
Implementing the SMIL Specification

Malcolm Tredinnick
CommSecure

malcolm@commsecure.com.au

Abstract

Synchronized Multimedia Integration Lan-
guage (SMIL) is a W3C recommendation for
encoding multimedia presentations. It pro-
vides presentational control over not just the
spatial layout of the document, but also the
relationship between elements over time. At
the present time there does not appear to be
a high quality Open Source implementation of
the SMIL 2.0 specification available. This pa-
per describes one attempt at an implementa-
tion. Some ideas about where future software
development could take this implementation to
fulfill the requirements of other projects are
also mentioned.

1 A Potted History Of SMIL

1.1 SMIL 1.0 — June 1998

In mid-1998, the W3C promoted the SMIL
1.0 specification [4] to Recommendation sta-
tus. The goals of this recommendation were
(from its abstract)

1. to describe the temporal behavior of a pre-
sentation,

2. describe the layout of the presentation on
a screen, and

3. associate hyperlinks with media objects.

Here, media objects are either continuous me-
dia, such as video or audio presentations, or
discrete media such as text blocks and images.

The SMIL 1.0 specification was not overly
complex. It was not short (about 30 pages
when printed out), but that was because it in-
troduced a number of elements with specific
semantics that needed to be explained clearly.
Implementations appeared, but SMIL did not
set the world on fire. This was possibly be-
cause although it fulfilled the design require-
ments mentioned above, that wasall it did. A
presentation needed to be separated out into in-
dividual media elements in practice and lever-
aging existing content was difficult1.

1.2 SMIL 2.0 — August 2001

Roughly three years later the SMIL 2.0 spec-
ification reached Recommendation status [5].
Superficially, this specification looked vastly
different from the SMIL 1.0 version. It was
also much larger (the 1.0 document was around
150 KB in size, 2.0 was 3.3 MB). However,
upon closer inspection, it became apparent that
the changes fell broadly into a only a few cate-
gories.

1. Additional markup for transitions be-
tween media components, extra layout

1This is just the present author’s observation. The
real reason may be that SMIL 1.0 was ahead of its time;
a solution in search of a problem.

Linux Symposium 425

possibilities, content control (so that pre-
sentations on PDAs and large monitors
could be driven from the same source) and
extra events for controlling the presenta-
tion.

2. Improved accessibility features (for exam-
ple, offering a choice between closed cap-
tioning and audio descriptions).

3. A modular design so that SMIL modules
could be reused in conjunction with other
XML modules. This also provides a way
to allow small-footprint implementations
to implement the commonly used portions
of the language and omit the more com-
plex parts whilst still being able to process
documents intended for more featureful
implementations.

SMIL 2.0 provided backwards-compatibility
with SMIL 1.0 documents and precisely laid
out how to process older documents with re-
spect to the newer features. Content written
for the older specification did not become ob-
solete. In view of this, an implementation of
“SMIL” need only focus on the 2.0 specifica-
tion since 1.0 compatibility comes for free2.

Today, SMIL isstill not setting the world on
fire. It is slowly gaining visibility, though,
and is becoming incorporated into a number of
auxiliary specifications which is forcing it into
peoples’ consciousness. We consider a few of
these uses later in this paper.

2 Building A SMIL Library

Around June of 2002, the present author stum-
bled across SMIL whilst looking for something
entirely different and started to read the spec-
ification, as one does in those circumstances.

2Well, it comes after a lot of work, in practice. But
you still only need to implement a single specification.

In November, a rough design for a library to
parse SMIL documents and somehow present
them was sketched out. Over the following
weekends and the odd evening or two, code
started to come together to the point where at
the present time3 a complete implementation of
the specification is within sight. The imple-
mentation has been done without reference to
third-party products, since the whole idea was
that it was meant to be a fun project and a test
of how difficult it might be to implement from
the specification alone.

Existing SMIL implementations all appear to
be designed along the lines of building a com-
plete presentation application for SMIL docu-
ments. The library being considered in this pa-
per,libsmil , has different goals.

The libsmil library parses a SMIL docu-
ment and extracts the data into a format that
can easily be used by a client application to
make the presentation. It is then up to the client
application to start and stop the presentation
of the various media objects in windows as di-
rected by the library (see Figure 1).

In essence,libsmil manages a bunch of
data structures containing information about
the presentation for the client. From time to
time, the library will poke the client and tell
it to start or stop presenting on of the media
objects in a particular location. Similarly, the
client will call the library whenever the user
(or other external stimulus) triggers an event
that may influence the progress of the presen-
tation. This encompasses actions like clicking
on a “stop” button or following a hyperlink to
some other location in the document. The li-
brary itself is agnostic about the means used
to present the information by the client. This
should provide the opportunity to reuse this li-
brary in a variety of different situations, since
it has very few dependencies on its own and

3As this paper is being written in April 2003

Linux Symposium 426

Player
SMIL

Multimedia libraries

libxml2 glib

libsmil

Figure 1: Basiclibsmil architecture

places few restrictions on the client’s behavior
and operation.

3 An Interaction With A Presenta-
tion Client

In order to illustrate the features provided by
libsmil , we consider a typical series of calls
between the library and a client application.
For our purposes here, it suffices to understand
that a standalone SMIL document consists of a
head and abody portion, much as XHTML
does. The head of the document contains data
about the presentation and the body contains
the presentation itself. The explanation in this
section necessarily skips over some of the mi-
nor steps, but we will endeavor to touch on all
the highlights.

3.1 Pre-Processing

After initializing libsmil , the client reads
in the document and creates a DOM rep-
resentation using the GNOME XML library

libxml2 . This responsibility is given to the
client since an internal representation of the
data to be presented may already exist or is be-
ing created on the fly. This would be typical,
for example, in the scenario where the client is
using SMIL as part of a larger language, such
as XHTML+SMIL (see [8]). For more infor-
mation on this type of usage, see section 5.

The DOM is then passed tolibsmil for ini-
tial, pre-presentation processing. Initially, this
involves parsing all of the contents of thehead
element

The library extracts from the document the re-
gions that are going to be used in the presen-
tation and what their dimensions are. A SMIL
document can have a number of top-level re-
gions (essentially, separate windows for a GUI
client) and each top-level region can contain
any number of named regions within it. These
internal regions can be used to display videos,
captions, text overlays on images or videos or
whatever the content author desire. The re-
gions may overlap and can have a Z-ordering
applied to them so that one region always ap-
pears on top of another region. Each region can
also have attributes specified to indicate how
media within it is treated in terms of clipping,
scrolling or scaling.

A SMIL document can specify any number of
customized tests which are used in the body
of the document. These are a sequence of
named data elements which may contain ar-
bitrary values. The values can be set by the
user—through some interface on the client—
or via a URI. Some of the tests are marked as
intended for user setting, whereas others are
nominated as “hidden,” meaning that although
an advanced client may permit them to be set,
they will typically take their value either from
a default setting or by retrieval from some re-
mote location. Solibsmil extracts out all
the custom tests, sets up their default values

Linux Symposium 427

and types (visible or hidden) and puts them into
a data structure for the client to present to the
user upon request.

In the final phase of the pre-presentation scan,
the library makes a pass over thebody element
of the document and tries to extract two more
pieces of data.

1. A list of all the media types that are re-
quired to make the presentation, and

2. a graph of all the timing and synchroniza-
tion dependencies between the elements
in the body of the document.

The first item here is straightforward: every
media object is marked with one of a limited
number of tags and includes a compulsory at-
tribute indicating the type of the media. Build-
ing up a list of required media types and link-
ing the types to the URIs for the contents is
just a matter of parsing these elements. This
list is given back to the client, who can use it to
pre-load the appropriate presentation libraries
or prepare itself (and the user) for the fact that
some items will not be presentable due to the
lack of an appropriate output method.

The timing and synchronization data is what
makes implementing the SMIL specification
interesting and challenging. It is non-trivial!
Rather than interrupt the flow of this section,
we will just take it as given that some magic
happens and a timing graph is constructed
which libsmil will use during the presen-
tation to control events. In section 4 we will
come back to this problem, since it lies at the
heart of the benefits SMIL can provide to ex-
ternal applications. The timing graph that is
constructed here is only of use to the library
and will remain hidden from the client. That is
a fair division of knowledge: most of the com-
plexity of a presentation lies in getting the tim-
ing issues correct and that is ultimately what
the client is relying on the library for.

After collecting all this data, control is returned
back to the client. The client can now query
the library to extract a list of top-level regions
that it will need to provide, or to find out which
media formats are going to be required. The
client then initializes any extra libraries it re-
quires to make the presentation and registers a
single callback withlibsmil .

3.2 Running The Presentation

After all the data collection in the previous
section, running a presentation is a reasonably
simple process, with a couple of exceptions
mentioned below.

The client program calls smil_run_
presentation() to start the action4. If
the user does nothing, the majority of the
presentation will consist oflibsmil calling
the function that the client had registered at
the end of the last section. This function
contains instructions to start or stop the pre-
sentation of a particular media element in a
particular region. For continuous media, a
“start” instruction may also contain an offset at
which to begin playing the fragment, a repeat
count and possibly a time multiplier. This last
option is an advanced feature in SMIL that
permits authors to alter the natural duration of
a media fragment by, in effect, accelerating or
decelerating time as seen by that item only.
Not all players will be able to support this
feature and presentation authors need to allow
for that possibility.

From time to time, the user may trigger an
event at the user-interface. This could be some-
thing like clicking on a hyperlink, hitting a hot-
key, or closing a window on the desktop. The
client will pass this event, along with any asso-

4This must be done in a thread or separate process,
since at the same time aslibsmil is creating events,
the client must be responding to user interactionandpre-
senting the media to the user.

Linux Symposium 428

ciated contextual information such as the name
of the link or region that was clicked, back to
the library. These events will be used by the
library to control the future of the presentation,
but from the client’s point of view they simply
result in further calls to the registered callback
for starting and stopping presentations.

The only slightly complex feature when run-
ning a presentation is how to present features
from the Animation modules. These SMIL
modules provide a means to change the value
of attributes on elements over time. The val-
ues can change linearly and non-linearly over
time. They can jump to discrete values at dif-
ferent moments. The value against time graph
can even be specified using Bezier splines.

The Animation modules are most commonly
used when SMIL is incorporated into an-
other language profile. So the attributes be-
ing changed might be things like the display
style property on an XHTML element, or the
length of a line in SVG. Displaying the host
language elements correctly is clearly the job
of the client. However, managing the complex
value against time relationships is something
that the SMIL library should be doing, since it
possesses complete knowledge of the required
algorithms.

Currently, when ananimation element is
begun, libsmil calls the client as normal
with a start instruction and supplies the ap-
propriate initial values for the attribute(s) in
question. Subsequently, whenever the client is
ready to redraw the element being animated,
it calls smil_update_animation(. . .)
with the given element / attribute pair iden-
tifier and retrieves the new value for the at-
tribute that is being animated. This is a rare
case of the client pulling the information it
needs, rather than waiting to be notified of an
update. Due to the small number of users of
libsmil at the time of writing, it is unclear if

this method of running an animation is the best.
As more experienced is gathered, this interface
may change.

The other exception to the normal run algo-
rithm outlined above is precipitated by the
Transition Effects module. This module pro-
vides a number of transitions that can be used
when moving between media objects within
the same region. They include various fades
and screen wipes. A SMIL implementation (a
player) supporting the Transition Effects mod-
ule is required to support at least four transi-
tions. However, the specification outlines over
100 transitions, with a fallback algorithm for
when a transition is specified that the player
cannot handle.

In the present implementation, a client is re-
quired to know the required behavior for each
of the transitions it supports. For example, the
library might call the client with an instruction
to begin the horizontal windshieldWipe with a
duration of three seconds. How the client im-
plements this wipe is left up to the client. It
is possible (but not compulsory) for the client
to tell libsmil which wipes it can handle so
that the library can implement the fallback al-
gorithm on behalf of the client. This way of
using the library is consistent with keeping as
many SMIL-related decisions in the library’s
domain as possible.

A client can take this to extremes and tell the
library that it can do no transitions at all—that
is, it does not support the Transition Effects
module—in which caselibsmil will simply
optimize away the calls to begin and end transi-
tions. This would be appropriate, for example,
in a client that is designed to present audio and
braille information for blind users; implement-
ing wipes makes no sense in that situation.

This implementation is not perfect—it is one
case where the client is required to have knowl-
edge of the SMIL specification in some de-

Linux Symposium 429

tail. The alternative, however, is for the library
to pass back a bitmap of how a region should
look as the wipe progresses. The problem with
this is that it would involve putting knowledge
about presentational techniques into a library
that is otherwise devoid of such information.
It would also remove some possibilities for the
client to optimize or improve the wipe accord-
ing to circumstances. For example, the same
wipe performed on a region that is 300 by 200
pixels may look different on a PDA than on a
screen capable of much higher resolutions and
with more CPU power available.

In practice (limited as it may be), this imple-
mentation appears to work. The minimal four
transitions required by the module are trivial
to implement in a client. Some multimedia li-
braries, such as thegstreamer library from
the GNOME project, also provide ways of
doing standard wipes (the SMIL specification
uses a number of wipes already specified in
standards for the television and motion picture
industries). Therefore, requiring clients to im-
plement their own versions of each wipe may
not be particularly onerous. Once again, con-
tinued use oflibsmil should provide better
indications on this front.

4 The Timing And Synchroniza-
tion Module

As mentioned in section 3.1, the heart of
libsmil is the timing and synchronization
code. This is the longest and possibly the
most complex portion of the specification. The
libsmil implementation has been rewritten
three times so far and although it is approach-
ing completeness, testing continues in an effort
to try and gain some confidence that the be-
havior is correct in all circumstances. A fourth
(or further) rewrite is not out of the question as
this code is required to be both easy (or even
just possible) to maintain and fairly fast, since

it is where most of the library’s work is done
while a presentation is running.

Without going into too many details, SMIL
contains three container elements for holding
content that is temporally related. Theseq
(“sequential”) element contains items that are
presented one after the other in the order they
are given in the document. Thepar (“paral-
lel”) element contains items that are to be pre-
sented in parallel, subject to time constraints on
their begin and end times and lengths. Finally,
theexcl (“exclusive”) element wraps content
of which only one item can be playing at any
given time, although the order is not important.
One might useexcl to present a number of
video clips from amongst which the user can
select arbitrarily with each new clip replacing
the one that is currently playing.

Within each of these containers, each element
can have a begin time (absolutely specified or
relative to the start of the container), an end
time, a duration and a repeat count5. Further
to this, the containing element (theseq , par ,
or excl element) can also have begin, end,
duration, and repeat counts attached to it. Af-
ter all, this container may reside inside another
temporal container and so on. In fact, this last
possibility is universally true. All elements are
assigned a behavior that is equivalent to one
of the containers. By default, all elements, in-
cluding and, in particular,body , act asseq
elements. So everything in the document is
played in order from beginning to end with
well-defined semantics as it concerns schedul-
ing.

By and large, scheduling the beginning and
ends of elements inside aseq or excl ele-
ment is fairly straightforward. At least, these
cases certainly fall out easily after the logic for

5There are some restrictions on these values depend-
ing on the type of containing container, but we will treat
them as all roughly the same here; no real confusion
should result from doing so.

Linux Symposium 430

<par>
<video id="vid"

begin="-5s"
dur="10s"
src="movie.mpg" />

<audio begin="vid.begin+2s"
dur="8s"
src="sound.au" />

</par>

Figure 2: A samplepar container holding
video and audio elements.

handling the contents of apar is implemented.

The difficulty for apar lies in the fact that ele-
ments may have multiple begin times (and mul-
tiple end time, but we shall omit a detailed dis-
cussion of those here). These times may also
be relative to the begin or end times of other
elements, even those within the samepar con-
tainer. Further, an element’s starting time may
be before the starting time of its containing ele-
ment. The contained element will not begin be-
fore its parent, so the net effect is that when it
does begin, it will appear to have already been
playing for some time.

An example may make this clearer (see Fig-
ure 2). In this example, when the containing
par element begins, the video will begin play-
ing five seconds into its length. Thus it will
appear as though it started from the beginning
five secondsbefore the par element started.
The video will then play for five seconds, since
its total duration is ten seconds and it effec-
tively started at minus five seconds. The audio
element in this container begins two seconds
after the video begins. This is effectively at mi-
nus three seconds, from the point of view of the
par container. Thus the audio will really start
playing three seconds in from its beginning and
will run for a further five seconds, ending at
the same time as the video element. This is a
very typical example of how audio and video

<par>
<img id="foo"

begin="0; bar.begin+2s"
dur="3s" .../>

<img id="bar"
begin="foo.begin+2s"
dur="3s" .../>

</par>

Figure 3: A ping-pong effect.

sequences can be synchronized despite having
possibly come from different sources.

In this example, we saw a case of an element
that has a definite starting time (thevideo el-
ement) coupled with one that has an indefinite
starting time (theaudio element whose start
time depends upon thevideo element). It
is those elements with indefinite starting (and
ending) times that can make life difficult for
the implementation. In some cases, such as the
above example, the effective start time of the
element can be easily determined, even as early
as the pre-presentation pass, since its only de-
pendency is on something with a definite start-
ing time. However, the start time could be
dependent upon a something such as a button
click event being sent, which is unresolvable
until presentation time.

One significant test of any synchronization im-
plementation is something like the code frag-
ment in Figure 3.

The effect here is that the image labeledfoo is
displayed at time zero and lasts for three sec-
onds, imagebar is displayed initially two sec-
onds into the element and lasts for three sec-
onds. This triggersfoo to be displayed again
at four seconds into the element’s period (the
start time ofbar plus two more seconds) and
so on, back and forth between the two image.
The duration of three seconds here is relatively
meaningless: it could be anything longer than

Linux Symposium 431

two seconds and the same effect would occur.

Implementing the code to process this frag-
ment requires a little planning. It appears
that all of the indefinite time periods (the
bar.begin+2s parts) can be resolved, since
everything can be traced back to a dependency
on the instance offoo that starts at time zero.
However, there is no definite end to this el-
ement (although there may be one hidden in
the omitted portion of the above example). It
would obviously be a mistake to try and re-
solve all of the image start times out to infinity.
Instead,libsmil detects that there is a loop
in the dependency chain and stops resolving at
that point. It then becomes a matter of resolv-
ing portions of the infinite dependency chain
as required when the container element is be-
ing presented.

The examples that we have considered in this
section are indicative of the problems to be
solved by the timing and synchronization code.
A glance at [5] shows that there are many more
cases to consider, but the logic is fairly well
explained in the specification. The problem is
that there is just a lot of it and the interactions
between cases is complex.

In theory, getting the timing information cor-
rect is just a problem in directed graph theory.
In practice, it is a maze of twisty passages, all
alike, and somewhat difficult to navigate cor-
rectly.

5 Using libsmil To Extend
Other Languages

In section 1.2 it was explained that one of the
changes between versions 1.0 and 2.0 of the
SMIL specification was that modularity was
introduced. This was done along the same
lines as the XHTML modular design and for
the same reasons—it enables the language to

be extended or for portions to be lifted and
dropped into another language profile in or-
der to extend the latter. It is natural, therefore,
to try and designlibsmil in such a fashion
that it can assist with presenting these exten-
sion languages.

On the whole, this has not been too difficult.
The languages that one would choose to ex-
tend with SMIL are things like XHTML, SVG
and MathML—languages which normally are
static presentations once rendered. SMIL adds
the ability to change attribute values over time,
particularly via the Timing and Synchroniza-
tion modules and the Animation modules.

Using libsmil to render a document in, say,
SVG+SMIL is very similar to rendering a pure
SMIL document. The library does a pre-
presentation pass over the document to build
up information about the nodes it will influ-
ence and to create a time graph, just as in the
standalone case. Once this pass is finished, the
client renders the document using the initial
values for all attributes. It then callssmil_
run_presentation() and waits for the
registered callback to be triggered with the
usual instructions about starting or stopping
some action. In this case, these actions will
typically be things like changing the value of
an attribute, rather than playing a media item.

The main difference from the standalone case
that will arise is when the document being
displayed is changed by some event outside
the control of libsmil . In the standalone
case, all document navigation is controlled by
libsmil ; in the extension case, the SMIL
library does not have the knowledge of how
navigation works in the external (hosting) lan-
guage, so that is up to the client to man-
age. Therefore, the client may from time to
time call smil_new_document() to load
a completely different document orsmil_
jump_to_xpath() to move to a location

Linux Symposium 432

within the current document.

For client applications that already have de-
cent access to their documents’ parsed object
model, adding support for SMIL’s temporal ac-
tivity appears not to be too difficult.

6 Applications Of SMIL

In case the reader is still wondering about the
practical benefits of SMIL, which have prob-
ably not been made clear in the previous sec-
tions, here are a small number of typical use
cases.

Recorded presentationsIt is possible to co-
ordinate the automatic presentation of a
conference speaker’s slides with the au-
dio recording of the their talk. The slides
will progress at the right moment. Extra
navigation possibilities for both the audio
and visual portions of the talk can be pre-
sented as well.

Digital Talking Books SMIL is already part
of the DAISY 2 [2] and ANSI/NISO
Z39.86 [1] talking book standards—the
latter standard being also known as
DAISY 3. DAISY 2 requires SMIL 1.0
support, while Z39.86 requires a mini-
mal SMIL 2.0 implementation. These two
standards provide visually impaired peo-
ple and people with reading difficulties a
means to access literature that would oth-
erwise be closed to them.

Captioning for video formats Many digital
movie and video formats do not contain
subtitles as sideband information. Some-
times, subtitles are provided, but not for
the required language. The ability to
synchronize a video presentation with
arbitrary textual captions will provide
a benefit both to people with hearing

difficulties and to those watching a
presentation given in a foreign language.

Educational presentations As authoring
tools become available, pulling to-
gether disparate sources into a coherent
presentation should become relatively
straightforward. This will permit edu-
cators to begin to build up a library of
coordinated presentations using infor-
mation that currently might be scattered
all over the Web. It was not mentioned
earlier in this paper, but the media objects
displayed by SMIL can be retrieved
from remote URLs as well as local files.
Also, SMIL provides a mechanism for
pre-fetching any content that may take
time to download so as not to hold up
later portions of the presentation.

Kiosk and conference display front-ends
SMIL provides a simple way to create
a menu-based presentation. It can also
revert to a standard looping presentation
once the requested video or audio has
completed. This makes it ideal for writing
control documents for video kiosks or
product displays at conventions.

7 Future Work

Development onlibsmil is focused on cre-
ating a complete implementation of the speci-
fication. Simultaneously, some demonstration
applications and a small presentation program
are being written to show off the library’s fea-
tures.

Following on from that work, a number of ob-
vious “next steps” present themselves. The fol-
lowing list is in no particular order, but all are
achievable tasklets.

1. Implement the Timed Text specification
that is currently being developed by the

Linux Symposium 433

W3C [7]. This will allow for scrolling
captions and easier synchronization of
captions with audio and video.

2. Implement a digital talking book player.
Currently, no Open Source implementa-
tion of the DTB standards is available.
With proprietary software for presenting
these books already available, it is impor-
tant to have a source code available imple-
mentation around to prevent inadvertent
commercialization of the standard.

3. Write plugins for various browsers. Ini-
tially plugins that act like an embedded
PDF reader and display only SMIL doc-
uments would the goal. Then integration
with the main rendering engine for dis-
playing XHTML+SMIL and SVG+SMIL
documents (which is a much harder job).

4. Implement any missing pieces of the
SMIL Animation Recommendation and
the SMIL DOM interface. These two doc-
uments from the W3C provide extensions
to the initial SMIL 2.0 specification. Ex-
tendinglibsmil to cover these features
should not be too much of a stretch.

8 Playing With libsmil

The libsmil implementation discussed in
this paper can be downloaded from the
GNOME CVS repository (see [3] for instruc-
tions if you are unfamiliar with accessing that
repository). The code is in thesmil mod-
ule, which contains the library as well as a few
small applications and extensive documenta-
tion for library hackers and client developers
alike.

Once the library has stabilized a little more, tar-
ball releases will be made and the download
site posted in a few popular locations.

References

[1] ANSI/NISO Z39.86-2002 Digital
Talking Book standardhttp:
//www.niso.org/standards/
resources/Z39-86-2002.html

[2] DAISY 2 Digital Talking Book standard
http://www.diasy.org

[3] The GNOME CVS repository
http://developer.gnome.org/
tools/cvs.html

[4] SMIL 1.0 specification.http:
//www.w3.org/TR/REC-smil/

[5] SMIL 2.0 specification.
http://www.w3.org/TR/smil20

[6] The Synchronized Multimedia group at
the W3C.http:
//www.w3.org/AudioVideo/

[7] The Timed Text group at the W3C.
http:
//www.w3.org/AudioVideo/TT/

[8] XHTML+SMIL—a W3C Note.http:
//www.w3.org/AudioVideo/TT/

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

