
Large Free Software Projects and Bugzilla
Lessons from GNOME Project QA

Luis Villa
Ximian, Inc.

luis@ximian.com, http://tieguy.org/

Abstract

The GNOME project transitioned, during the
GNOME 2.0 development and release cycle,
from a fairly typical, mostly anarchic free soft-
ware development model to a more disciplined,
release driven development model. The ed-
ucational portion of this paper will focus on
two key components that made the GNOME
QA model successful: developer/QA interac-
tion and QA process. Falling into the first cat-
egory, it will discuss why GNOME develop-
ers bought in to the process, how Bugzilla was
made easier for them and for GNOME as a
whole, and why they still believe in the pro-
cess despite having been under Bugzilla’s lash
for more than a year. Falling into the second,
some nuts and bolts: how the bugmasters and
bug volunteers fit into the development pro-
cess, how we coordinate, and how we triage
and organize. Finally, the paper will discuss
how these lessons might apply to other large
projects such as the kernel and Xfree86.

1 Introduction

During the GNOME 2.0 development and re-
lease cycle in 2002, the GNOME project grew
from a fairly typical, fairly anarchic free soft-
ware development model to a more disciplined,
release driven development model. A key com-
ponent of this transition was the move towards
organized use of Bugzilla as the central repos-

itory for quality assurance and patch track-
ing. This was not a process without problems-
hackers resisted, QA volunteers did too lit-
tle, or too much, we learned things we need
to know too late, or over-engineered the pro-
cess too early. Despite the problems, though,
GNOME learned a great deal and as a result,
GNOME’s latest releases have been more sta-
ble and reliable than ever before (even if far
from perfect yet :)

The purpose of this paper isn’t to teach some-
one to do QA, or to impress upon the reader
the need for good QA—other tomes have been
written on each of those subjects. Instead, it
will focus on QA in a Free Software context—
how it works in GNOME, what needed to be
done to make it work both for hackers and
for QA volunteers, and what lessons can be
learned from that experience. To explain these
things, I’ll focus on three main sections. The
first will be a very brief history of GNOME’s
transition to a more Bugzilla-centric develop-
ment style, in order to provide some back-
ground for the rest of the paper. The second
part will focus on the lessons learned from this
transition. If a reader needs to learn how to
manage QA and Bugzilla for a large Free Soft-
ware project (either as bugmaster or as a devel-
oper), this section should serve as a fairly con-
cise guide to GNOME’s free software QA best
practices—explaining how developers and QA
should work together, what processes make for
good free software QA, and how a free soft-



Linux Symposium 448

ware project can build a QA community that
works. Finally, in the third section, the paper
will attempt to discuss how GNOME’s lessons
might be applied to the usage of Bugzilla in
other projects.

2 Background

Before going further, I’ll offer a brief bit of
background on the GNOME project and how
it came to be a project where QA was an inte-
grated part of the Free Software development
process.

2.1 The GNOME Code Base

GNOME is not the kernel or X, but it is on
roughly the same order of magnitude in terms
of code and complexity. And it is continuing
to grow as we integrate the functionality ex-
pected by modern desktop users. Desktop is,
of course, a very vague term, but at the cur-
rent time, GNOME includes a file manager,
a menu system, utilities, games, some media
tools, and other things you’d expect from the
modern proprietary OSes. Of course, there is
also a development infrastructure as well, in-
cluding accessibility for the disabled, interna-
tionalization, advanced multimedia, documen-
tation, and support for many standards.

To provide all of this, GNOME is a whole lot
of code. A very basic build is more than 60
modules, each with its own build and depen-
dencies. Wheeler’s sloccount in a ‘basic’ build
(no web browser and no multimedia infrastruc-
ture) shows 8,000 .c or .h files and roughly 2.0
million lines of code.[Wheeler]. When count-
ing word processing, web browsing, spread-
sheets, media handling, and e-mail and calen-
daring (all of which are provided by fairly ro-
bust, complex GTK/GNOME apps) the total
grows to roughly 4.2 million lines of code.

2.1.1 The GNOME User Base

To a free software hacker, of course, users are
not just users—they are potential volunteers.
The ‘modern desktop users’ GNOME devel-
opers like and/or hate to talk about are actu-
ally quite numerous, which means a large base
of people who generate bug reports (especially
stack traces) and who also can be possibly per-
suaded to do QA work. For context, Ximian
GNOME 1.4 had a million and a half installa-
tions. By late in the 2.0 cycle daily rpm builds
of CVS HEAD drew thousands of downloads
a day, and each tarball pre-release of GNOME
2.0 was downloaded and built by tens of thou-
sands of testers. So, even during the relatively
unstable runup to 2.0, thousands of users were
pounding gnome’s pre-releases on a daily ba-
sis, and many of those became willing helpers
in the QA process- over 1,500 people sub-
mitted bugs during the 2.0 release cycle, and
several thousand more crashes were submitted
anonymously. This type of QA is difficult for
anything but the largest proprietary software
companies to match, and has been invaluable
to GNOME.

2.1.2 QA in GNOME 2.0

As can be imagined, this much code, with
this many users, trying to excersize a lot of
functionality, while developers seek to make
things more functional, usable and accessi-
ble, generates a lot of crash data and bug re-
ports. Between January 2002 and the release
of GNOME 2.0 on June 26th, 2002, slightly
over 10,000 bugs were tagged as 2.0 bugs and
an additional 13,000 non-2.0 bugs were filed.
The QA team triaged or closed over 17,000
of those. Over 5,000 more were eventually
marked as fixed, including over 1,000 deemed
high priority by the QA team. For a project
with a fairly small active core development



Linux Symposium 449

team, these were huge numbers. It’s only be-
cause of volunteer help in identifying and triag-
ing bugs that dealing with this at all was possi-
ble. During the 2.0 cycle, regular ‘bug days’—
12 hour long meetings of new volunteers—and
a mailing list helped coordinate and recruit vol-
unteers.

3 So what did we learn?

None of this was a pretty or clean process; lots
of mistakes were made and not quite as many
lessons learned. But we did learn a number of
general rules for volunteer driven, high-volume
bug handling. The gist of these lessons can
be summarized simply—QA volunteers must
work with their community to find, identify,
and track the most important bugs. But the de-
tails are more complex and will, I hope, make
this paper worth reading.

3.1 QA and Hackers

While ESR may have his critics, he was un-
doubtedly right in observing that we are all in
this to scratch our itches, whatever those itches
may be. Free software QA is a slightly odd
bird in this light—QA volunteers are in it to
scratch the itch of higher quality software, but
they can’t do it themselves. That means paying
a lot more attention to the needs of others than
may be typical for free software. Following are
some of the GNOME team’s lessons learned.

3.1.1 Rule 1: free software QA must sup-
port the needs and desires of devel-
opers in order to succeed

This seems fairly obvious, but it is also fairly
easy to forget or ignore. Free software begins
and ends with developers who are having fun.
There may be others involved for reasons other

than ‘fun’, but if QA’s sole purpose is to whine
about what QA thinks are the important flaws,
volunteers will leave, and leave quickly. QA
must think first and foremost not about their
own goals, but about the goals of developers.

To put it another way: developers think they
can do their thing without QA (which, in free
software, they mostly can) and QA absolutely
cannot do its job (which is getting bugs fixed,
not just finding bugs) without developers. If
QA forgets this in proprietary software, devel-
opers have to suck it up. If QA forgets this in
free software, developers will ignore them, or
worse, walk away from the project.

This is not to say that QA must be silent ser-
vants of hackers, never giving feedback or their
own input. QA volunteers can be and should be
trusted individuals whose advice is valued. But
that will happen more quickly and more easily
if the goal of supporting and aiding hackers is
always first and foremost.

3.1.2 Rule 2: QA needs guidance from
maintainers

In order for QA volunteers to serve the needs of
maintainers and developers in general, main-
tainers and developers must clearly commu-
nicate their priorities. This falls out pretty
cleanly from rule 0: if a project doesn’t know
where the project is going, or what the project’s
developers want, then it is going to be very
hard for QA to help reach those goals. This
also means that when a project is conflicted,
QA teams may not be of as much utility as a
project expects.

‘What a project wants’, from a QA perspec-
tive, is usually pretty obvious in GNOME—
stability, stability, stability. If a program can
be crashed, or a button doesn’t work, everyone
typically agrees that this should raise a red flag.



Linux Symposium 450

But past that, things often get murkier—some
maintainers may, for example, care deeply
about code quality, while others may be deeply
involved with fixing usability issues. And how
does one weigh a difficult to reproduce crasher
against, say, a build problem on Solaris? That’s
not typically an easy or fun call to make; it’s
nearly an impossible one to make correctly un-
less a QA volunteer has guidance from the de-
veloper.

In proprietary QA, these answers are usually
pretty easy—compare against a design doc and
go. In free software QA, where design docs
are often lacking in details if they exist at all,
developers must do the best they can to com-
municate to QA what exactly the priorities are
so that when the QA team finds a problem they
can classify it correctly.

3.1.3 Rule 3: QA must persuade hackers
they are useful and intelligent

When I came on board the Evolution team, the
universal response was ‘oh, someone is going
to mark duplicates for us, that’s nice.’ When I
left, I was very flattered to know that the team
was worried about a lot more than duplicates.
The difference between coming and going was
not just that I was effective, but that the very
first thing I did was work very hard to learn the
lay of the land in Evolution. Instead of reading
one bug and deciding ‘this is bad’, I read nearly
two thousand bugs before doing anything more
than rudimentary marking of duplicates in the
bug database. This is an extreme example, of
course, but it is the direction Free Software QA
volunteers should lean if they can.

In contrast, some first-time GNOME volun-
teers have dropped in, read one or two bugs,
and decided ‘oh, this bug is hugely important’,
and tried to mark it as such. Worse, some will
try to guess at the source of problems in code

they’ve never looked at, or (this is inevitably
the most irritating to developers) they’ll de-
clare that something ‘must be easy to fix’. In-
variably, this leads to irritation from developers
who have seen a lot more issues and have, un-
surprisingly, a much better grasp of their own
code. The best way to avoid this is to work hard
to always make the right call, especially when
first working on a project. There aren’t the ob-
vious checks of functionality and code review
that typically establish trust between hackers—
so very sound and conservative judgement has
to substitute at first.

3.1.4 Rule 4: Bugzilla cannot be the end-
all and be-all of communication be-
tween hackers and QA

Bugzilla is a wonderful tool, that allows for
great communication and incredibly flexible
ways to sort, parse, and otherwise mangle
bugs. But it doesn’t speak to mailing lists,
and it can’t selectively poke hackers about
important issues. QA volunteers must ac-
tively seek out other, non-Bugzilla forms of
communication—mailing lists and IRC, pri-
marily, but also web pages and other forums.
Use these channels to draw attention to QA and
to QA processes—most important new or out-
standing bugs, important recent fixes, new fea-
tures or reports in Bugzilla, or even simple ‘this
many bugs were opened and this many closed
last week.’ By doing this, a QA team can estab-
lish an identity as a ‘regular’ part of the devel-
opment process even amongst developers who
aren’t familiar or comfortable with Bugzilla.

This was a lesson learned the hard way in
GNOME. During the 2.0 cycle, the bug squad
assembled and emailed regular Friday status
reports to GNOME’s main development list. It
was well recieved by hackers, but like many
things in free software, it wasn’t completely
appreciated until (during the 2.2 cycle) it was



Linux Symposium 451

gone, done away with by lack of attention on
the part of the bug squad and the mistaken be-
lief that it wasn’t very useful to developers.
Developers let us know, and as a result we’ll
try to bring

3.2 Triage

Triage is a word that has been thrown around
in this paper a fair amount—before going fur-
ther it may be useful to define it. In medicine,
battlefield triage is the process of separating
the very badly wounded from those who are
lightly wounded and those who are so wounded
that they will die regardless of treatment. In
a free software context, it’s the process of
separating and identifying bugs that are most
severe and/or most useful to developers out
from the inevitable mountain of bugs that will
come in for any popular project. Specifically,
in GNOME, we triage by setting ‘priority’,
‘severity’, and ‘milestone’ fields in Bugzilla.
Like communication, GNOME has learned a
fair amount about this in the past year.

3.2.1 Rule 5: bugs need to be triaged, not
just tracked

When I came into GNOME and Evolution,
both projects knew that having a Bugzilla was
a good thing. So, they dutifully entered bugs in
their bug tracking systems—they tracked bugs.
But neither project had useful definitions of
severity and priority—they couldn’t or didn’t
triage their bugs. So what they had, when they
needed to know what came next, was a large
list of bugs in basically random order. Not sur-
prisingly, that wasn’t very helpful and so bugs
ended up getting entered in to Bugzilla and
never read again. Developers ended up main-
taining lists outside of Bugzilla to help them
figure out what to do next—a silly duplication
inefficiency in projects that can’t really afford

much inefficiency.

If this kind of thing is happening, it indicates
that bugzilla is not being used properly. The
solution is to carefully define priorities, sever-
ities, and milestones, and use them religiously,
by looking at every bug and making at least
an attempt to judge how bad it is and when it
should be fixed by. When it comes down to
release time, having consistently marked bugs
with these priorities means that it will be much
easier to say ‘these things must be fixed, these
we fix if we have time, these we pretend just
don’t exist.’ And that will leave you with much
better software.

3.3 Rule 6: triage must be tied to release goals

This is a whole lot like Rules 0 and 1, so I’ll be
brief. It’s worth repeating, though—triage is
basically the art of determining what is impor-
tant, and if QA and hackers frequently disagree
on what is important, QA will get ignored.
This greatly reduces the space for personal
freedom in QA—several volunteers have come
into GNOME, picked up on a pet theme and
marked those bugs up, and I’ve spent a great
deal of time apologizing for them. Bugzilla
cannot be allowed to become a soapbox, for
anything except the goals maintainers have al-
ready agreed to. If there is dissent on those
goals, take it to the lists—Bugzilla is not a
good forum for setting or arguing goals.

(In proprietary software, this is easy—‘project
goals’ are in a tightly defined project spec that
must be followed. Bug volunteers, especially
those coming from a proprietary background,
must remember that this just isn’t possible in
Free Software.)



Linux Symposium 452

3.3.1 Rule 7: triage new bugs agressively,
or Bugzilla will quickly terrify main-
tainers

The initial temptation of almost all the QA vol-
unteers I’ve dealt with is to assume that a bug
they’ve just read is extremely important, and
should be prioritized to reflect that. In some
ways, this is true—we do see a lot of very ugly
bugs, that in an ideal world given infinite re-
sources and time would be high priority. But
we live in a world of volunteers and spare time,
so marking bugs as more important than oth-
ers should be done only carefully and conser-
vatively.

Most free software hackers work on their
projects in blocks of very short periods of time.
That means that if Bugzilla is their TODO
list, the smaller and the more sorted it is, the
more beautiful. In practice, we’ve found that
it means that once maintainers trust their QA,
they tend to only look at high priority bugs.
This can be scary- it puts a lot of power in the
hands of QA, and messing up by deciding that
a bug is not important enough for a maintainer
to look is seemingly very bad. This is utterly
true in proprietary QA—if a QA guy screws
up and punts something that he shouldn’t, there
may not be much of a system of checks and
balances to catch the error. Free Software QA
saves us from such a fate—punt a bug or mark
it low priority, and if it is important, ten other
people will file it or add comments. The mas-
sive volume of bugs we get is a constant check.

For example, in GNOME, we regularly see
crashes that a maintainer or QA volunteer (or
often the original reporter) decides is com-
pletely impossible to reproduce. We knock
them down in importance or close them in that
case. Often, they actually are impossible to
reproduce- build problem, transient issue that
got fixed the next day, or other such. But in
some cases, after everyone has thrown up their

hands, you’ll continue to see reports of the
crash. The ‘mistake’ of triaging or punting the
original crash can then be revisited—thanks to
the volume of bugs we recieve, we’ve gotten
ample confirmation that maybe it wasn’t such
a bogon after all.

This isn’t perfect, of course—in Evolution,
for example, we get relatively few bugs on
first-time installation, so a single punt on an
installation issue may obscure much deeper
and more important issues that won’t be filed
again for some time. But, unfortunately, it’s
something that frequently must be done—the
alternative is often for maintainers to query
Bugzilla and face massive lists that are quickly
overwhelming. QA can and should serve as a
buffer for that if necessary.

3.3.2 Rule 7: closing old bugs, even com-
pletely unread, is unpleasant but OK

GNOME’s QA was publicly flamed several
months ago by someone (we’ll call them
‘james w. z.’) for mass-closing old GNOME
bugs without substantially reviewing them.
This was an unfortunate thing that we hate to
do, but it was justified. In the typical free soft-
ware cycle, a project starts off too unstable and
with too few users to get many bug reports. Af-
ter the project builds and grows, you still have
all the old bugs from the early period, and an
increasing number of users and bug reporters,
many of whom are filing bugs you can’t possi-
bly have time to fix or even sometimes look at
before your next rewrite and release.

Faced with an escalating number of bugs, a
volunteer-driven project that can’t easily bring
in more resources has two options: mass close
old bugs with an ‘if you still see this in our lat-
est release, please reopen the bug’, or let the
DB grow so large that it is unusable for hack-
ers and QA volunteers alike. From these two,



Linux Symposium 453

the choice is obvious if unpleasant. Further-
more, as ‘james’ reminded us, this isn’t some-
thing that is easy for bug filers to understand.
But when doing it, remind yourself: if it is still
a bug, someone will file it again.

3.3.3 Rule 8: triage rules can’t be just in
one person’s head

As already mentioned, the first step I took
when moving in to GNOME was to revise and
rewrite GNOME’s definitions for priorities.
Previously, they’d been fairly broad and
inspecific. The new priorities gave specific
examples, and tried to group problems into
specific classes as well. This was an important
first step for sane triage across Bugzilla.
But it was not enough—nearly all judgment
calls by volunteers ended up coming back
to me for validation, since the definitions
did not include a lot of my experience and
judgement—just examples and definitions.
So, I’ve started (and the QA volunteers have
rewritten and completed) a GNOME triage
guide [http://developer.gnome.
org/projects/bugsquad/triage/ ].
This document attempts to put a lot of collec-
tive wisdom down onto paper, and makes it
easier for new volunteers to come in and get
started, and for old volunteers and developers
to understand more precisely what should be
going on.

This will hold true for any project without
strong guidelines, I believe—either a large
group of volunteers will inconsistently apply
their own judgments (confusing developers) or
the project will become overly dependent on
one person, which will eventually again lead
to inconsistency as the mass of bugs becomes
too much for that one person to handle. Again,
this was a lesson learned by GNOME only af-
ter 2.0- during the 2.0 cycle, much of the triage
wisdom stayed in my head and when I had less

time (during the 2.2 cycle) the process grew a
bit creaky, because triage often blocked on my
availability to answer judgment calls.

3.4 Some Miscellaneous (But Important) Ob-
servations on Free Software QA

There are a few other important lessons
GNOME has learned that aren’t rules, per se,
but which everyone trying to do Free Software
QA should always keep in mind.

3.4.1 Observation 1: volunteers and hack-
ers are expensive, and bugs are cheap

You could also think of this as ‘volunteers are
scarce, bug filers are like locusts.’ This has
a number of implications for Free Software
QA- many of the rules I’ve previously cited
are almost the direct results of this observation.
Many others I haven’t cited also fall out of it. If
you keep this simple observation (almost more
a law than a rule) in mind, you’ll find the others
with time.

3.4.2 Observation 2: triage is an imperfect
art

Despite the immediately previous suggestions
about how to make triage consisten, it must
be understood that triage is an imperfect art,
where a certain amount of inconsistency is in-
evitable.

As already mentioned, the best way to triage is
to read a lot of bugs first, to gain an appreci-
ation for what types of bugs a project is see-
ing and how severe they are. But even after
having read 20,000 or so bugs in the past year,
over four projects, drawing the line even be-
tween seemingly simple things like ‘is this an
enhancement or a bug’ is a frequent borderline
judgement call for me.



Linux Symposium 454

Everyone involved in the QA process—bug re-
porters, bug fixers, and bug triagers (both ca-
sual and regular) must learn to accept this and
work with it. The important lesson here is
that volunteers should not be held to an impos-
sible standard—both volunteers and develop-
ers must understand that differences of opinion
will happen and aren’t the end of the world.
There will be thousands more bugs to work
with if one gets screwed up. :)

3.4.3 Observation 3: QA is winning when
people are interested in the process,
not just the results

So how can one know when QA is starting to
win? At what point can a QA volunteer sit back
and say ‘the hard part is done, now all I have to
do is read bugs?’ I’d suggest that one important
metric is noting the point when the standard re-
sponse by developers to bug reports is ‘put it in
Bugzilla.’ GNOME moved very slowly in this
direction, but that’s now pretty much the stan-
dard response on mailing lists when a bug is re-
ported to a list—‘take it to Bugzilla.’ There are
other parts of the process as well—bug days,
noting bug numbers in CVS commits or code
comments, and an overall commitment by de-
velopers to working with QA volunteers.

4 And these rules apply to other
large projects how?

4.1 XFree

A few months back, XFree had a dis-
cussion on their mailing list about use of
Bugzilla to track XFree86 bugs. The response
was. . . underwhelming. Why? The main fears
were pretty straightforward: ‘will we get lots
of useless bug email?’, ‘will people try to con-
trol what we do?’, and of course ‘what benefit
do we get?’

The answers to these questions aren’t always
obvious to a project just embarking on doing
serious Free Software QA for the first time.
Being more public can definitely open main-
tainers up to more mail. Obviously, this can
happen—as I discussed, it’s even possible that
less buggy software will get more bug re-
ports. That’s not truly a requirement—even if
Bugzilla is used only to triage and track bugs
that come in through other forums (say, open
only to developers, and used to track issues re-
ported to a mailing list) it can still be of great
use to a project, assuming that other rules I
laid out about supporting developer goals and
defining the triage process well are followed.
GNOME actually allows anonymous bug sub-
mission, the opposite end of the spectrum, and
while this is far from perfect, it has helped us
make huge leaps and bounds in terms of stabil-
ity by encouraging stack-trace submission.

Concerns about ‘control’ were equally
unfounded—even borderline paranoiac. Xfree,
like all other Free Software projects, is con-
trolled by hackers and hackers alone. If a
hacker decides that QA volunteers aren’t to
be trusted, or simply disagrees with triage
decisions, they can ignore them and move on.
The burden is on those running the QA process
to prove that their bugs are valid and useful.
I’ve given some suggestions on how this can
happen already.

Finally, the most obvious and at the same time
most difficult question—“what benefit do we
get?” I got into Linux because I’d heard about,
heard it didn’t crash, and one night Outlook
crashed 10 times, while I was trying to write
a single email to a professor. So for me, more
stable software is an obvious benefit of work-
ing in QA. That is, admittedly, not for every-
one. Answering this question really requires
some introspection on the part of hackers and
maintainers—if you want to make software
that is good for your users (virtually no matter



Linux Symposium 455

how you define good), then your project wants
a QA process and wants Bugzilla. If you are in
free software purely because you want to write
cool hacks, or because in free software, no one
can tell you what to do, Bugzilla may not be
for your project. But that’s an answer only
you can answer. Frankly, on reading the XFree
lists, it was not altogether clear that many of
the XFree hackers were particularly concerned
about their users. If that is the case (and that
is most definitely their prerogative as authors
of the code) then perhaps Bugzilla is not for
them. No matter how hard they try, it would be
hard for QA volunteers to support the pursuit
of power or cool hacks.

4.2 Kernel

Reading kernel traffic, I was very pleased to
see that Andrew Morton had proposed not just
a list of bugs, but actually defined what he felt
should be the standard for “when should we
go to 2.6.0?” I’m a long time k-t reader, and
this was the first time I’d seen something of the
sort. Defining and agreeing on that is part of
my Rule 0—QA has to support development,
and developers have to tell QA what they want.
The list had even been split into rudimentary
“can’t ship without fixing” and “it would be
nice” lists—a big first step towards solid triage.

It was sort of disappointing, though, to read
through the details—the vast majority of is-
sues had no bugs associated with them, and
squirelled down at the bottom was “and there
are several hundred open Bugzilla bugs.” This
was the kind of opportunity kernel bug peo-
ple should have seized on (and possibly have
since this paper has been written, of course.)
Bugzilla is perfectly designed to track these
kinds of issues and their progress. Some in-
trepid volunteer could easily have volunteered
to enter every issue into Bugzilla and assign
it a high priority and assign it to the owner
of the issue. From there, patches could have

been attached and tracked, punting it from one
list to another would have been as simple as
changing a single field, outsiders could easily
discover what bugs had and hadn’t been fixed
already, and a host of other things. Instead
of ongoing IRC status meetings where many
things were reported fixed or irrelevant, a sim-
ple query could have reported a list before the
meeting that could be updated by all partici-
pants in parallel if need be. (And of course,
no more diffs to show what had changed—
again, simple, dynamic query to show what has
changed over any period of time.)

Similarly, the “several hundred open Bugzilla
bugs” was a great invitation for someone to
work with Bugzilla, trawl them (it only takes
a weekend, at worst, to read a couple hun-
dred bugs, once you’ve got the knack) and start
making preliminary suggestions to maintainers
aobut important bugs that were in Bugzilla but
not on the list. Remember rule two—persuade
the hackers you are useful. Filling in the blanks
on information they knew must be there but
didn’t have time to find themselves is a great
step towards that, and reading the (currently
small) open bugs to get perspective would have
been a great start for those looking to help out
and do effective triage.

Pre-release is the best time for QA and
Bugzilla—priorities are typically clear cut,
hackers are most pressed for time and so most
appreciative of the help, and hackers are the
most motivated to work on bug-fixing instead
of pie-in-the-sky features. Hopefully, someone
involved in the kernel community will find this
general advice useful and can take advantage
of this relatively rare time in the kernel cycle.

5 Conclusion

Free Software QA is a slightly different beast,
playing with different sets of data inputs and



Linux Symposium 456

different sets of motivations than a typical QA
process. As a result, making QA central to the
release process is not easy for any Free Soft-
ware project, and it’s even harder to stay with
it once it is successful, since success breeds
difficulty. But it can be done if communica-
tion, motivation and technique are all brought
in line with each other. GNOME did, and ben-
efited immensely from it. It is my hope that
other large projects will be able to learn from
our lead.

6 Acknowledgments

Thanks to Ximian and Sun, for allowing me to
work so extensively with the GNOME commu-
nity.

Thanks to the Bugsquad and all the volun-
teers who preceded it, first for doing so much
work for their own communities, and second
for keeping me sane while I worked on Evolu-
tion and GNOME. And thirdly for suggesting
the title of my talk.

Thanks to all those who proceeded me, at
Mozilla and GNOME, for giving me some-
thing to work with—tools, skills, and data.

Thanks to ed on gimpnet, for helping me fight
through the structure of this paper.

7 Availability

This paper and slides from the associated pre-
sentation will be available from

http://tieguy.org/talks/

References

[Wheeler] From David Wheeler’s
SLOCCount—http://www.
dwheeler.com/sloccount/



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


