 is a component diagram of the pro-
grams used in DBT-1. The Driver is a multi-
threaded program that simulates users access-
ing a store front. The Application Server is
another multi-threaded application that man-
ages a pool of database connections and han-
dles interaction requests from the Driver. The
Database Cache is yet another multi-threaded
program that extracts data from the database
before the test starts running. If the caching
component is not used, the Application Server
queries the database directly. Each component
of DBT-1 can run on separate or shared sys-
tems, in other words, in a three-tier or one-tier

environment.

Figure 2: DBT-1 Component Diagram

The emulated users behave similarly to the
TPC-W emulated browsers by executing in-
teractions that search for products, make or-
ders, display orders, and perform administra-
tive tasks. There are a total of fourteen in-
teractions that can occur, as shown in Table 1
with their frequency of execution. Each inter-
action, except Customer Registration, causes
read-only or read-write I/O activity to occur.
The overall effect is that 80% of the inter-
actions executed cause read-only I/O activity
while the remaining 20% of the interactions
execute also cause writing to occur. Admin
Request, Best Sellers, Home, New Products,
Order Inquiry, Order Display, Product Detail,
Search Request, and Search Results are the
read-only interactions. Admin Confirm, Buy
Request, Buy Confirm, and Shopping Cart are
the read-write interactions. Customer registra-
tion does not interact with the database. It is
maintained in the workload to keep the inter-
action mix close to the TPC-W specification.

An emulated user maintains state between in-
teractions to simulate a browser session. A ses-
sion lasts an average of fifteen minutes, which
can be tester defined, over a negative exponen-
tial distribution. The state maintained includes
the emulated user’s identification and a shop-
ping cart identifier. Each emulated user also
randomly picks a think time from a negative
exponential distribution, with a specified aver-
age, to determine how long to sleep between

Linux Symposium 473

Interaction Executed
Admin Confirm 0.09 %
Admin Request 0.10 %
Best Sellers 11.00 %
Buy Confirm 0.69 %
Buy Request 0.75 %
Customer Registration 0.82 %
Home 29.00 %
New Products 11.00 %
Order Display 0.25 %
Order Inquiry 0.30 %
Product Detail 21.00 %
Search Request 12.00 %
Search Results 11.00 %
Shopping Cart 2.00 %

Table 1: DBT-1 Database Interactions Mix

interactions.

This workload generally exhibits high proces-
sor and memory activity mixed with with net-
working and low to medium I/O activity that
is mostly read-only. The parameters that can
be controlled to alter the characteristics of the
workload are the scale factor of the database,
the number of connections the Application
Server opens to the database, the number of
emulated users created by the driver, and the
think time between interaction requests.

The following results for DBT-110 are collected
from a four-processor Pentium III Xeon∗ sys-
tem with 1 MB of L2 cache and 4 GB of mem-
ory in the OSDL STP environment. The sys-
tem is configured in a one-tier environment
with SAP DB using a total of eleven raw disk
devices and to run against Linux 2.5.67. A
database with 10,000 items and 600 users is
created, where 400 users are emulated using an
average think think of 1.6 seconds

Table 2 displays the top 20 functions called

10http://khack.osdl.org/stp/271067/

sorted by the frequency of clock ticks. The
profile data is collected using readprofile where
the processors in the system become 100% uti-
lized, as shown in Figure 3. Other than the
scheduler, we can see that TCP network func-
tions are called most frequently in this work-
load.

Function Ticks
default_idle 944946
schedule 15835
__wake_up 7376
tcp_v4_rcv 6871
__copy_to_user_ll 6456
tcp_sendmsg 6386
mod_timer 4666
__copy_from_user_ll 4482
tcp_recvmsg 4297
__copy_user_intel 3602
tcp_transmit_skb 3369
ip_queue_xmit 3230
dev_queue_xmit 3105
ip_output 2936
__copy_user_zeroing_intel 2806
tcp_data_wait 2711
tcp_rcv_established 2675
generic_file_aio_write_nolock 2614
fget 2536
do_gettimeofday 2420
.
total 1124848

Table 2: DBT-1 Profile Ticks

Table 3 displays the top 20 functions with the
highest normalized load, which is calculated
by dividing the number of ticks a function has
recorded by the length of the address space the
function occupies in memory. By comparing
Table 2 and Table 3, we can see that__copy_
to_user_ll and __copy_from_user_
ll appear in both tables. This implies that
the user address space is accessed frequently
in this workload.

Linux Symposium 474

Function Load
default_idle 14764.7812
__wake_up 153.6667
__copy_to_user_ll 57.6429
system_call 52.5682
get_offset_tsc 45.9688
syscall_exit 40.1818
__copy_from_user_ll 40.0179
fget 31.7000
restore_fpu 30.6875
fput 26.4062
ipc_lock 24.6250
__copy_user_intel 22.5125
sock_wfree 19.6094
__copy_user_zeroing_intel 17.5375
local_bh_enable 16.7396
mod_timer 16.2014
schedule 15.4639
do_gettimeofday 15.1250
sockfd_lookup 14.8393
device_not_available 13.4146

Table 3: DBT-1 Normalized Profile Load

2.2 Database Test 2 (DBT-2)

Database Test 2 (DBT-2) is derived from the
TPC-C Specification [TPCC], which typically
consists of a database server and a transaction
manager used to access the database server.
There is also an array of systems required to
support the benchmark by simulating terminals
accessing the database. This benchmark can be
run in one of two configurations, as shown in
Figure 4 and Figure 5. The only difference be-
tween these two configuration is that the emu-
lated terminals access the database through a
transaction manager, labeled as theClient in
Figure 4, while the emulated terminals access
the database directly in the Figure 5.

DBT-2 can be also be configured to run in one
of two ways. The first way is shown in Fig-
ure 6 where the Driver, a multi-threaded pro-

0 500 1000 1500 2000
Elapsed Time (seconds)

0

20

40

60

80

100

%
 U

til
iz

ed

user
system
idle
wait

Figure 3: DBT-1 Processor Utilization

Figure 4: TPC-C Component Diagram 1

gram that creates a thread for every terminal
emulated, accesses the database through the
Client program, a transaction manager that is a
multi-threaded program that manages a pool of
database connections. The second way, shown
in Figure 7, combines the functionality of the
Client program into the Driver program so that
the driver can connect directly to the database.
In either case, the workload can be run in a
single- or multi-tier environment.

DBT-2 consists of five transactions that create
orders, display order information, pay for or-
ders, deliver orders, and examine stock levels.
Table 4 lists each transaction and the frequency
that each is executed by the emulated termi-
nals. The Deliver, New-Order, and Payment
transactions are read-write transactions, while
the Order-Status and Stock-Level transactions
are read-only transactions.

This workload can be customized so that the

Linux Symposium 475

Figure 5: TPC-C Component Diagram 2

Figure 6: DBT-2 Component Diagram 1

working set of data is contained completely in
memory. If the working set of data is cached
completely in memory, the system puts a heavy
load on processors and memory usage. In sit-
uations where the working set of data is not
completely cached, random I/O activity in-
creases, while in both cases, sequential writes
to the database logging device occurs through-
out the test.

There are several parameters that can be cus-
tomized to alter the characteristics of the work-
load. There are constant keying and thinking
times between interactions that can be tester
defined. The keying time simulates the time
taken to enter information into a terminal and
the thinking time simulates the time taken for a
tester to determine the next transaction to exe-
cute.

By default, every terminal that is emulated is
assigned a district and a warehouse to work out
of. This can be changed so that a terminal ran-
domly picks a warehouse and district in a spec-
ified range for every transaction. The effect this
has on the workload is that a single emulated
terminal is likely to access a greater amount of
data in the database over the course of a test.

Figure 7: DBT-2 Component Diagram 2

Transaction Executed
Delivery 4.0 %
New-Order 45.0 %
Order-Status 4.0 %
Payment 43.0 %
Stock-Level 4.0 %

Table 4: DBT-2 Database Transaction Mix

Given the same amount of memory, this would
create a workload less likely to be cached in
memory and more likely to incur an increased
amount of I/O activity. It would also create
more lock contention in the database. By re-
ducing the number of emulated terminals and
by limiting the range of data an emulated ter-
minal accesses in the database, the workload
can be cached into memory, effectively creat-
ing a workload that only performs synchronous
writes on the database logging device.

The following results for DBT-211 are collected
from a four-processor Pentium III Xeon sys-
tem with 1 MB of L2 cache and 4 GB of mem-
ory in the OSDL STP environment. The sys-
tem is configured in a one-tier environment
with SAP DB using twelve raw disk devices
to run against Linux 2.5.67. Sixteen termi-
nals are emulated to randomly select a district
across six distinct warehouses with a keying
and thinking time of zero seconds.

Table 5 displays the top 20 functions called

11http://khack.osdl.org/stp/271071/

Linux Symposium 476

sorted by the frequency of clock ticks and
Table 6 displays the top 20 functions with
the highest normalized load. If we compare
these tables like we did with the results
from DBT-1, we see thatbounce_copy_
vec , __blk_queue_bounce , scsi_
request_fn , scsi_end_request , and
page_address appear in both tables. The
default_idle function also appears at
the top of both tables. This implies that the
processors on the system are not fully utilized
and that the system may be stressing the
storage subsystem. Figure 8 confirms that
the processors are approximately 5% to 10%
idle and are approximately 40% to 50% busy
waiting for I/O.

Function Ticks
default_idle 5695427
bounce_copy_vec 84136
schedule 55663
__blk_queue_bounce 28391
scsi_request_fn 23052
do_softirq 21760
__make_request 20124
try_to_wake_up 10511
scsi_end_request 10161
system_call 9734
dio_bio_end_io 9241
scsi_queue_next_request 9066
ipc_lock 6856
sys_semtimedop 5858
do_anonymous_page 5693
kmem_cache_free 5587
free_hot_cold_page 4768
page_address 4752
buffered_rmqueue 4648
try_atomic_semop 4406
.
total 6211231

Table 5: DBT-2 Profile Ticks

Function Load
default_idle 88991.0469
bounce_copy_vec 1051.7000
system_call 221.2273
syscall_exit 105.5455
do_softirq 104.6154
ipc_lock 85.7000
dio_bio_end_io 82.5089
kmem_cache_free 69.8375
scsi_end_request 63.5063
__wake_up 55.9375
schedule 54.3584
get_offset_tsc 54.1562
__blk_queue_bounce 47.9578
bio_put 46.3542
scsi_request_fn 42.3750
fget 37.5125
restore_fpu 36.7812
page_address 33.0000
generic_unplug_device 29.7143
device_not_available 29.6098

Table 6: DBT-2 Normalized Profile Load

2.3 Database Test 3 (DBT-3)

Database Test 3 (DBT-3) is derived from the
TPC-H Specification [TPCH], which typically
consists of a single database server that is
queried by an application in a host-based or
client/server configuration, as shown in Fig-
ure 9 and Figure 10.

There are twenty-two queries that provide busi-
ness analyses for pricing and promotions, sup-
ply and demand management, profit and rev-
enue management, customer satisfaction, mar-
ket share, and shipping management. In addi-
tion to the twenty-two queries, there are two
refresh functions that load new sales informa-
tion into the database.

This workload consists of loading a database,
running a series of queries against the database,

Linux Symposium 477

0 10 20 30 40 50
Elapsed Time (minutes)

0

10

20

30

40

50

60

70

80

90

100
%

 U
til

iz
ed

user
system
idle
wait

Figure 8: DBT-2 Processor Utilization

Figure 9: TPC-H Host-Based Component Dia-
gram

and loading new sales information into the
database. There are three distinct tests in which
these actions occur, the Load Test, Power Test,
and Throughput Test. The Load Test creates
the database tables and loads data into them.
The Power Test executes each of the twenty-
two queries and two refresh functions sequen-
tially. The Throughput Test executes a speci-
fied number of processes that executes each of
the twenty-two queries in parallel and an equal
number of processes that executes only the re-
fresh functions.

There are several ways that this workload can
be customized. The scale factor of the database
can be selected so that at some point dur-
ing a test, the working set of data becomes
cached into memory. The number of streams

Figure 10: TPC-H Client/Server Component
Diagram

for the throughput test may have to be adjusted
according to the available system resources.
The TPC-H Specification requires a minimum
number of streams to be used depending on
the scale factor of the database and ideally the
number of streams should be selected so that
the highest throughput metric can be achieved.
However, for DBT-3, selecting the number of
streams can be determined by how the Linux
kernel is stressed by the workload. In any case,
if the working set of data is not cached, large
sequential I/O activity occurs in the Power and
Throughput Test. Also, each of the twenty-
two queries can be modified to meet different
needs. For example, a query can be modified
to answer another type of business question.

The following results for DBT-312 are collected
from a four-processor Xeon∗ system with 256
KB of L2 cache and 4 GB of memory in the
OSDL STP environment. The system is con-
figured in a host-based environment running
Linux 2.5.67 with hyper-threading enabled and
a patch that allows the DAC960 driver to have
direct memory access into high memory. A
1 GB database was created and only statistics
from a Throughput Test with eight streams are
reported here.

Table 7 displays the top 20 functions
called sorted by the frequency of clock
ticks. Similar to DBT-2, the prominence of

12http://khack.osdl.org/stp/271071/

Linux Symposium 478

default_idle with __make_request
and DAC960_BA_InterruptHandler
suggests that the system is also busy waiting
for I/O. Table 8 displays the top 20 func-
tions with the highest normalized load and
again, similar to DBT-2, seeingDAC960_
BA_InterruptHandler as one of the
more prominent functions on this list also
supports the theory that the kernel is spending
a significant amount of time attempting to
process I/O requests. Figure 11 shows that the
processors are waiting for I/O 40% to 80% of
time throughout the middle of the Throughput
Test.

Function Ticks
poll_idle 24160697
__make_request 21161
schedule 16354
generic_unplug_device 14701
DAC960_LP_InterruptHandler 12160
system_call 7361
kmap_atomic 3783
fget 3148
get_user_pages 3099
do_direct_IO 2968
dio_await_one 2955
bio_alloc 2850
device_not_available 2767
direct_io_worker 2551
blockdev_direct_IO 2226
find_vma 2020
__generic_file_aio_read 1924
follow_page 1891
__copy_to_user_ll 1817
.
total 24322403

Table 7: DBT-3 Profile Ticks

3 PLM and STP

Using the Database Test Suite can be an inti-
mating task for those inexperienced with ad-

Function Load
poll_idle 383503.127
system_call 167.2955
generic_unplug_device 140.0095
DAC960_LP_InterruptHandler 74.1463
device_not_available 67.4878
fget 44.9714
kmap_atomic 34.3909
fput 31.1154
find_vma 24.3373
unlock_page 20.9059
restore_fpu 20.4857
get_offset_tsc 19.6667
syscall_call 19.4545
io_schedule 18.8542
__make_request 18.7431
dio_await_one 18.5849
current_kernel_time 18.5303
math_state_restore 17.7846
mempool_alloc_slab 15.9524
kmem_cache_alloc 15.8158

Table 8: DBT-3 Normalized Profile Load

ministering database management systems, or
large systems may not be readily available for
testing. Rather than implementing one of the
Database Test Suite workloads on their own
system, Linux kernel developers can test their
kernel patches by using the Patch Lifecycle
Manager13 (PLM) and the STP. In order to use
PLM or STP, you must sign up as an associate
of the OSDL, free of charge, through the Web
athttp://www.osdl.org/ .

PLM can be used to store patches for the Linux
kernel that can be used by STP for testing. Cur-
rently, PLM automatically copies Linus Tor-
valds’s tree as well as Andrew Morton’s, Mar-
tin Bligh’s, Alan Cox’s, and the ia64 patch sets.
PLM also executes filters against each patch
entered into the system, to verify the patch ap-

13PLM can be accessed through the Web at
http://www.osdl.org/cgi-bin/plm/

Linux Symposium 479

0 1000 2000 3000 4000 5000 6000 7000
Elapsed Time (s)

0

20

40

60

80

100
%

 U
til

iz
ed

user
system
idle
wait

Figure 11: DBT-3 Throughput Test Processor
Utilization

plies to a kernel or another patch, and verifies
that the kernel can still be compiled with that
patch.

STP currently implements all three of the
workloads in the Database Test Suite14. DBT-1
can be run on systems with 2, 4 or 8 proces-
sors, DBT-2 and DBT-3 can be run on systems
with 4 processor. The 4 and 8 processor sys-
tems also have arrays of external hard drives at-
tached. Each test in STP generates a Web page
of results with links to raw data and charts, as
well as profile data if desired. E-mail notifica-
tion is also sent to the test requester when a test
has completed.

4 Comparing Results

While the OSDL Database Test Suite is de-
rived from TPC benchmarks, results from the
Database Test Suite are in no way compara-
ble to results published from TPC benchmarks.
Such comparisons should be reported to the
TPC (admin@tpc.org) and to the OSDL
(wookie@osdl.org).

14DBT-3 is currently being developed for STP and
should be available by the time this paper is published.

References

[TPCC] TPC Benchmark C Standard
Specification Revision 5.0, February 26,
2001.

[TPCH] TPC Benchmark H Standard
Specification Revision 1.5.0, 2002.

[TPCH10000GB]NCR 5350 Using Teradata
V2R5.0 Executive Summary, Teradata a
division of NCR, March 12, 2003.

[TPCCRESULT] ProLiant DL760-900-256P
Client/Server Executive Summary,
Compaq Computer Corporation,
September 19, 2001.

[TPCW] TPC Benchmark W Specification
Version 1.6, August 14, 2001.

[TPCW10K] Netfinity 5600 with Netfinity
6000R using Microsoft SQL Server 2000
Executive Summary, International
Business Machines, Inc., July 1, 2000.

Trademarks

OSDL is a trademark of Open Source Development
Labs, Inc.

Linux is a registered trademark of Linus Torvalds.

∗ All other marks and brands are the property of
their respective owners.

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

