
Building Enterprise Grade VPNs
A Practical Approach

Ken S. Bantoft
freeswan.ca / MDS Proteomics

ken@freeswan.ca, http://www.freeswan.ca

Abstract

As Linux scales its way into the enterprise,
things like high availabilty and redundancy be-
come more and more important.

As is the case with many Open Source appli-
cations, you can integrate several applications
together to build in as much redundancy and
failover as you need for your network.

By combining several Open Source applica-
tions, including Linux [1], FreeS/WAN [2],
GNU/Zebra [3] and Heartbeat [4] we are able
to build a very reliable, robust VPN solution.

1 Building an Enterprise VPN

FreeS/WAN has been used for several years by
many Linux system administrators to build Vir-
tual Private Networks (VPNs) between sites,
end-users, and business partners. It is very con-
figurable, inter-operates well with other IPSec
implementations and is generally quite stable.
It has few limits, however two of the more
common limits sysadmins run into are:

1. IPSec doesn’t tunnel all IP traffic—it does
not handle Multicast or Broadcast traffic.
This means if we wanted to do Multicas-
ting over our VPN, or run OSPF from
Zebra on ipsec0 for dynamic routing, we
can’t. While it’s possible to run OSPF in

NMBA mode, we ran into problems with
this as well.

2. You need one tunnel per network combi-
nation pair—thus if you have 4 IP subnets
behind Secure Gateway #1, and 2 behind
Secure Gateway #2, you will need to con-
figure 8 separate tunnels (unless you can
aggregate your IP network space to /23s,
/16s or other CIDR compatible blocks).

Point 1 isn’t too much of a limit, since many
networks don’t need multicast and broadcast
traffic to be routed between sites. In large net-
works, point 2 quickly becomes an adminitra-
tive nightmare to deal with.

This can quickly get out of hand for large net-
works, especially when more than two sites are
involved. The ideal solution is to setup a sin-
gle tunnel between each site, and then route
all traffic from site 1 destined for site 2 over
the VPN, and hope the other side accept it.
The problem here is that IPSec policies (which
FreeS/WAN enforces) prevents this—if there is
no explcit tunnel defined for the Source + Des-
tination pair, the packet is dropped.

The solution here is to use GRE—Generic
Routing Encapsultion. This has been part of
the Linux kernel for quite some time, and
allows us to solve both problems identified
above. By setting up a GRE tunnel over one
of our IPSec tunnels, we can then route any-

Linux Symposium 45

thing we want over the GRE tunnel, including
Multicast traffic.

Once we are using GRE, we need some way to
dynamically inform the other side of the tun-
nel which networks we know about, and how
to get to them. GNU/Zebra can provide this
functionality, using either OSPF or BGPv4.

2 Challenges & Solutions

Integration of all of the applications used pre-
sented several challenges, since none of them
were designed to work together. Some had
to be extended, and others had to be scripted
around in order for them to notify each other
of various different sorts of failures.

Luckily, with source in hand, this was much
easier than expected.

2.1 Zebra

Zebra was the easiest to integrate, as no di-
rect code changes were required. There were
initially some problems with using OSPF on
aliased interfaces (eg: eth0:0) but those were
solved by an upgrade to the latest version
(0.91a or 0.93 are known to work).

2.2 Heartbeat

Heartbeat needed some modifications so it was
aware of the status of the physical interfaces,
and then just needed a basic configuration and
a lot of scripting.

One of the most significant differences be-
tween commercial grade routers and Linux is
that if an interface is physically unplugged, or
the switch/hub on the other side goes down, a
commercial router drops the interface, and all
routes that travel over it are removed. Linux
desperatly needs this capability, but until re-

cently many network cards were unable to re-
port the link status.

Donald Becker[5] wrote a handy toolset for
this—mii-tool/mii-diag. During my tenure at
IBM Canada, one of the developers I worked
with took this and turned it into a patch against
Heartbeat. If Heartbeat detects a physical
problem with the network card/cable/switch,
Heartbeat initates a failover event. This code
supported the Intel 10/100 (eepro.o|e100.o) as
well as the Intel Gigabit Ethernet adapters
(e1000.o).

The bulk of the time went into the rewriting
of many scripts to properly bring interfaces up
and down, to restart Zebra’s bgpd correctly,
and to cleanly restart FreeS/WAN.

2.3 FreeS/WAN

FreeS/WAN required no code changes, only
configuration and some scripting to keep the
configuration syncronised between each set of
Secure Gateways. We used SSH for this.

3 Gluing it all Together

The complicated part is making all of these ap-
plications and protocols work together seam-
lessly. Our basic network layout is below:

Linux Symposium 46

We have two Secure Gateways, each with a
connection to the internet. Ideally, each would
have its own link to the Internet, preferably re-
dundant, but you could share the link if needed.
Each gateway also has a connection to the local
lan, which Heartbeat sends keep-alives over.
If possible, use a Null-modem cable between
each pair of gateways for out of band keep
alives. If this isn’t possible, Heartbeat also sup-
ports UDP keep-alives over any network inter-
face.

Ensure each gateway has all of the applications
installed, and the GRE and FreeS/WAN con-
figurations should be syncronised. Heartbeat
and GNU/Zebra configurations differ slightly,
so they should not be shared.

A diagram showing the key interactions be-
tween the applications:

Heartbeat is the control center in this setup,
as it monitors each node in the group for fail-
ure, and checks its own Ethernet devices via
MII calls. Heartbeat also starts and stops
various scripts (from /etc/rc.d/init.d) which
bring up FreeS/WAN, the GRE tunnels, and
GNU/Zebra.

3.1 Dealing with Startup Scripts

FreeS/WAN and GNU/Zebra both provide
scripts suitable for use in /etc/rc.d/init.d, so we
used those. We also needed to add a GRE tun-
nel, so we wrote our own startup scripts for
that. A quick example:

#!/bin/sh
chkconfig: 2345 50 64
description: Set up a GRE tunnel from

Linux Symposium 47

here to somewhere else

case "$1" in
start)

ip tunnel add MYTunnel mode gre \
remote 216.1.1.1 local 116.1.1.1 ttl 255
ip link set MYTunnel up
ip addr add 172.16.0.1 dev MYTunnel
ip route add 172.16.0.2/32 dev MYTunnel
;;

stop)
ip route del 172.16.0.2/32 dev MYTunnel
ip addr del 172.16.0.1 dev MYTunnel
ip link set MYTunnel down
;;

restart)
$0 stop
$0 start
;;

*)
echo "Usage: $0 {start|stop|restart}" >&2
exit 2

esac

exit 0

}

Our script supports the traditional arguments
start, stop, and restart, and will bring the GRE
tunnel up and down when called from Heart-
beat.

3.2 Heartbeat Configuration

Full details on configuring Heartbeat are avail-
able from the package itself [7], so I will cover
only the /etc/ha.d/haresources config file here.
From Heartbeat, we need to control the IP ad-
dress takeover, and the services (/etc/rc.d/init.d
scripts) we start and stop when a node fails.
This can be done with a simple, single line en-
try in /etc/ha.d/haresources:

cluster1 116.1.1.1/28 192.168.0.1/24 \
ipsec gre zebra bgpd
}

The above line tells Heartbeat to do IP ad-
dress takeover on 159.18.124.254 (our Exter-
nal IP address) 192.168.0.1 (our Internal IP ad-
dress). It also lists the scripts (in order) to
run when a takeover happens. It passes each

of these scripts a parameter—either “start”
or “stop” determined by what is occurring—
taking over the IP, or releasing it. (I.e.,
/etc/rc.d/init.d/ipsec start .)

3.3 FreeS/WAN Configuration

FreeS/WAN configuration was straightfor-
ward. PSK (pre shared secrets) use is not rec-
ommended, as recent bugtraq postings have
shown some potential security flaws. We rec-
ommend RSASig’s, however X.509 Digital
certificates can also be used. The following ex-
ample uses PSK authentication for one remote
site:

config setup
interfaces="ipsec0=eth0:0"
klipsdebug=none
plutodebug=none
plutoload=%search
plutostart=%search
uniqueids=yes

conn %default
keyingtries=0

conn site1tosite2
authby=rsasig

left=116.1.1.1
leftnexthop=116.1.1.30
leftrsasigkey=0xA0S8PIPI...
leftid=@site1.company.com
right=216.1.1.1
rightnexthop=216.1.1.30
rightrsasigkey=0xA0QKJ986...
rightid=@site2.company.com
auto=start

}

The critical line of the config isinterfaces=

"ipsec0=eth0:0" , as by default Free-
S/WAN won’t bind to an aliased interface.
Since Heartbeat brings up the service IP ad-
dresses on aliases, we need to bind our ipsec
interface to the alias.

Linux Symposium 48

3.4 GNU/Zebra Configuration

From GNU/Zebra, we use the BGPv4 daemon
to handle our dynamic routing. This gives us
much more control over which routes we share
than OSPF would, as well as makes configura-
tion simple.

Sample bgpd.conf file:

!
hostname torcofw1
password a_secure_password
enable password a_more_secure_password
log file bgpd.log
log stdout

router bgp 65432
bgp router-id 172.16.0.1
network 172.16.0.0/30
redistribute kernel
redistribute connected
redistribute static
neighbor 172.16.0.2 remote-as 65432
neighbor 172.16.0.2 next-hop-self

!
}

We use a reserved AS number (65432) in
case we ever need to do BGP with peers
from another company, or the Internet. All
of the network and neighbour statements refer
to our GRE tunnel IP addressing, as we wish
to communicate with our BGP peer over the
GRE tunnel—not the IPSec tunnel. neighbour
172.16.0.2 next-hop-self is critical—we need
our BGP peer to send any traffic destined for
our local networks through us directly, since
we have an established tunnel.

4 Conclusions

It took a few weeks to get this setup sta-
ble, during which we changed from OSPF to
BGPv4, which cleared up several problems
we encountered with neighbours failing to ex-
change routes consistantly. The current design
has been running in production at 4 sites for

over 2 years now, and we have had several suc-
cessful failovers (several faulty network cards,
a bad switch port, and the more common sys-
tem administrator error).

Connections that do not pass though netfil-
ter connection tracking (i.e., NAT/MASQ) are
usually unaffected—with a keepalive time of
2 seconds, and a deadtime of 10 seconds,
dead peer detection is fairly quick. This
can be optimized down to about 5 seconds if
needed. Changing over the IP addresses, start-
ing FreeS/WAN, GRE tunnels and GNU/Zebra
takes less than 10 seconds on modern hard-
ware, so our total time between failover is less
than 20 seconds.

5 Future Improvements

There are more improvements to be made that
could bring detection and failover down into
the 1–3 second range.

Heartbeat seems currently limited to 1-second
keepalives—this could be brought down to 1/4
second over the serial interface, meaning a
deadtime of 1 second would be reasonable (3
missed polls).

FreeS/WAN has a routing limitation whereby
you can’t have two tunnels for the same source
+ destination pair going to two different remote
gateways. Hopefully, this limitation will not be
present in either kernel 2.6’s IPSec implemen-
tation, or future versions of FreeS/WAN that
implement the MAST [8] device.

Connections that do utilize the netfilter con-
nection tracking are currently cut off, since
the secondary firewall is not aware of the cur-
rent state of the conntrack table on the primary
firewall. There was some discussion at the
OLS 2002 Netfilter BOF, and on the Netfilter
Failover list [9] on how to handle syncroniza-
tion of the conntrack table, however no code

Linux Symposium 49

has emerged.

6 Acknowledgments

I would like to acknowledge the FreeS/WAN
team, and extra thanks to Michael Richardson
and JuanJo Ciarlante who helped me setup a
UML environment setup so I could demon-
strate much of this. I’d also to acknowledge
IBM Canada, who employed me during the ini-
tial development of this solution, and my cur-
rent employer, MDS Proteomics who allows
me to continue to refine it. Also, thanks to As-
taro Corporation for funding some of my de-
velopment of Super FreeS/WAN, and covering
my hosting costs for freeswan.ca.

7 Availability

Software:

http://www.freeswan.ca
http://www.zebra.org
http://www.linux-ha.org

Documentation:

http://www.freeswan.ca/docs/HA

References

[1] Linux, http://www.linux.org

[2] The FreeS/WAN Project,
http://www.freeswan.org
http://www.freeswan.ca

[3] The GNU Zebra Project,
http://www.zebra.org

[4] The Linux-HA Project,
http://www.linux-ha.org

[5] Donald Becker, Scyld Computing
Corporation,http://www.scyld.
com/diag#mii-diag

[6] Ken S. Bantoft,Building HA VPNS with
FreeS/WAN, http:
//www.freeswan.ca/docs/HA/

[7] Getting Started with Heartbeat,
http://www.linux-ha.org/
download/GettingStarted.
html

[8] John S. Denker,Next-Generation IPsec
Packet Handling, http:
//www.quintillion.com/moat/
ipsec+routing/mast.html

[9] Netfilter Failover Archives,
http://lists.netfilter.org/
pipermail/
netfilter-failover/

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

