
Performance Testing the Linux Kernel
The re-aim workload

Cliff White
Open Source Development Labs

cliffw@osdl.org, http://www.osdl.org/archive/cliffw

Abstract

Good performance testing requires good tests
and good procedures. This paper discusses ex-
periences creating and using an automated test
environment.

The paper also describes work done at Open
Source Development Labs (OSDL™) in re-
writing and modernizing the AIM7 and AIM9
benchmarks. The intent is to make the bench-
marks relevant for modern hardware by mak-
ing it flexible and extensible.

This paper talks about how to create a testing
environment, how to automate it, and how to
select and evaluate potential tests. The paper
talks about the differences between low-level
(micro) workloads and application-modeling
(macro) workloads, using OSDL Scalable Test
Platform tests as examples, and talk about the
difference between tests that focus on specific
areas and tests that exercise broad areas.

1 Introduction

Performance testing in kernel context is neces-
sary to show that a projected improvement is
in fact an improvement. Performance tests are
used to measure large-scale application perfor-
mance and small-scale system routine and sys-
tem call performance.

There are two areas not specifically addressed

by performance testing. One area is compli-
ance which the Linux Standard Base and Linux
Test Project test suites both address. The other
area is reliability—demonstrating the ability to
sustain proper operation over long time spans.

A goal of the OSDL’s Scalable Test Platform is
to measure performance, over and over again.
To do this, we run publicly available work-
loads, and we create a few of our own. This
paper describes work being done to revise an
old workload suite, the AIM tests.

2 Creating a Proper Test Environ-
ment

A good test must be repeatable. It is very im-
portant that multiple runs of a test on the same
hardware with the same kernel produce the
same results. OSDL’s STP creates this repeat-
able environment by re-loading the test ma-
chines with a new OS before every run. Thus,
every test starts from an identical state. For
non-STP testing, the system is set up for re-
peated runs by using a Makefile. Whenever
a new test is created, the first thing created is
a setup/tear-down Makefile. In the Makefile,
careful track is kept of everything added to the
system for the test.

When running the test, care should be taken
to understand and control the test environment.
There are a few areas to consider:



Linux Symposium 458

• Networking – This should be obvious, but
any test of networking should be run on a
private network, where no other traffic im-
pacts the test measurement. This is espe-
cially important when a test is controlled
or monitored via a network.

• Other shared resources – Might include
shared storage arrays, or other devices.
Again, it is best to use dedicated hardware
or stop other users before testing.

• State of the system prior to test startup
– This is especially important for repeat-
ing test results. Rebooting the system
prior to every test run is one way to
assure a known state. However, many
tests are very influenced by cache effects
and this must be considered. When test-
ing database workloads, it is common to
warm the database cache prior to taking
any performance measurement.

• Repeat testing for repeatability – A single
test result might be useful. A repeatable
test result is much more usable. Statisti-
cally, three runs are about the minimum
for good data, five or more runs are better.

2.1 Experiences from the STP

Here is some advice, culled from experiences
adding tests to the OSDL’s Scalable Test Plat-
form.

• When scripting for automation, error re-
covery is everything. Error reporting
is more important. Error discovery is
most important. You will find that mak-
ing things happen in a script is easy—
knowing when things have not happened
and doing the right thing thereafter is
hard.

• Be very paranoid. Review and sanity
check test results frequently. Hardware
failures can be very sneaky; repeating
known tests can be a good way to spot
flaky hardware.

• When running a large or even a medium
number of systems, administration tools
are very important, especially tools that
allow you to look at health over time.

• When testing kernels, sometimes the most
interesting tests are the ones that do not
run at all.

• Likewise, be aware of timeout
conditions—the tests that never com-
plete can also be interesting. You should
have timeout conditions for each phase of
an automated process.

• Build the tools to parse and present results
when you build the test. If possible, build
the tool so you can compare multiple runs.

• Likewise, instrument the test when you
build the test. Add readprofile or opro-
file if possible. However, be aware of the
impact of your instrumentation; touching
/proc too frequently can impact your re-
sults.

• Results presentation is very important.
design the report so that the most impor-
tant data is the easiest to see.

• Establish a baseline run you can use for
comparison purposes.

• Compare frequently to that baseline. Test
results in isolation are less interesting than
comparisons to known conditions.

• Establish your hardware baselines in as
much detail as you can. In a perfect world,
what is the maximum rate your disk sub-
system can deliver? Knowing these rates



Linux Symposium 459

can help you determine when a test is us-
ing real hardware and when a test is run-
ning from disk cache.

2.2 Macro and Micro Workloads

STP uses two very different types of tests when
testing kernel performance. These tests are di-
vided into macro and micro workloads. Micro
workloads are tests that exercise a very small
piece of the system, such as a single system
call. These tests focus on the low-level perfor-
mance details.

A macro workload is a simulation of a real-
world task. Macro workloads are sometimes
created from real customer workloads, or may
be designed to a specification, such as the
Transaction Processing Performance Council’s
TPC-N specification. These large-scale work-
loads might include OLTP applications, deci-
sion support systems or reservation and inven-
tory systems. (OSDL’s macro workloads in-
clude the Database test suite—the subject of
another paper at this conference.)

It is important that we do not confuse the re-
sults of macro and micro workloads, or attempt
to extrapolate too much real-world behavior
from micro measurements. Micro benchmarks
are usually developer-focused and not very
useful for understanding customer needs.

When looking at macro benchmarks, avoid
confusing simulation with reality, and extrapo-
lating results beyond the specific configuration
and problem tested. Many macro benchmarks
are grounded in real customer needs and situa-
tions, but some are designed more for market-
ing price/performance comparisons.

2.2.1 The AIM Suite

The AIM suite was created by AIM Technol-
ogy in the 1980’s. The AIM company spon-
sored a yearly ‘Hot Iron’ [DEC] award for
hardware manufactures, with prizes awarded in
various price/performance categories. To quote
from a press release[HP]:

Since 1981, AIM Technology has
provided vendors and end users com-
prehensive, unbiased performance
testing to help users determine the
best fit between their application
needs and available systems and con-
figurations.. . . AIM is an independent
organization, as opposed to a ven-
dor consortium, which allows AIM
to bring an expert eye to performance
measurement, not restrained by ob-
jectives of consortium members.

The company no longer exists and the awards
are no longer being given out. SCO acquired
rights to the AIM technology in 2000, and
placed suites VII and IX of the test under the
GPL. From the SCO web page[SCO]:

The AIM benchmark technology has
proved useful for more than a decade
in measuring performance of hard-
ware and versions of the Unix operat-
ing system. The benchmarks were li-
censed by nearly all of the vendors of
Unix system hardware. More than 70
companies used these benchmarks to
compare and tune products. In addi-
tion, because of the stressful multidi-
mensional nature of the AIM work-
load many OS and hardware vendors
have used the benchmarks as part of
their quality assurance process.



Linux Symposium 460

The AIM suite combines features of both
macro and micro tests. The suite consists
of a list of sub-tests, also known as “jobs.”
Each job exercises a specific area of system
functionality, such as file I/O, shared memory,
process creation, and compute-intensive math
tasks. Each job consists of a C function which
is linked to the driver code. A job may loop
repeatedly internal to the C function. (For ex-
ample, each addition test does 1.5 million in-
ternal loops.) Lists of jobs are grouped into a
“workload,” contained in a workload file.

The test runs in two modes. In the single-user
mode (AIM suite IX), each job in the work-
load file is executed serially by the test driver.
An alarm is set, and the job is executed repeat-
edly until the alarm expires. The alarm time
is referred to as the “test period.” Performance
is calculated by multiplying the number of job
executions by the internal job loop count, and
dividing by the test period. Results reported
are iterations per test period and operations per
second for each job.

In the multiuser mode, the driver forks a num-
ber of subprocesses, giving each an identical
list of jobs. The length of the job list is vari-
able, the default is 100 jobs per child. The jobs
are identical to the single user case. Each job is
given a weight (the ‘hit’ count). This weight is
used to calculate the fraction of the total work
performed by each subtest, the total work is the
sum of all job weights.

A typical test executions consists of a series of
passes wherein the number of subprocesses is
increased on each pass. Each subprocess runs
a randomly-ordered set of jobs until its list is
exhausted. The driver waits for all the child
processes to exit, and records the time between
child start and child exit. From this data two
numbers are calculated—the jobs per minute
(JPM) and jobs per child process per minute
(JPM_C)[SGI].

As the system load increases the jobs per
minute increases until it reaches a peak. If
the number of child processes continues to in-
crease, the work per child per minute begins to
decrease. Depending on the command line op-
tions, the test run terminates when child work
decreases below a threshold or the number of
child processes reaches the maximum desired.
Results reported are parent time, total child
time, jobs per minute, and jobs per minute per
child.

The AIM suite provides a set of building blocks
(the sub-tests) that can be combined to create a
simulation of a real-world workload. The old
test has several examples of these workloads,
including simulations of databases, file servers,
and compute servers. The workload can be ad-
justed by altering test weight or changing the
test mix.

3 Re-aim – AIM rework

3.1 The driver

The AIM code has remained untouched since
1991. I re-wrote the driver portion of the code
so that I could understand it, maintain it and en-
hance the list of sub-tests. After studying the
old code for a time, I choose to write a new
driver, preserving as much of the functionality
of the old driver as was useful. No doubt a dif-
ferent coder could have continued to maintain
the existing structure, I choose not to.

The old driver used global data structures and
static defines to control the size of the test list,
the number of test arguments, and other details.
The static definitions were replaced with dy-
namicly linked lists for flexibility. The AIM7
and AIM9 tests use almost the same list of
tests, so a common driver was desirable.

For convenience, the GNU autoconf tools were
used for the build and install system. The fol-



Linux Symposium 461

lowing parts of the old AIM framework are es-
sentially unchanged:

• The method of statically linking test mod-
ules to the driver engine code, and calling
those modules through a function pointer.

• The method for calculating workload task
distribution and weighting.

• The method for calculating disk file size
and distribution.

• The majority of the test module code (not
changed at this time).

• The method of calculating the results is
unchanged, however the timing method
and location of timestamps relative to
driver sleep() has.

• The adaptive timer remains the default.

The current driver has the following options,
shown in Table 1 which may help explain us-
age.

Most of the parameters can be specified in a
configuration file, options in this file are ig-
nored if the command line option is present.
Disk directories and disk file sizes must be
specified in a configuration file.

Several things were noted while re-doing the
driver.

• The old multi-user test ran until the
jobs/child/minute was less than 1.0. This
is quite a load on modern systems, result-
ing runs greater than eight hours to at-
tain convergence. This length of a run
is generally not useful for such a per-
formance test so the default crossover is
jobs/child/minute less than 10.0, with a
second switch to set this to a quick test

Options Description
-d(x), –debug(x) Turns on debugging output,

1 is default
-v, –verbose Produces more output
-s(x), –startusers Number of users at start
-e(x), –endusers Number of users at end
-i(x), –increment Number to increment by
-f(s), –file(s) Workfile name,

(default ’workfile’)
-l(s), –list(s) Config file name,

(default ’reaim.config’)
-c, –crossover Run to crossover,

(JPM/user less than 10.0)
-q, –quick Run to quick crossover,

(JPM/user less than 60.0)
-x Runs until max JPM detected
-j(x),–jobs(x) Number of jobs in tasklist,

(minimum is workfile size)
-m, –multiuser AIM7 style, default
-t, –timeroff No adaptive timer
-o, –oneuser Runs AIM9 style

single thread
-p, –period Length for single thread
-r, –repeat Iterate entire test
-h, –help This message

Table 1: Re-aim Options



Linux Symposium 462

value of 60.0. On a 2-CPU 800MHZ Pen-
tium III system, the quick test converges
at 15→50 users, depending on workload.
The default crossover point is 50→200
users depending on the workload.

• The jobs per child is now adjustable, with
a default value of 100. This can be used
to cause a set number of child processes
to do more or less work without changing
the workload.

• In a perfect world, all children (doing
equal work) should receive equal favor
from the scheduler. In reality, as the num-
ber of children exceeds the number of
CPUs, unfairness occurs and the child exit
is serialized. In addition, the child exit
timing is collected serially by the parent
usingwait() . The maximum and min-
imum child exit times are recorded to re-
flect this. This variance also appears in the
standard deviation calculated by keeping a
running total across all child exits.

• Timestamps are collected with the
times() function. The parent time
figure is effectively wall clock time for
the test. This function also allows us to
extract the system and user time as seen
by the child process. This information
is reported as a running total. The child
time thus exceeds the parent time in the
report.

• Filesize and poolsize (see below) are now
set in the configuration file. If either is
specified in the workfile, that setting over-
rides the configuration file, maintaining
old behavior.

• A method for detecting the maximum jobs
per minute was added. When the-x op-
tion is used, the jobs per minute rate is
tested by taking the standard deviation
across the last five test iterations. If the

standard deviation is less than 1.0 percent
of the average, the test exits. In addition,
if the the JPM rate drops more than 1.0 be-
low the average, the test exits. Maximum
jobs per minute are always reported.

3.2 Math tests

Time changes everything. Years ago, when
computing was frequently referred to as
“number-crunching,” math performance was
an exciting topic. Today, in the kernel context,
when run single threaded, these math tests tell
us very little. Fluctuations in the single-user
(AIM9) integer math test times are undoubt-
edly due to non-math causes, and do not typ-
ically reflect a change in the kernel. The multi-
user is a bit different—when we examine the
multiuser case we see that all these test run en-
tirely in user space. If we think of each subtest
as a part of a larger workload, these user space
functions are quite useful.

Table 2 shows typical parent times and child
system and user times when running these tests
on a 2-CPU system (Linux-2.4.18).

Test_Name Parent Child Sys Child usr
add_short 5.96 0.00 1.18
add_double 15.71 0.00 3.13
add_float 10.58 0.00 2.09
add_int 16.90 0.00 3.37
add_long 16.93 0.00 3.38
mul_short 0.50 0.00 0.09
mul_long 0.42 0.00 0.07
mul_int 0.40 0.00 0.07
mul_float 17.43 0.00 3.48
mul_double 17.55 0.00 3.48
div_double 15.40 0.00 3.07
div_float 15.83 0.00 3.07
div_int 18.94 0.00 3.76
div_long 18.83 0.00 3.76
div_short 18.94 0.00 3.76

Table 2: Re-aim Math Tests



Linux Symposium 463

Number Parent Jobs per
Forked Time Minute

Without math tests
10 75.23 797.55

With math tests
10 58.07 1064.23

Table 3: Database Load Comparisons

Number Parent Jobs per
Forked Time Minute

Equal Weight
10 39.17 1531.78
20 66.41 1806.96

Disk:math - 4:1
10 57.38 1045.66
20 91.33 1313.92

Disk:math - 1:4
10 26.53 2261.59
20 49.07 2445.49

Table 4: Effects of Test Weight

Adding these user space workloads to the mul-
tiuser test produces these results, shown in Ta-
ble 3:

This appears a bit counter-intuitive—we have
a longer test list, but it runs faster! Remem-
ber that the number of tests per child is con-
stant (100 in this case). Adding the short user-
space math tests to the workload actually de-
creases the amount of work per child. Here are
some further examples of how changing a sim-
ple mix can change the run time. We’ll start
with four tests, equally weighted, then we will
set the disk test weight to four times the weight
for the math tests, then do the reverse. Results
shown in Table 4:

There are fifteen of these math tests, all are
tight loops. No changes in these tests are
planned.

Num Parent Child Child
Forked Time SysTime UTime

10 23.70 7.64 4.10
20 26.29 15.30 8.27
30 29.02 23.02 12.30
40 31.55 31.48 16.38
50 35.91 39.54 20.33

Table 5: High System Time Load

3.3 Other Tests

The math tests are notable for consuming
mostly user time. There is another list of
tests that consume mostly system time. These
tests include the various memory tests (brk,
shared memory) and the various system call
tests. (create/close, link, fork, exec.) Combin-
ing these tests into into a single workload does
consume more system time, as seen in Table 5:

The current list of system-call focused test is a
bit short. Repeated runs of various workloads
have not yielded memory consumption at rea-
sonable user levels.

Another current question involves the shell_rtn
tests, which currently use the shortest possible
shell script. In addition, the three functions
calling the shell are identical. The reason for
this duplication is unknown.

The intent is to examine other open sources
of test routines for incorporation into this run
framework.

3.4 Disk Tests

The disk tests in the old AIM test consist of
three groups: basic block I/O tests, the same
tests with an added sync, and the sync I/O
tests. Each test determines file size from a
global variable,disk_iteration_count .
There are two configuration variables that con-
trol this, FILESIZE and POOLSIZE (speci-



Linux Symposium 464

fied in kilobytes or megabytes). If POOL-
SIZE is zero, each child will write or read
a total of FILESIZE bytes. If POOLSIZE is
non-zero, child file size is equal to FILESIZE
+ (POOLSIZE/number_of_children). Thus
when POOLSIZE is non-zero, I/O per child
will be reduced on each increase in child count.

For example, specifying a FILESIZE of 10K
and a POOLSIZE of 100K will result in a sin-
gle child creating a 110K byte file on each disk
device listed. Two children will create a 60K
file, etc. 24 children will create a 14K file, con-
suming 328KB per disk device.

The old AIM tests follow this sequence:

• creat() file

• write file

• close() file descriptor

• open() file descriptor

• do test

This results in the disk test running entirely
from cache. I added a second set of disk tests
using this method:

• creat() file

• write file

• close() file descriptor

• sync()

• open() file descriptor

• do test

This simple change noticeably impacted per-
formance:

Random Disk Writes
disk_rw without sync() 21922 (1K) per second
disk_rw with sync() 1218.78 (1K) per second

The first number is more indicative of real-
world hardware performance, but the cache-
only version of the tests may be of greater in-
terest to kernel developers.

The third category of disk tests performs the
same operations, but descriptors are opened
with the O_SYNC flag. (The read-only test
is not performed, of course.) This test is of
lesser interest, due to the relative slowness of
O_SYNC.

The current disk tests do all IO at 1K block
sizes. Future improvements to the disk test
suite include:

• Tests that use O_DIRECT and raw IO.

• Tests that use a common file created dur-
ing the test setup or prior to the test run,
requiring noticeable non-cached IO.

• Tests that produce measurable read activ-
ity, period. This is a weakness of the
cache-intensive design of the current tests.
Many test runs show little or no real read
IO—files are created, read and destroyed
too quickly.

• Tests that attempt to consume a noticeable
percentage of the cache.

• Temporary file creation is currently serial-
ized, multiple devices should work in par-
allel.

The final test is disk_src, which does a series
of directory searches. This test is of interest
due to its use of dcache. Future enhancements
include creating a script which will allow other
trees to be searched by disk_src, in place of the
current fakeh.tar.



Linux Symposium 465

Run Time Change
2 seconds 2.39%
4 seconds 2.17%
8 seconds 2.02%
15 seconds 1.52%
30 seconds 1.46%
45 seconds 1.62%

Table 6: Single user variation—3 runs each

3.5 Comparison of AIM9 Duration

This comparison attempts to show the useful
duration for the single user (AIM9) test run.
A proper duration should produce stable re-
sults from run to run. To test this, a single
user test was run three times using a list of
fifty-four tests. Average change between tests
was compared across the three runs, as shown
in Table 6. (Note: Each test must complete
one full loop.) While the run-to-run perfor-
mance does stabilize slightly when the test du-
ration exceeds fifteen seconds, run-to-run sta-
bility does not improve noticeably beyond that
point. This has been reflected in the choice of
default settings for the single user run duration
(10 seconds).

4 Run results

4.1 List of the workloads

Appendix A has a list of the various workloads
with run times on several sample configura-
tions.

4.2 Comparisons – 2.5

Table 7 is a quick comparison of a 2.5 patch
set, which is a subset of one of Martin Bligh’s
trees. We can see by this quick comparison that
the patch does improve performance. The test

Forks JPM-mjb JPM delta
10 1167.50 1074.15 8.3%
20 1240.24 1219.13 1.7%
22 1252.72 1219.14 2.7%

100 1247.36 1203.68 3.6%

Table 7: Comparison of 2.5.68 and 2.5.68-
mjb0.5

was run on a small 2-CPU system, with 1GB
of physical memory and IDE disks.

5 Conclusions

I have described the work that has been done to
change from AIM to Re-aim. I intend to spend
a great deal more time adding to the list of test
cases and otherwise improving the usefulness
of the tests.

6 Availability

The Re-aim code is available from Source-
forge:

http://sourceforge.net/
projects/re-aim-7

Or via BitKeeper:

bk://bk.osdl.org/aimrework

7 Trademarks

Linux is a trademark of Linux Torvalds

OSDL is a trademark of Open Source Development
Labs, Inc. All other marks and brands are the prop-
erty of their respective owners.



Linux Symposium 466

8 Acknowledgements

Thanks to Ruth Forester and John Hawkes for
advice, and OSDL for support.

References

[SCO] Web page announcing AIM suite
release,http://www.caldera.
com/developers/community/
contrib/aim.html , 2000.

[HP] Press Release with AIM description,
http:
//www.compaq.com.hk/press/
release/99press/990623.html ,
1995.

[DEC] Press Release with AIM description,
http://wint.decsy.ru/
alphaservers/digital/
v0000022.htm , 1995.

[SGI] Ruth Forester, et al. “Filesystem
Performance and Scalability in Linux
2.4.17,”Proceedings of the 2002
USENIX Annual Technical Conference,
Berkeley, CA 2002
http://oss.sgi.com/
projects/xfs/papers/
filesystem-perf-tm.pdf .

A Re-aim Results

A.1 Example runs

This appendix shows how various workloads
perform on some sample systems. Work-
loads were run until max sustainable jobs were
reached. The results shown below are the
maximum users obtained by each workload.
Several iterations are shown in some cases
to demonstrate typical run termination—the
adaptive timer was used for these runs. See the

source package for a listing of each workfile.
Some of the workload have arbitrary names re-
flecting time. This is not intended as a hard-
ware comparison.

We notice that for several of the workloads,
scaling is roughly linear across the three con-
figurations. For other workloads, most notice-
able the fserver and Dbase, performance on the
quad system jumps markedly. However, the
adaptive timer skews the increment such that
comparisons may not be relied upon—any true
comparison should be made without the adap-
tive timer. (The adaptive timer was used in this
case to reduce total run time.) The additional
disks on the Quad system appear to impact run
times. The other systems under test use disks
which are shared by the system. (/tmp or
/usr/tmp ) The quad system has 5 spindles
of disk devoted to the tests. The actual test
report includes data on standard deviation and
confidence levels. These columns have been
removed, due to text formatting requirements.

The systems:

1. Single CPU
PIII - 600MHZ
384KB RAM
single IDE disk
Linux-2.5.68 -stock
FILESIZE 10k
POOLSIZE 100k

2. Dual CPU
PIII - 868MHZ
1GB RAM
Dual IDE disk
Linux-2.5.68 - stock
FILESIZE 10k
POOLSIZE 1m

3. Quad CPU
PIII - 700MHZ



Linux Symposium 467

4GB RAM
5 SCSI disks
Linux-2.4.20 - stock
FILESIZE 10k
POOLSIZE 1m

A.2 The Workloads

workfile.all_utimeTable 8. All these tests run
entirely in user space.

workfile.alltestsTable 9. The full test list.

workfile.computeTable 10. From the old
test. Simulation of a compute-intensive server.
31.7% of this workload are tests from the
all_utime list.

workfile.dbase Table 11 Simulation of a
database load. 21.8% percent of this workload
are tests from the all_utime list.

workfile.diskTable 12. The disk tests with no
other work. All tests in this list are weighted
equally. Notice the difference between this
workload and the fserver workload, which in-
cludes other subtests.

workfile.fivesecTable 13 A completely artifi-
cial grouping of tests, based on their run dura-
tion when tested on a UP system.

workfile.fserverTable 14 Simulation of a file
server. 21.8% of this mix is 100% user time
tests, which matches the dbase workfile.

workfile.fivesecTable 15 A completely artifi-
cial grouping of tests, based on their run dura-
tion when tested on a UP system.

workfile.sharedTable 16. Simulation of a
multi-user shared server, assumed to be sup-
porting telnet clients. 39.7% of the work mix
are 100% user time tests.

workfile.shortTable 17 A completely artificial

Max Jobs per minute
Single - 1044.37 (1 user)
Dual - 2938.27 (7 users)
Quad - 4896.00 (12 users)
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
5 29.32 0.00 29.32 1043.66
Dual
14 29.27 0.01 56.72 2927.23
Quad
20 25.04 0.03 100.04 4888.18

Table 8: All User Time Workload

Max Jobs per minute
Single - 1839.22 (118 users)
Dual - 4233.31 (345 users)
Quad - 7207.78 (281 users)

Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
222 674.92 79.09 583.36 1835.42
Dual
545 727.78 288.98 973.43 4223.53
Quad
281 217.54 219.01 611.41 7207.78
343 317.68 494.41 750.89 6024.74

Table 9: All Tests Workload

grouping of tests, based on their run duration
when tested on a UP system.



Linux Symposium 468

Max Jobs per minute
Single - 803.29 (5 users)
Dual - 1429.25 (7 users)
Quad - 4708.68 (753 users)
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
6 45.57 1.90 43.63 797.89
Dual
10 43.35 3.73 78.56 1397.92
Quad
753 969.10 246.37 3620.94 4708.68
1007 1300.27 348.33 4838.78 4693.19

Table 10: Compute Workload

Max Jobs per minute
Single - 806.63
Dual - 1186.52
Quad - 1124.23
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
10 73.64 3.92 68.51 806.63
Dual
53 265.33 38.30 457.17 1186.52
Quad
383 2626.73 7089.40 2706.01 866.10

Table 11: Dbase Workload

Max Jobs per minute
Single - 1059.20
Dual - 2753.83
Quad - 9723.69
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
52 309.29 19.06 11.38 1059.20
65 396.09 24.01 14.32 1033.86
Dual
259 592.52 272.62 45.07 2753.83
349 816.90 370.08 61.38 2691.52
386 927.06 423.03 67.48 2623.13
464 1131.55 518.55 81.22 2583.36
Quad
352 374.70 766.36 53.39 5918.33
510 330.43 899.31 76.65 9723.69
807 867.55 3087.03 119.11 5860.30

Table 12: Disk Workload

Max Jobs per minute
Single - 2014.13
Dual - 3872.86
Quad - 10995.93
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
24 70.78 16.60 12.21 2014.13
32 101.06 22.16 16.34 1880.86
35 110.06 24.29 17.73 1888.97
41 130.73 28.48 20.89 1862.92
Dual
136 208.59 158.24 51.78 3872.86
180 287.05 210.50 68.99 3724.79
198 319.77 231.98 75.75 3678.02
Quad
432 265.98 698.35 170.78 9647.64
550 297.11 875.30 214.95 10995.93
799 1023.44 3577.29 314.54 4637.36

Table 13: FiveSec Workload

Max Jobs per minute
Single - 1617.78
Dual - 4267.88
Quad - 149.06
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
17 63.68 9.74 37.24 1617.78
19 72.01 11.17 41.57 1598.94
23 89.66 13.41 50.25 1554.54
Dual
328 465.73 241.80 483.01 4267.88
367 525.04 272.13 540.58 4235.91
449 639.48 339.93 661.62 4254.93
531 756.40 402.28 782.39 4254.18
Quad
141 5732.32 4832.17 283.59 149.06
145 5968.47 4803.54 290.69 147.22
146 6112.96 5288.60 292.91 144.74

Table 14: Fserver Workload



Linux Symposium 469

Max Jobs per minute
Single - 952.59
Dual - 2945.31
Quad - 5007.89
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
12 81.63 3.42 69.14 952.59
Dual
187 411.42 57.24 730.43 2945.31
Quad
48 62.11 12.72 231.40 5007.89

Table 15: Long Workload

Max Jobs per minute
Single - 1177.14
Dual - 2232.94
Quad - 2153.06
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
12 59.33 5.09 51.69 1177.14
16 80.37 6.84 68.84 1158.64
Dual
28 72.98 23.81 95.95 2232.94
34 103.61 26.71 116.53 1909.85
Quad
132 520.91 386.16 436.88 1474.80
182 624.65 585.43 628.17 1695.73
291 786.61 1135.61 1002.55 2153.06
400 1409.01 3649.24 1380.71 1652.22

Table 16: Shared Workload

Max Jobs per minute
Single - 45333.33
Dual - 166909.09
Quad - 222545.45
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
6 0.82 0.38 0.42 44780.49
Dual
9 0.33 0.27 0.39 166909.09
Quad
4 0.11 0.24 0.23 222545.45
8 0.26 0.47 0.45 188307.69

Table 17: Short Workload



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


