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Abstract

In this paper we demonstrate the use of mac-
robenchmarks in Linux® kernel development.
We describe two macrobenchmarks, SPEC-
jAppServer2002™ benchmark application and
IBM®’s Trade, which are based on the Java™
platform and modeling enterprise applications
typically found in large data centers. This pa-
per shows how these macrobenchmarks were
used to analyse potential improvements in the
load balancing and yield behaviour of the 2.5
kernel’s O(1) CPU scheduler. We also demon-
strate how the macrobenchmarks helped debug
the 2.5 kernels and compare their performance
improvements over the 2.4 series.

1 Introduction

1.1 Microbenchmarks vs. Macrobenchmarks

Performance is a key driver for Linux kernel
development. Several patches have been devel-
oped explicitly to improve Linux performance
on various architectures. Most patches which
seek to add a new kernel feature are expected to
show that they minimize, if not eliminate, any
negative performance impact on the system.

Over the years, various benchmarks have

become popular in the kernel development
community to assess the performance of
patches. Most of these microbenchmarks
measure specific aspects of system per-
formance, such as tiobench for filesystem
performance[Tiobench] and pipetest[Pipetest]
for event delivery. Microbenchmarks have two
advantages. First, they are typically both easy
to set up and run and are free, making them ac-
cessible to all developers. This is particularly
important for the widely dispersed open source
kernel community. Second, microbenchmarks
can be pivotal in determining the impact of a
patch on a specific kernel subsystem.

The specificity of a microbenchmark limits its
suitability for predicting overall system im-
pact. Hence, developers often use microbench-
mark suites such as lmbench[lmbench] and
Contest[Contest]. By running a collection of
microbenchmarks, each stressing a different
aspect of the kernel, a more accurate picture
of the overall system impact can be obtained.

Microbenchmarks (singly or in suites) suffer
from two major disadvantages. First, they
do not adequately capture the dynamic inter-
actions between different kernel control paths
which may be impacted by the same patch.
Even if these control paths are tested indi-
vidually, their interactions will not be appar-
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ent. Even if the microbenchmarks could be
made to run together, the interactions being
tested would be ad-hoc. Second, microbench-
mark suites are less representative of real world
workloads. As such, while they can be used to
gain a better understanding of the impact of a
patch on a single subsystem, they are not ideal.

Macrobenchmarkssuch as Trade[Trade] and
SPECjAppServer2002[SJAS] help fill this
void. They exercise different parts of the ker-
nel during runtime in ways that are repre-
sentative of real world workloads that run on
Linux. Such benchmarks are designed to com-
pare hardware and software differences based
on performance and cost-performance criteria.
However, they can also be used to guide soft-
ware development because they permit an or-
derly isolation and elimination of system-wide
performance bottlenecks. Macrobenchmarks
also allow non-kernel bottlenecks to be iden-
tified, further encouraging an evolutionary ap-
proach to kernel development.

Macrobenchmarks have their disadvantages as
well. They are often expensive to purchase
and are not open source. They are not easy
to set up and often require multiple machines
with above average physical resource require-
ments especially memory and disks. They
may also need proprietary middleware, such as
databases and Web Application Servers (here-
after referred to as AS), if freely available
open-source alternatives are not performant
enough or do not have the right feature set yet
to allow the benchmark to be run.

One notable effort to provide free macrobench-
marks is being done by the Open Source De-
velopment Lab(OSDL). The OSDL’s Database
Test (DBT) benchmark suite[DBT] develop-
ment effort is a welcome step in reducing the
need to purchase specialized middleware in or-
der to run macrobenchmarks. The Scalable
Test Platform, also from OSDL, helps make

enterprise class hardware available to all devel-
opers, further easing the hurdles in using mac-
robenchmarks.

1.2 J2EE-based Macrobenchmarks

The Java 2 Platform, Enterprise Edition, J2EE
[J2EE] framework is a mechanism for creating
distributed and Java-based enterprise class ap-
plications for various business domains such as
manufacturing, supply-chain management, and
on-line financial applications. Compared to the
traditional transaction processing benchmarks
such as TPC-H, TPC-C and TPC-W, the J2EE
framework has not received much attention in
the Linux benchmarking efforts. For this paper,
two J2EE based macrobenchmarks, Trade and
SPECjAppServer2002, are used to investigate
Linux kernel performance.

J2EE applications consist of multiple layers.
Performance analysis of such applications are
involved and demanding as they depend on
many factors. A typical J2EE stack is illus-
trated in Figure 1.

Application Server

Business App

Java Virtual Machine

Operating System

Hardware/ Network

Figure 1: J2EE stack

The component which implements the actual
application depends on the AS services. The
AS in turn takes advantage of the underlying
Java Virtual Machine (JVM) implementation.
The Java applications call methods from the
Java API libraries that provide access to the
system resources through appropriate system
calls.

The AS performance depends on many fac-
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tors: caching support, transaction execution ef-
ficiency, JVM implementation, Enterprise Java
Beans component pooling mechanisms, effi-
ciency of persistent storage mechanisms, Java
Database Connectivity, optimized driver sup-
port, etc. More information on J2EE best
practices can be found in the literature such
as Oracle9i and Java Performance [Oracle9i,
EnterpriseJava, JavaPerf]. These studies focus
on J2EE and its associated components rather
than the operating system. By contrast, the fo-
cus in this paper is on the operating system;
specifically, the Linux kernel. Two complex
enterprise workloads are used to identify ker-
nel performance issues and suggest possible
kernel improvements.

1.3 Description of Trade

Trade [Trade] is a freely available benchmark
developed by IBM. It is designed to measure
AS performance. Trade is an end to end bench-
mark that models an online financial applica-
tion. Specifically, an electronic stock broker-
age providing web-based online securities trad-
ing.

Two versions of the Trade benchmark, Trade
2.7 and Trade 3.0, are used in this study. Trade
2.7 is a collection of Java classes, Java servlets,
Java Server Pages (JSP), and Enterprise Java
Beans integrated into a single application.

While Trade 2.7 is written based on J2EE 1.2,
Trade 3.0 is the third generation of this bench-
mark making use of many features of J2EE
1.3 [J2EE] including local-interfaces, message
driven beans, Container-Managed Relationship
(CMR), etc. It also incorporates Web Services
as one of its major enhancements. Many Appli-
cation Servers in the industry implement these
features.

This benchmark is used for performance re-
search on a wide range of software components

including the Linux operating system, AS, Java
and more.

The Trade benchmark can be run in either a
two tier or in a three tier configuration. In the
two tier model, the client driver (which sim-
ulates clients of the online brokerage applica-
tion) runs on one system, while the AS and the
backend database runs on another. The AS ex-
ecutes J2EE applications which consist of two
parts: the server side presentation logic and the
server side business logic. In a three tier model,
the AS and the backend databases run on sep-
arate systems, interconnected by a high speed
network. We were more interested in the per-
formance and scaling of the AS, so we chose to
do our testing using a three tier configuration.
Figure 2 shows such a configuration.

Client
Driver

Database
Server

Application Server

Workload (Trade, SPECjAppServer)
(Implemented in Java)

Host 1

HTTP

CLI / SQLnet

Host 3Host 2

DB ClientApplication 

Figure 2: Three tier configuration for Trade 3.0
and SPECjAppServer2002

The client driver simulates requests of an on-
line stock brokerage application, which makes
a predefined mix of login, register, buy, sell,
and quote requests of online securities. These
requests come in as HTTP requests to the AS.
Trade 3.0 has been configured to use the En-
terprise Java Beans (EJB) mode meaning that
all accesses to the back-end pass through the
EJB container of the AS as opposed to the use
of direct Java database connectivity (JDBC).
All the orders are executed in a synchronous
mode by the session and entity beans rather
than being queued for asynchronus execution.
The communication between the servlets and
EJBs are done using the Remote Method Invo-
cation (RMI) protocol. The backend database
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stores 5000 users and 1000 securities applica-
tions. Database records are inserted, then mod-
ified as the benchmark progresses. To main-
tain reproducibility of the benchmark results, a
database is initialized once and backed up. The
database is restored before each test run.

The Trade application generates a large num-
ber of threads, of the order of 160, during
its operation. The metric of interest in this
benchmark is the number of web pages that are
served by the AS.

1.4 Description of the SPECjAppServer2002
Benchmark

SPECjAppServer2002 [SJAS] (hereafter re-
ferred to as SJAS) is a benchmark for mea-
suring the performance and scalability of J2EE
(Java 2 Enterprise Edition) application servers
and containers, by emulating the heavyweight
manufacturing, supply chain management, and
order/inventory system representative of a For-
tune 500 company. It is a derivative of the
ECperf 1.1 benchmark [ECperf]. SJAS sup-
ports multiple configurations such as single,
dual, multiple, and distributed nodes. We
chose dual mode (3-tier configuration) for our
setup: (i) a client driver emulator, (ii) an AS
tier and (iii) a database backend tier. This pa-
per always refers to the 2002 version of SPEC-
jAppServer.

SJAS models four logical business entities (do-
mains): customer, manufacturing, supplier and
service provider, and corporate. In the cus-
tomer domain, large and small orders are dis-
tinguished in that they trigger different trans-
actions (e.g., credit checks, order change). The
manufacturing domain processes the different
orders and schedules parts with suppliers. The
supplier domain decides which supplier to use
and handles the transaction (e.g., order size,
due date) with the supplier. The corporate do-
main handles the list of all customers, parts,

suppliers, and credit information. SJAS can
be implemented either in a centralized or dis-
tributed mode. In this paper we chose the cen-
tralized mode, which allows us to put all four
business entities on a single AS.

The throughput of SJAS is driven by the num-
ber of order entries in the customer domain and
the manufacturing domain and is measured in
TOPS, which is the average number of suc-
cessful total operations per second completed
during the measurement interval. TOPS is lin-
early related to the injection rate (IR). The IR
refers to the rate at which business transaction
requests from the order entry application in the
customer domain are injected into the AS. The
goal is to drive the injection rate as high as pos-
sible. An injection rate is sustainable if at least
90% of each type of business transactions com-
pletes within a required response time.

Though a full SJAS benchmark run requires
more with respect to reporting [SJAS], we are
using the sustainable injection rate as a means
to evaluate scalability and changes to the ker-
nel.

Note: SPECjAppServer2002 is a trademark
of the Standard Performance Evaluation Corp.
(SPEC). The SPECjAppServer2002 results or
findings in this publication have not been re-
viewed or approved by SPEC, therefore no
comparison nor performance inference can be
made against any published SPEC result. The
official web site for SPECjAppServer2002 is
located athttp://www.spec.org/osg/
jAppServer2002 .

1.5 Hardware Configuration

The Trade and SJAS macrobenchmarks are
complex and require a fair amount of tuning
for getting useful results. Combined with the
multiplicity of issues being investigated, it was
difficult to ensure that all results presented in
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this paper came from the same hardware setup.
Four different environments were used to col-
lect the experimental data shown in later sec-
tions. These environments will be denoted
hereafter as Configurations A, B, C, and D.

Configuration A consists of a 4-way 700 Mhz
Pentium(tm) III, 1MB L2 Cache, and 4GB
RAM for the AS and a 4 way 700 Mhz Pen-
tium III, 1MB L2 Cache and 4GB RAM for
the backend. A 2-way Pentium III 1GHz sys-
tem was used to drive the workload.

Configuration B consists of a 4-way Pentium
III 900 Mhz, 2 MB L2 Cache, 2.5GB RAM for
the AS and a 4-way Pentium III 500 Mhz, 512
KB L2 Cache, 3.2 GB RAM for the backend.
The client was a 2-way Pentium III 850 Mhz,
256KB L2 Cache, 2GB RAM system.

Configuration C differed from Configuration B
only in doubling the number of processors in
the AS tier. Thus, it has an 8-way Pentium III
900 Mhz, 2 MB L2 Cache, 2.5GB RAM for the
AS, and a 4-way Pentium III 500 Mhz, 512 KB
L2 Cache, 3.2 GB RAM for the backend. The
client remained a 2-way Pentium III 850 Mhz,
256KB L2 Cache, 2GB RAM system.

Configuration D includes a 8-way Pentium III
900 Mhz, 2MB L2 Cache, 24GB RAM for the
AS, and a 8-way Pentium III 700 Mhz, 1MB
L2 cache, 8 GB RAM for the backend.

2 Kernel Bug Detection Using
Macrobenchmarks

One benefit of complex macrobenchmarks is
their ability to find bugs in the kernel that oth-
erwise might not be found until the kernel is
run on a large real-world system. During ini-
tial experiments with the SJAS benchmark, one
such bug was found, fixed, and included in the
2.5.63 kernel.

The sole symptom was a complete system hang
of the middle tier, with no oops or diagnostic
of any kind produced. The hang could be re-
produced by stopping and restarting the appli-
cation server between five and ten times. The
problem was traced using the NMI (Non mask-
able interrupt) watchdog timer and taking stack
traces of all CPUs in the system.

The problem turned out to be threads deadlock-
ing in the kernel. On any multiprocessor sys-
tem, one task (say A) acquired a spinlock with
interrupts disabled. Thereafter A performed an
operation requiring all other processors to flush
their Translation Lookaside Buffers (TLBs).
To flush remote TLBs, task A would send an
inter-processor interrupt (IPI) and go into a
busy wait for an acknowledgement. However,
if the tasks on the other CPUs were busy wait-
ing on the same spinlock and also had their in-
terrupts disabled, they would never receive the
IPI, thus leading to a deadlock.

This issue was resolved by modifying the code
to ensure that the spinlock was not held with
interrupts disabled. The fix was included in the
2.5.63 kernel. Although the problem was easy
to fix once the cause was determined, it took
the right set of dynamic interactions, provided
in this case by SJAS, to trigger the bug.

3 Comparing 2.4 and 2.5 Kernels

The project was initiated by using Trade 2.7
to test 2.4-based distribution kernels as well as
then-current stock 2.5 kernels. Presented in Ta-
ble 1 are the results of running Trade 2.7 in a
three-tiered mode using configuration A.

The results obtained were unexpected. It was
found that the 2.4 based distribution kernel
(2.4-distro) performed better than the 2.5.59
stock kernel. To recheck the results, we ran
the SJAS benchmark on a stock 2.4.20 ker-
nel (2.4.20-stock) and compared results with
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Kernel #CPUs TOPS CPU Utilization (%)
Version user system idle
2.4.20-stock 4 Base1 68 14 17
2.5.59 4 Base1-3.8% 60 10 28
2.5.66 4 Base1+11.6% 70 12 16
2.4.20-stock 8 Base2 47 10 41
2.5.59 8 Base2+0% 36 6 56
2.5.66 8 Base2+24.0% 49 9 41

Table 2: Performance and middle tier CPU utilization of SJAS on 2.5.59 and 2.5.66 kernels using
2.4.20 as a baseline for 4-way (Base1) and 8-way (Base2) servers

Kernel TOPS %CPU Usage
on AS

2.4-distro Base1 87
2.5.59 Base1-14.4% 66
2.5.59+D7 Base1+2% 86

Table 1: Trade 2.7 results

the 2.5.59 kernel using Configurations C and
D. The results, shown in Table 2, confirm that
the 2.4.20-stock kernel exhibits better perfor-
mance than 2.5.59 with the latter’s TOPS de-
creasing by 3.8% on Configuration C and re-
maining unchanged in Configuration D.

At a later date, we also compared the perfor-
mance on a 2.5.66 kernel and found that it per-
formed significantly better than 2.4.20-stock
with an increasein TOPS of 11.6% and 24.0%
on Configurations C and D respectively. Ta-
ble 2 shows that system time remained approx-
imately the same for these two kernels though
overall utilization was higher for 2.5.66. Iso-
lating the performance changes between 2.5.59
and 2.5.66 is part of our future work. We
felt our first task was to determine why the
2.5.59 kernel performed worse than the 2.4.20
and 2.4.20-distro, despite several scalability
enhancements in 2.5.59.

Since distribution kernels have patches added
on top of a 2.4 stock kernel, the profile data was
analyzed in order to understand the observed

processes context CPU Utilization (%)
runnable switches user sys idle

8 15689 74 18 8
12 18844 76 18 6
10 15778 71 21 8
11 16114 74 20 6
11 17629 74 17 8

Table 3: Output from vmstat for AS on a 2.4-x
distro kernel using a 4-way server and Trade
2.7. Number of runnable processes are 2-3
times the number of processes.

differences. Comparing the vmstat outputs for
a 2.4-x distro kernel (Table 3) to a 2.5.59 ker-
nel (Table 4) we clearly see that the latter has
fewer runnable processes in general and often
has fewer runnable tasks than processors. Con-
sequently, 2.5.59 shows higher idle times. The
data initiated further investigation of the CPU
scheduler behaviour.

In the next step, readprofile data was collected
at a 60 second granularity during the steady
run of Trade 2.7 on the same configuration as
above. Comparing the data for the 2.4-distro
kernel (Table 5) and 2.5.59 (Table 6), we see
thatschedule() is the costliest kernel func-
tion in both kernels.

The calls toschedule() drew our attention
because they were still high on both lists even
though 2.4-x uses the old scheduler and 2.5.59



Linux Symposium 440

runnable context CPU Utilization (%)
tasks switches user sys idle

3 12195 41 10 49
5 12079 41 9 50
7 17508 49 10 42
2 12087 41 9 50
3 11898 44 9 47

Table 4: Output from vmstat for AS on a 2.5.59
kernel running Trade 2.7 on a 4-way server.
Number of runnable processes often dip be-
low the number of processors and are low com-
pared to the 2.4-x data shown earlier.

Ticks Kernel function
Normalized

Ticks
23969 Total 0.02
7071 default_idle 110.48
2388 schedule 1.52
822 csum_partial_copy... 3.31
799 send_sig_info 4.54
744 save_i387 1.29
511 tcp_v4_rcv 0.31

Table 5: Readprofile data for AS on a 2.4-
distro kernel running Trade 2.7 on a 4-way
server. Normalized ticks gives the number
of ticks divided by the size of the function.
schedule() figures are high though idle
times are low compared to 2.5.59.

Ticks Kernel function
Normalized

Ticks
60332 Total 0.05
54048 default_idle 844.50

397 schedule 0.41
365 csum_partial_copy... 1.47
191 tcp_sendmsg 0.04
181 __kfree_skb 0.60
177 load_balance 0.19

Table 6: Readprofile data for AS on 2.5.59 run-
ning Trade 2.7 on a 4-way server. Normalized
ticks gives the number of ticks divided by the
size of the function.schedule() is costly
despite the usage of the O(1) scheduler; also
idle time is higher than in the 2.4-distro kernel.

uses the O(1) scheduler. To examine our hy-
pothesis that the O(1) scheduler was causing
the high idle times, we tested a 2.4.20 ker-
nel with and without the O(1) scheduler using
the same configuration as above. The results,
not shown in this paper, were similar to the
data shown earlier and confirmed the hypoth-
esis. The 2.4.20 stock kernel produced 20%
better throughput than the 2.4.20+O(1) sched-
uler. Further, 2.4.20+O(1) had fewer tasks in
the run queue than the number of CPUs in the
system and 40% idle time, similar to the results
found in the 2.5.59 kernel.

Using snapshots of runqueue lengths in all
CPUs at each timer tick, it was found that
CPUs were going idle while there were
runnable tasks on other runqueues. The imbal-
ance in runqueue lengths across various CPU’s
while using O(1) led us to a careful examina-
tion of the load balancing logic of the O(1)
scheduler. The analysis is discussed in the next
section.
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4 Load Balancing

Before discussing the results of various exper-
iments, we revisit the load balancing differ-
ences between the old 2.4 scheduler and O(1).
The 2.4 scheduler uses a single runqueue for all
CPUs which leads to high lock contention and
lock hold times when the number of tasks and
CPUs start increasing. O(1) replaces the sin-
gle runqueue with per-CPU runqueues. While
choosing the next task to run on a CPU, it
does not look at remote runqueues, maintain-
ing the O(1) behaviour and preserving cache
affinity. Consequently, it needs to explicitly
balance the load on each runqueue by call-
ing a load_balance() function. Work-
loads which are sensitive to load imbalance,
such as Trade and SJAS, get affected by the ef-
fectiveness ofload_balance() . In 2.5.59,
load_balance() is called periodically on
each CPU, with the frequency of invocation de-
termined by the idleness of the CPU.

To improve the load balancing behaviour
of the O(1) scheduler, we tried a se-
ries of patches from Ingo Molnar’s D7
patch [D7-PATCH] to Andrea Arcangeli’s try_
to_wake_up patches (included within his O(1)
patch [AA-O1-PATCH]) to a find_busiest_
queuepatch, created in-house [FBQ].

4.1 D7 patch

Ingo Molnar’s D7 patch unconditionally mi-
grates a task from a remote to the current run-
queue if the current CPU is about to go idle.
Table 1 shows that this patch helps 2.5.59 per-
form 2% better than 2.4-distro for Trade 2.7,
more than making up for the 14.4% perfor-
mance loss seen by stock 2.5.59. For an SJAS
workload, the same patch helps 2.5.59 draw on
a par with the 2.4.20 stock kernel, overcom-
ing the 3.8% degradation seen by 2.5.59 ver-
sus 2.4.20 (Table 7). The 10% degradation of
2.4.20+O(1) compared to 2.4.20 in the same

Kernel level CPU % TOPS
Usage improved

2.4.20-stock 82% baseline
2.4.20+O(1) 66% -10.6%
2.5.59-stock 70% -3.8%
2.5.59+D7 64% no change

Table 7: SPECjAppServer2002 - v1.14, 4-way
results on 2.5.59

Kernel level CPU %TOPS
Usage improved

2.5.66-stock 82% baseline
2.5.66+trytowakeup1 83% +4.3%
2.5.66+trytowakeup2 89% +0%
2.5.66+busiestqueue 82% -4.3%

Table 8: SPECjAppServer2002 - v1.14 4-way
results on 2.5.66

table reconfirm the earlier hypothesis that the
O(1) scheduler is at least partially responsible
for the performance loss of 2.5.59 compared to
2.4.20.

4.2 Load Balancing on Task Wakeup

The O(1) scheduler used in Andrea Arcan-
geli’s 2.4 kernel tree contains two changes to
do load balancing on task wakeup events in
addition to the periodic invocations ofload_
balance() in the stock kernel’s O(1). We
implemented these changes as two separate
patches for the 2.5.66 kernel.

The first patch, henceforth called try-

Kernel level CPU %TOPS
Usage improved

2.5.66-stock 56% baseline
2.5.66+trytowakeup1 60% +4.4%
2.5.66+trytowakeup2 72% +3.0%
2.5.66+busiestqueue 65% +5.2%

Table 9: SPECjAppServer2002 - v1.14 8-way
results on 2.5.66
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towakeup1, modifies thetry_to_wake_
up() function to invoke load balancing
whenever a task is being woken up. Using
the task wakeup event as a load balancing
trigger was also motivated by the high count
for calls to tcp_data_wait() ; the high
count causes task wakeups in the profiling
data similar to the one shown in Table 6 for
2.5.59. The trytowakeup1 patch improved
SJAS throughput performance by 4.7% on
Configuration C compared to the 2.5.66 stock
kernel, as shown by Table 8. Configuration D
showed a similar 4.3% improvement as seen
in Table 9.

The second patch, henceforth called try-
towakeup2, tries to explicitly address the prob-
lem of CPUs going idle by trying to place the
task being woken up onto an idle CPU if possi-
ble. This is in contrast to trytowakeup1 which
is only concerned with pulling tasks to the run-
queue of the waker. While trytowakeup2 in-
creases SJAS performance by 4.5% in Config-
uration D (Table 9), it has no effect in Con-
figuration C( Table 8). The behaviour can be
explained by the relative lack of idle CPUs in
Configuration C (4-way AS) compared to Con-
figuration D.

The final patch called busiestqueue [FBQ],
aimed at improving the aggresiveness of the
existing load balance function itself rather than
changing the frequency or location of its in-
vocation. In the normal O(1) scheduler, the
find_busiest_queue() function is used
by load_balance() to find the remote run-
queue with the maximum number of runnable
tasks from which tasks can be pulled to the
current runqueue. Theload_balance()
code checks whether tasks on the remote run-
queue are suitable for migration but if none are
found suitable, it does not try to find another
runqueue and try again. The busiestqueue
patch remedies this behaviour by modifying
find_busiest_queue and its invocation

by load_balance() to ensure that all re-
mote runqueues are examined for tasks to mi-
grate. The results from using the patch are
mixed. Configuration C shows a performance
degradation of 5.1%(Table 8) whereas Config-
uration D shows a 2.4% improvement(Table 9).
Evidently, the patch is too aggressive and the
extra cycles spent in trying to find another re-
mote runqueue prove too costly. We are in the
process of finetuning the patch by limiting the
number of iterations in the search for a busy
queue.

The trytowakeup1 and busiestqueue patches in-
creased performance by around 5% on the 8-
way Configuration D when applied individu-
ally and in combination (data not shown). This
suggests that one or the other approach is suf-
ficient in achieving better load balancing and
leads to the question of which one should be
used. The answer will lie in the effect of the
patches on other workloads and is part of our
future work.

5 Yielding to Other Tasks

The system call sys_sched_yield()
causes the calling task to yield execution to an-
other task that is ready to run on the current
processor. Multi-threaded applications often
usesys_sched_yield() to improve inter-
active response or to improve the performance
of the system by letting the scheduler use the
processor resources more effectively. This is
particularly true if the applications use tradi-
tional userspace locks (not based on futexes).

However, the benefits realized from the use
of sys_sched_yield() are heavily depen-
dent on the implementation of the system call.
The CPU scheduler selects the next task to run
and determines how long the yielding task will
remain on the runqueue before getting a chance
to run again. The following implementations
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of sys_sched_yield() are feasible:

PA The yielding process is queued right after
the next task on the same priority queue.
Effectively, it yields only to the next task
at the same priority level.

PB The yielding process is queued at the tail
of its priority queue making it yield to all
runnable tasks at the same priority level.

PC The yielding process is moved to the pri-
ority queue on the expired list effectively
making it yield to all runnable tasks in the
system (as the expired list becomes the ac-
tive list only after all runnable tasks have
exhausted their timeslices).

The yielding task rarely knows how long it
needs to yield before it can attempt to acquire
a shared resource again as the availability of
the shared resource depends on external events
and progress made by competing tasks. For in-
stance, an interactive application might see re-
duced response time if policy PA were used.
But a task polling for a shared resource such
as a userspace spinlock, might benefit from PB
or PC which allows the task holding the re-
source to run and potentially release it for use
by the yielding task. As the CPU scheduler is
unaware of the task’s rationale for usingsys_
sched_yield() , it cannot decide the best
yielding interval either. Hence different Linux
distributions have tried all three policies.

To understand the impact of these policies on
macrobenchmarks such as Trade and SPEC-
jAppServer2002, we collected profile data to
see the number ofsys_sched_yield()
calls issued. Table 10 shows thatsys_
sched_yield() accounts for almost one
third of all calls toschedule() when Trade
2.7 is run on Configuration A.

Table 11 shows the data collected by instru-
menting thesys_sched_yield() for a 1

Ticks Kernel Functions
6826403 Total
2523245 sys_sched_yield+11d
2236660 cpu_idle+3e
1312369 schedule_timeout+9d
327747 schedule_timeout+184

Table 10: Functions callingschedule() for
a 2 minute run of Trade 2.7 on Configuration A

minute run of Trade 2.7 on 2.4.20 using Con-
figuration A. In the table,higher, lowerand
samerefer to the number ofsys_sched_
yield() calls in which there was at least
one task on a higher, lower and same pri-
ority level as the yielding task. The row
labelled only counts the number ofsys_
sched_yield() calls in which the yielding
task was the only one on its runqueue. We see
that most tasks in the system are on the same
priority queue as the yielding task. Hence, the
policy adopted bysys_sched_yield() is
likely to have a significant impact on perfor-
mance.

The 2.5.65 stock kernel uses the PC policy. We
implemented the other two policies, PA and PB
and compared their performance with PA using
Trade 3 in Configuration D. PB and PC turned
out to have the same results for the benchmark
which follows from Table 11. As there are very
few tasks on lower priority levels whensys_
sched_yield() is called, PB and PC are ef-
fectively the same policy. Hence only PA and
PC results are shown in Table 14. We see that
the pages per second (pg/s) drops by 32.6% if
PA is used instead of the default PC policy.
CPU usage (usg) and efficiency (effncy) also
see a corresponding drop. Similar results are
seen for SJAS (not shown). Using PA instead
of PC decreases TOPS by 10% on a 4-way.

The reasons become clear from the vmstat out-
puts of PA and PC shown in Tables 12 and 13
respectively. The number of context switches
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Relative Priority CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7
Same 145103 157055 163064 156379 162783 161733 167366 177876
Only 117653 112196 112387 105653 101420 96053 108830 92293
Higher 26 34 28 29 31 25 33 36
Lower 929 937 1000 1073 1036 1016 1156 1132

Total 263711 270222 276479 263134 265270 258827 277385 271337

Table 11: sys_sched_yield call count and the distribution of tasks on priority queues relative to
the yielding task, using Trade 2.7 on 2.4.20 in Configuration A. The data indicates that most tasks
in the system were on the same priority queue as the yielding task.

increases almost fourfold (from approximately
6700 to 27000) when PA is used. As PA causes
the yielding process to get scheduled much
sooner, the shared resource it waits on is gener-
ally not available, thus leading to frequent con-
text switches as it yields again and again. For
such an application, the default policy of let-
ting all other runnable tasks run once is a good
choice.

The kernel development community has
been discussing alternative policies forsys_
sched_yield() in order to improve re-
sponse time for interactive applications. The
results shown here indicate that such changes
might adversely affect macrobenchmarks
like Trade. However, this is only true until
application servers start using the new fast
user-level mutex (futex) feature provided by
the 2.5 kernels.

6 Conclusions and Future Work

In this paper, we have examined two
macrobenchmarks, Trade and SPEC-
jAppServer2002. Both benchmarks model
complex workloads utilizing the J2EE frame-
work, which are popular in many enterprise
data centers. We have shown a case study
of a kernel bug that was triggered by these
benchmarks and which would have been hard
to find otherwise.

procs system cpu
r in cs us sy id

14 6067 27204 63 10 27
9 5868 29230 60 9 31

12 5337 24765 61 8 30
10 6021 27753 61 9 30
5 5947 27496 64 10 25

Table 12: vmstat output collected while us-
ing Policy A showing high context switches
and high idle times.r, in, andcs refer to the
number of runnable tasks, interrupts, context
switches respectively, whileus, sy, andid refer
to the percentage of time spent by CPUs in user
mode, system mode, and idling respectively.

procs system cpu
r in cs us sy id

18 7788 6903 85 14 0
26 7168 6686 84 11 6
24 8010 6798 87 12 1
23 8083 6727 87 13 0
22 7934 6212 87 13 1

Table 13: vmstat output collected for Trade 3
running on Configuration D, while policy PC is
used to implementsys_sched_yield() .
The other labels are explained in the caption
for Table 12. Context switches and idle time
are significantly lower for PC compared to PA.
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Kernel Policy Pg/s Usg Effncy
2.5.65 PC Baseline 95% 100%
2.5.65 PA -32.6% 75% 85%

Table 14: Comparison ofsys_sched_
yield() implementations using Trade 3 on
Configuration D.

The macrobenchmarks were also used to re-
veal deficiencies in the load balancing logic of
the 2.5 kernel’s O(1) CPU scheduler. Various
patches were used to increase the aggressive-
ness of load balancing and reduce the probabil-
ity of CPUs going idle despite the presence of
runnable tasks in the system. Based on our ob-
servations, we suggest the following four load
balancing policies might be of help for work-
loads sensitive to load imbalance such as Trade
and SJAS:

• Load balance during initial placement of
tasks by choosing the idle processor

• Load balance during wakeup by choosing
the idle processor

• Load balance the queues aggressively
(similar to patches described above) when
a processor goes idle

• Consider providing aggressive load bal-
ancing through a configuration option

More patches will be produced to implement
the above catagory of improvement and the
investigation will continue to find a fair load
balancer to improve these workloads for SMP
(Symmetrical Multi Processor) and NUMA
(Non Uniform Memory Access) systems. Any
load balancing patches proposed will need to
be tested using different workloads to make
sure that they do not degrade performance by
unnecessary balancing.

The final part of this paper examined dif-
ferent implementations of thesys_sched_

yield() call and concluded that the exist-
ing 2.5.65 implementation performed well for
macrobenchmarks such as Trade and SJAS.

There is still much work to be done in explor-
ing how the kernel can more efficiently sup-
port J2EE-based workloads. As we have seen,
these workloads tend to be very sensitive to
scheduler issues, and changes which benefit
one workload may actually cause harm to other
workloads.

Further tuning of the application and improve-
ments in the Linux kernel has improved the
CPU utilization of these benchmarks. Hence,
while initial attempts to use spinlock meter-
ing to find lock contention was not fruitful, we
anticipate that future work in improving the
benchmark score of these workloads will in-
clude finding and fixing lock contention prob-
lems.

We have used, and are continuing to use, mac-
robenchmarks as a method for finding potential
areas for improvement in the Linux 2.5 kernel,
especially as it relates to the Linux scheduler.
We hope we have demonstrated to the reader
that more complex benchmarks are a useful
tool for the kernel developer interested in im-
proving the performance and scalability of the
Linux kernel.
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