
Linux ∗ in a Brave New Firmware Environment

Matthew Tolentino
Intel Corporation

Enterprise Products & Services Division

matthew.e.tolentino@intel.com

Abstract

Initially included exclusively on Intel®1 Ita-
nium®2 platforms, the Extensible Firmware
Interface Architecture (EFI) will soon be sup-
ported on IA-32 server, workstation, and desk-
top systems. This paper provides insight into
the design and composition of an EFI en-
abled IA-32 Linux kernel capable of booting
on legacy free platforms. An overview of the
EFI development environment is provided, in-
cluding the specifications, development tools,
and software development kits available for de-
velopment today.

The design and prototype implementation of
the kernel initialization sequence from the in-
stantiation of the EFI enabled Linux boot
loader to the login prompt is detailed with
an emphasis on maintaining backward com-
patibility with existing legacy platforms. The
legacy free VGA replacement, the Universal
Graphics Adapter (UGA), is introduced in the
context of Linux, including the requirements
for use within the kernel. Additionally, details
of a prototype implementation of the Univer-
sal Graphics Adapter Driver stack, including
an EFI Byte Code Interpreter and Virtual Ma-
chine (EBC VM), are presented and analyzed.

∗Linux is a trademark of Linus Torvalds
1Intel is a registered trademark of the Intel Corpora-

tion
2Itanium is a registered trademark of Intel Corpo-

ration or its subsidiaries in the United States and other
countries

This paper concludes with a call for kernel de-
velopers to review and provide feedback on the
design and implementation presented.

1 Introduction

This paper begins with an overview of the Ex-
tensible Firmware Interface and the Universal
Graphics Adapter. The architecture of an EFI
enabled Linux kernel is presented as well as
the design and implementation details of the
EFI Linux Boot Loader, kernel initialization
changes, and support for the Universal Graph-
ics Adapter. Future enabling work is outlined
and conclusions presented.

2 EFI Overview

The EFI Specification defines a consistent, ar-
chitecturally neutral interface between plat-
form firmware and operating systems. De-
signed to address the limitations and issues in-
herent in legacy BIOS support for PC-AT sys-
tems, EFI provides a core set of services and
protocol interfaces used to initialize platform
hardware as well as common interfaces to ac-
cess platform capabilities. Additionally, EFI
aggregates platform configuration information
that operating systems require for initialization
– information that has been traditionally ob-
tained through BIOS calls. This includes de-
tails ranging from the system memory map and
the number of processors in the system to the

Linux Symposium 411

parameters of the current video console. Fur-
ther, the structure of EFI is modular such that
as incarnations of new technologies are incor-
porated into systems, the interfaces to the op-
erating system for these technologies will not
require significant modifications. The system
level view of the conceptual design of EFI is
depicted in figure 1.

SMBIOS

ACPI

Operating System
 Kernel

EFI OS Boot Loader

EFI

Boot Services

EFI Runtime

Services

Hardware

Interfaces

from other

specs

Figure 1: EFI System View

Once the system is powered on, the system
firmware initializes and owns all hardware re-
sources. Before an operating system is loaded,
EFI provides a pre-boot environment and man-
ages platform resources through the Boot Ser-
vices and Runtime Services tables. These
tables, encapsulated in the EFI System Ta-
ble provide access to system resources. Un-
like legacy BIOS which executes in 16bit real
mode, EFI provides a 32bit protected mode op-
erating environment.

2.1 EFI Boot Services

Accessed through the EFI System Table, EFI
Boot Services provide platform independent
functionality that is only available before an
operating system is loaded. This includes ser-
vices such as memory allocation routines, de-
vice access protocols, time services, and others

detailed in [1]. Once control of the system is
transferred to the operating system, EFI Boot
Services are terminated. The OS loader is re-
quired to call ExitBootServices() as part of the
transition of control to the operating system.

2.2 EFI Runtime Services and Drivers

The EFI Runtime Services provide OS neu-
tral platform specific functionality that persists
into OS runtime. One example of an EFI Run-
time driver is the floating point software as-
sist driver (fpswa.efi) on Itanium platforms dis-
cussed in [4]. Another example supported by
both IA-32 and Itanium platforms is the Uni-
versal Graphics Adapter driver. EFI implemen-
tations may provide any number of EFI drivers
for use during OS runtime in order to take ad-
vantage of the generic functionality. Details of
these drivers are passed to the operating system
via the EFI Configuration Table and the mem-
ory locations occupied are specified as Run-
time Memory.

2.3 EFI Configuration Table

Leveraging existing standards and technolo-
gies, the EFI configuration table provides an
interface to commonly used tables that de-
scribe platform resources. Each entry in the
Configuration Table is comprised of 2 elements
- a Globally Unique Identifier as defined in [9]
and a pointer to the respective table. Examples
of configuration table entries include ACPI ta-
bles, UGAs discovered by the firmware, and
SMBIOS tables.

2.4 EFI Boot Loader

Generally, loading and initializing an operating
system involves several steps. The first step is
the determination of the kernel image to load
into memory as well as any additional required
components, such as a RAM disk, that are re-

Linux Symposium 412

quired. The second is the act of loading the
chosen images into memory. The third and
final step involves transferring control to the
loaded kernel, thus enabling the kernel initial-
ization sequence to commence.

Several boot loaders have been developed to
load Linux on IA-32 platforms, including the
popular lilo and grub loaders described in [7]
and [8] respectively. Each of these provides the
capability to boot Linux kernels from a legacy
BIOS and offer varying degrees of functional-
ity as discussed in [3]. However, these loaders
do not provide the capability to boot from the
EFI environment. In order to boot a legacy-free
Linux kernel from EFI, an EFI native applica-
tion is necessary to set up and affect the trans-
fer of control from the firmware to the kernel.

3 UGA Overview

The UGA is a software abstraction that pro-
vides an interface for simple graphical output
that does not require specific implementation
knowledge of the video hardware. UGA serves
as a replacement for VGA hardware and video
BIOS providing graphical display capabilities
in an image that can be used by both system
firmware and operating systems. Unlike VGA,
UGA enables several significant features in-
cluding support for controlling multiple output
devices and higher default screen resolutions.
UGA ROMs may reside anywhere in mem-
ory, alleviating the need for static reservation
of specific video RAM and ROM memory re-
gions. Additionally, multiple UGA ROMs may
be used in a single system without conflict.

A key design consideration of UGA is the pro-
cessor and platform independent nature of the
driver image. Compilation of driver images
into EFI Byte Code (EBC) enables a single im-
age to execute on multiple architectures. The
resultant byte code image must be interpreted

and executed in the context of an EBC Virtual
Machine capable of translating EBC instruc-
tions to native instructions.

Because the UGA is an EBC image and operat-
ing systems are expected to use the same image
as the pre-boot firmware environment, an OS
resident EBC Virtual Machine is required. This
Virtual Machine provides an EFI execution en-
vironment within the OS, interfaces with the
console layer and the PCI subsystem of the op-
erating system, and provides the means to in-
terpret and execute the EBC instruction stream
of the UGA. Figure 2 pictorially describes this
generic design.

Figure 2: UGA Conceptual Design

Although UGA does provide graphics display
capabilities, it is not intended to replace high-
performance, operating system specific graph-
ics drivers. Rather, the UGA is specified
for use in the absence of a performance ori-
ented graphics driver. For example, a back-
end server may not require extensive graphics-
oriented functionality during normal operation.
There may also be cases where an installation
kernel may require the user to provide a graph-
ics driver. In these cases, a UGA driver may
be used as a default console driver. Further ad-
vantages of UGA can be found in section 10 of
[1].

Linux Symposium 413

3.1 OS Console Driver

Support for UGA at OS runtime requires an in-
terface to the OS specific console subsystem.
This driver is responsible for affecting change
to the video controller via the UGA protocols
outline in section 10 of [1].

3.2 OS EFI Byte Code Virtual Machine

The OS EBC Virtual Machine, as depicted in
figure 2, serves two functions. The first is to
provide an EFI emulation environment func-
tionally equivalent to the EFI pre-boot environ-
ment. This enables the use of the same UGA
driver as firmware through emulation of the
EFI Boot Services.

The second function is to provide the facility
to decode and execute EBC instructions. UGA
drivers compiled into EBC can not be directly
executed. Therefore, an OS present mecha-
nism is needed translate the EBC instruction
stream of the UGA image into instructions of
the native processor.

3.3 OS PCI Driver Interface

In pre-boot space, the UGA driver uses the PCI
I/O Protocol, a Boot Services structure, to ac-
cess the video controller. Because this mecha-
nism is no longer available when the operating
system takes control, PCI access must be pro-
vided via an OS level implementation of the
PCI I/O Protocol interface structure. This en-
ables the UGA to use the standard operating
system interface to access PCI space.

3.4 UGA EBC ROM

The OS support for UGA is capable of ex-
ecuting any UGA EBC ROM discovered by
firmware that is compliant with the EFI Driver
Model. In order to facilitate the transfer of con-
trol from EFI to the operating system, UGA

drivers used in pre-boot space will be halted
upon termination of Boot Services. The image
must be re-initialization to be used during OS
runtime.

4 Architecture of an EFI enabled
Linux Kernel

The advent of EFI on legacy free, IA-32 sys-
tems necessitates additional support in several
key areas of the Linux kernel. This section
presents an overview of the architectural dif-
ferences in booting the kernel from EFI ver-
sus legacy BIOS as well as the impact of the
changes. The details of the changes specific to
these areas are discussed in the remainder of
this paper.

4.1 Key Differences

One of the key differences in booting from EFI
versus legacy BIOS on IA-32 systems is the ca-
pability to launch the kernel in 32bit, protected
mode. The firmware no longer invokes the boot
loader in 16bit real mode. As a result, the ker-
nel no longer needs to affect the transition to
32bit, protected mode.

Loading an EFI enabled kernel requires an
EFI Linux boot loader. The loader is a na-
tive EFI application, which is responsible for
obtaining platform configuration information
EFI and loading the kernel into memory. In-
cluded as boot parameters, all platform config-
uration information is collected by the loader
and passed to the kernel. This permits the
loader to transfer control directly to the archi-
tecturally specific entry point of the kekernel.
This difference alleviates the need for the ker-
nel code that collects sytem information via
BIOS calls.

On EFI platforms, EFI defined services are em-
ployed to invoke firmware functionality as op-

Linux Symposium 414

posed to legacy BIOS calls. The EFI Runtime
Services provide a standard interface for ac-
cessing firmware and hardware in a platform
independent manner. For example, access to
the real time clock is accessed via a firmware
function in the Runtime Service table as op-
posed to directly reading CMOS. The practice
of scanning memory to find the signatures of
hardware description tables is no longer neces-
sary because tables such as ACPI are included
as part of the EFI interface.

The advent of the Universal Graphics Adapter
no longer requires static reservation of fixed
memory regions and presents the opportunity
for kernel level multi-head console support.

The design of an EFI enabled kernel requires
key modifications to the following three crucial
areas:

• Boot loader

• Kernel initialization sequence

• Console subsystem

4.2 Impact of EFI Kernel Changes

The changes to the kernel to support booting
from EFI are relatively straightforward. The
modifications to the boot loader involve ex-
tending the functionality of the IA-32 aspects
of the Elilo loader to pass EFI data structures
to the kernel.

The changes to the IA-32 kernel initializa-
tion sequence provide the capability to initial-
ize kernel data structures, such as the memory
manager, using EFI tables and data structures
versus those obtained via BIOS calls. Primar-
ily isolated in the architecturally specific di-
rectory of the kernel source tree, EFI support
provides additional initialization options with-
out affecting existing functionality. In other
words, the changes to the kernel initialization

sequence do not radically alter the architecture
of the kernel.

Inclusion of UGA support necessitates several
new Linux kernel drivers; however, this merely
provides an additional console display option.
Collectively, these drivers serve as an alterna-
tive to the legacy VGA console driver, but may
also operationally coexist.

4.3 Architectural Influence

Itanium Linux kernels have included support
for EFI for several years. Accordingly, much
of the design discussed in this paper for IA-
32 kernels has been leveraged from the Itanium
port of Linux. Additionally, the prototype im-
plementation has reused EFI related code to
also support IA-32.

5 EFI Linux Boot Loader

Launching an operating system from EFI re-
quires an EFI aware boot loader. This sec-
tion provides background on the Elilo Linux
Boot Loader, design considerations for im-
proved IA-32 support, and details of the new
boot parameters structure used to convey plat-
form configuration information to the kernel.

5.1 Elilo Background

Elilo is the predominant loader used to launch
Linux on Itanium platforms (on which EFI
is the only pre-boot firmware solution) and
has been included in numerous Itanium spe-
cific Linux distributions. Despite the pointed
focus on supporting the Itanium architecture,
a framework for booting self-extracting com-
pressed IA-32 kernels has been incorporated
into Elilo. This support permits booting IA-32
kernels without passing EFI information to the
kernel. Instead, there is an implicit assumption
that legacy mechanisms, such as BIOS calls,

Linux Symposium 415

still exist for traditional platform configuration
information retrieval. Essentially, Elilo manu-
ally fabricates the legacy boot parameters data
structure without any semblance of EFI aware-
ness.

5.2 Elilo Design Considerations

The primary consideration for modifying the
Elilo loader is to provide adequate EFI infor-
mation to the kernel to ensure proper initializa-
tion and functionality in a legacy free environ-
ment. The information required by the kernel
consists of:

• Kernel Location and Size

• RAM disk (initrd) Location and Size

• Kernel Command Line

• EFI Memory Map

• Console Information

• EFI System Table

• ACPI Tables

• Other EFI Configuration Table Entries
(HCDP, SMBIOS, etc.)

In addition to collecting and passing salient
platform configuration information to the ker-
nel, Elilo is also responsible for setting up the
environment for passing control to the kernel.
Further information regarding the features and
capabilities of Elilo can be found in [6].

5.3 EFI Aware Boot Parameters

The following boot parameter structure is in-
troduced that encapsulates the information the
kernel requires. The form of the structures is
as follows:

struct ia32_boot_params {
UINTN command_line;
UINTN efi_systab;
UINTN efi_memmap;
UINTN efi_memmap_size;
UINTN efi_memdesc_size;
UINTN efi_memdesc_version;
UINTN initrd_start;
UINTN initrd_size;
UINTN loader_addr;
UINTN loader_size;
UINTN kernel_start;
UINTN kernel_size;
struct {

UINT16 num_cols;
UINT16 num_rows;
UINT16 orig_x;
UINT16 orig_y;

} console_info;
} boot_parameters;

This data structure provides all necessary in-
formation to enable kernel initialization. Note
that inclusion of the EFI system table permits
access to the EFI Runtime Services and Con-
figuration Tables that contain further platform
configuration information and provide access
to runtime firmware functionality. For exam-
ple, the location of the ACPI tables is presented
to the kernel as an entry in the EFI Configura-
tion Table.

6 EFI Kernel Initialization

The Linux kernel initialization sequence re-
quires modification to utilize the EFI data
structures that describe the platform hardware
configuration. This section presents the details
of the kernel modifications and contrasts these
with the existing kernel initialization. The
methodology for dynamic, runtime determina-
tion of the appropriate structures to use is pre-
sented as are details on the EFI support rou-
tines necessary for proper kernel initialization.

Linux Symposium 416

6.1 Existing EFI Kernel Initialization

The Linux kernel initialization sequence was
developed to boot in 16bit real mode and obtain
platform configuration information via BIOS
calls. Figure 3 outlines the current initializa-
tion sequence of the Linux kernel.

Figure 3: Existing Kernel Initialization

6.2 Kernel Initialization on EFI Platforms

Booting from EFI simplifies the kernel initial-
ization sequence, but requires modifications to
parse EFI data structures. Figure 4 depicts
the proposed modified kernel initialization se-
quence.

In this model, the processor is already in 32
bit, protected mode when the boot loader is in-
voked, hence the real mode to protected mode
transition code in the kernel is not necessary.
Also, all platform configuration information
traditionally obtained through BIOS calls is
collected by the EFI Elilo loader and passed
via the boot parameter structure. This allevi-
ates the need for the code resident in setup.S,

Figure 4: EFI Kernel Initialization

video.S, and bootsect.S. Consequently, control
is transferred directly from the loader to the ar-
chitecturally specific startup_32() routine in 32
bit, protected mode.

6.3 Dynamic Configuration Detection

Because the structure of platform configuration
information on EFI platforms differs from the
structure of BIOS provided information, the
kernel must determine which to use to initial-
ize kernel data structures. This determination
is based on the location of the boot parameters
in memory.

The boot parameters of legacy kernels are
placed in a designated page in memory. Lever-
aging the re-use of this memory area, the boot
parameters of EFI aware kernels are placed
within the same page, but at a different offset.
The correct kernel initialization code path to
follow is determined by verifying which boot
parameters have been passed to the kernel. A
new global flagefi_enabled is set if the
kernel was found to be loaded from EFI. This
flag is used during the kernel initialization se-

Linux Symposium 417

quence to determine the appropriate data struc-
tures to use during initialization. This capa-
bility enables a single kernel image to load on
platform with either legacy BIOS or EFI.

6.4 EFI Data Structure Mapping

Initially, only a limited kernel virtual ad-
dress space is available through the tempo-
rary, statically initialized page global directory
swapper_pg_dir . This maps the first eight
megabytes of physical memory to kernel vir-
tual address space starting at 3GB.

This limited mapping is not sufficient because
EFI drivers and related structures may be lo-
cated anywhere in memory (below 4GB), thus
the kernel requires the capability to dynam-
ically map EFI pages into kernel virtual ad-
dress space for use during kernel initialization.
Examples of these structures include the EFI
memory map, RAM disk details, etc. Because
these structures are only used during early ini-
tialization, the memory is only required tem-
porarily. Once the kernel memory manager is
initialized these memory regions will be avail-
able as for normal kernel memory allocations.

6.5 EFI Memory Map

The EFI memory map provides a snapshot of
system memory usage before control is passed
to the kernel. Consisting of memory descrip-
tor entries that describe contiguous ranges of
physical memory by type, attribute, and size,
the EFI memory map serves as a replacement
for the e820h memory map obtained via the
legacy INT 15h (ax=0xe820) BIOS call. Each
EFI memory map descriptor consists of the fol-
lowing structure:

struct efi_memory_desc {
u32 type;
u64 phys_start;
u64 virt_start;

u64 num_pages;
u64 attribute;

};

In order to properly initialize the kernel mem-
ory manager as well as the EFI Runtime
Drivers and Services, the EFI memory map is
required. Several routines from the Itanium
kernel have been massaged into the IA-32 ker-
nel to support EFI memory map traversal and
parsing.

6.5.1 EFI Memory Map Walking Routine

The prototype for the EFI memory map de-
scriptor traversal routine is:

void efi_memmap_walk(
efi_freemem_callback_t
callback, void *arg);

This routine employs a callback mechanism
used to discern further information about
memory regions during memory map traver-
sal. For example, used in concert with the
find_max_pfn() callback routine, the kernel
is capable of discovering the maximum page
frame number.

6.5.2 Other Memory Map Related Rou-
tines

Several additional routines have been added
to accommodate initialization using the EFI
memory map. The following routine is used to
determine the memory type of the region de-
scribed by a given memory descriptor.

static int is_available_memory(struct
efi_memory_desc *md);

Differentiation between memory descriptor
types is necessary to determine usable regions

Linux Symposium 418

by the kernel. The following types constitute
memory regions available for kernel use.

• EFI_LOADER_CODE

• EFI_LOADER_DATA

• EFI_BOOT_SERVICES_CODE

• EFI_BOOT_SERVICES_DATA

• EFI_CONVENTIONAL_MEMORY

The following two functions are convenience
functions used to determine the type and at-
tributes of memory regions in the EFI memory
map given an address.

u32 efi_mem_type(unsigned long
phys_addr);

u64 efi_mem_attributes(unsigned long
phys_addr);

6.6 Persistent EFI Drivers and Services

Unlike EFI Boot Services, which are termi-
nated when control is transitioned to the ker-
nel, several EFI drivers and services are avail-
able for use during OS runtime. The follow-
ing sections detail these services and describe
the support framework for maintaining access
to these drivers and services as well as man-
aging the mappings into kernel virtual address
space.

6.6.1 EFI Runtime Drivers and Services

The IA-32 Linux kernel requires the capability
to call the EFI Runtime Drivers and Services
to take advantage of platform specific func-
tionality, such as access to the real time clock
(RTC), persistent EFI NVRAM environment
variables, and the capability to reset the sys-
tem. The following structure, included in the

include/linux/efi.h header constitutes the ker-
nel data structure through which calls to the
EFI Runtime Services and Drivers are man-
aged.

struct efi_runtime_services {
struct efi_table_hdr hdr;
unsigned long get_time;
unsigned long set_time;
unsigned long get_wakeup_time;
unsigned long set_wakeup_time;
unsigned long

set_virtual_address_map;
unsigned long convert_pointer;
unsigned long get_variable;
unsigned long get_next_variable;
unsigned long set_variable;
unsigned long

get_next_high_mono_count;
unsigned long reset_system;

};

Additional EFI Runtime Drivers may be em-
ployed to exploit OS independent functional-
ity. For example, the floating point software
assist driver (fpswa.efi) on Itanium platforms
discussed in [4] and the Universal Graphics
Adapter are EFI compliant runtime drivers
used on both IA-32 and Itanium platforms. De-
tails of runtime drivers are passed to the oper-
ating system via the EFI Configuration Table.

The memory occupied by runtime drivers is re-
served by the kernel to prevent the memory
manager from viewing the area as free mem-
ory. Additionally, these memory regions are
mapped into kernel virtual address space to
avoid the overhead of invoking these services
in flat, physical addressing mode. The map-
ping of runtime services and drivers into kernel
virtual address space is provided by the follow-
ing routine:

void efi_enter_virtual_mode(void);

This routine walks the EFI memory map and
maps all regions described by memory descrip-
tors of the following type:

Linux Symposium 419

• RunTimeServicesCode

• RunTimeServicesData

Once mapped, the VirtualStart field of the
memory descriptor is updated with the virtual
addressed returned by the mapping function,
ioremap() . After all memory descriptors
have been updated with virtual addresses, the
EFI Runtime routine SetVirtualAddressMap is
invoked and passed the updated EFI memory
map. SetVirtualAddressMap must be called in
physical mode requiring the capability to tran-
sition to physical mode before invocation and
return. This function updates all EFI runtime
images with virtual addresses and completes
all necessary fix-ups to enable EFI Runtime
Services to be called in virtual mode. Should
the call to SetVirtualAddressMap fail to com-
plete or return an error status code, the kernel
will panic.

During the mapping process, each memory de-
scriptor is also checked to determine if the ad-
dress for the EFI system table is included in the
range. Once SetVirtualAddressMap returns,
the EFI System Table pointer is updated with
the newly assigned kernel virtual address as are
as the kernel’s EFI data structures.

Because the ioremap capability is not avail-
able until the kernel memory manager is
initialized the efi_enter_virtual_mode() func-
tion must be called after the mem_init()
and kmem_cache_sizes_init() functions in
start_kernel().

6.7 ACPI Initialization

In order to support device discovery and power
management, kernel support for ACPI is re-
quired. The ACPI tables contain vital plat-
form configuration information necessary for
proper kernel initialization, such as the num-
ber of processors in a system, PCI interrupt

routing, etc. Inclusion of ACPI support in
kernel builds requires the kernel configuration
flag CONFIG_ACPI_EFI to be defined in order
to enable inspection of the kernel’s EFI data
structure for the ACPI tables. An additional re-
quirement for proper ACPI table discovery is to
update the following ACPI initialization func-
tion:

unsigned long __init
acpi_find_rsdp(void);

On legacy systems this function scans mem-
ory looking for the Root System Description
Pointer (RSDP). On EFI based systems, the ad-
dress of the ACPI tables is included in the EFI
Configuration Table. This function has been
updated to examine the EFI Configuration Ta-
ble for address of the RSDP.

7 Kernel UGA Architecture

The Linux kernel requires UGA support in or-
der to provide console display functionality on
legacy free platforms. Because the UGA is
compiled into EFI Byte Code and is program-
matically designed for execution in the EFI en-
vironment, kernel level support for UGA re-
quires the addition of new driver functionality.
These drivers, also pictorially described in fig-
ure 5, include:

• EFI Boot Service Emulation Driver

• EBC VM & Interpreter Driver

• UGA Console Driver

Each of these components may be built as ker-
nel driver modules, although all are required
for proper console display. Because these
drivers have minimal architectural dependen-
cies, all EBC drivers are included in a new
drivers/ebc directory of the kernel tree.

Linux Symposium 420

Figure 5: Kernel UGA Architecture

7.1 EFI Boot Services Emulation Driver

As is the case with all EFI drivers, the UGA
requires the EFI system table, as well as a
pointer to itself, as initialization parameters.
All requests from the UGA for services to allo-
cate memory, bind to the respective controller,
and other routines are based on EFI Boot Ser-
vices functionality. Because EFI Boot Ser-
vices are terminated when ExitBootServices()
is invoked, a minimal framework must be fab-
ricated within the kernel in order to simulate
EFI Boot Services. The Boot Services Emula-
tion Driver fulfills this requirement by provid-
ing kernel implementations of the Boot Service
routines. For example, the EFI memory allo-
cation routine AllocatePages() is implemented
with the kernel’s kmalloc() service.

7.2 EBC VM & Interpreter Driver

A kernel implementation of an EBC Virtual
Machine and interpreter is also required. This
driver provides the framework and execution
engine to:

• Interpret and execute all EBC instructions

• Provide an interface to handle calls be-
tween a native environment and the VM

• Provide an interface to fix-up calls to EBC
driver images.

Details on the full EBC instruction set can be
found in Chapter 19 of [1]. However, details
on two instructions that require particular at-
tention are included in the following sections.

7.2.1 BREAK 5 Instruction

The BREAK 5 instruction enables the transi-
tion of the instruction stream from native to
EBC instructions. This technique is referred
to as thunking in [1]. During compilation of
the UGA ROM image, the EBC compiler in-
serts BREAK 5 instructions in the initializa-
tion instruction sequence to handle the tran-
sition for each of the image’s protocol entry
points. Functionally, the BREAK 5 instruc-
tion introduces a level of indirection, as the
VM/Interpreter must replace the address of ev-
ery entry point in an image with the address
of a thunk. The thunk is an area in memory
that includes the hexadecimal encoding of na-
tive instructions to transition control to the in-
terpreter with an entry point of the image. This
enables the seamless interpretation and execu-
tion of the EBC instruction stream via the UGA
protocol interfaces. Figure 6 depicts the logical
conceptual calling mechanism and an example
implementation used to invoke the VM and in-
terpreter at the appropriate UGA protocol entry
point.

7.2.2 CALLEX Instruction

The CALLEX instruction provides the mech-
anism to facilitate calls outside the context of
the EBC instruction stream or VM. For exam-
ple during compilation, when the compiler ob-
serves a call to a Boot Service function, it in-
serts a CALLEX instruction, such that the tran-

Linux Symposium 421

Figure 6: Thunking Mechanism

sition of the stack, IP, return value, etc. are han-
dled gracefully.

7.2.3 Architectural Dependencies

This driver supports both the IA-64 and IA-
32 architectures. Architecturally specific, re-
quired features are included through inclusion
of appropriate header files. For example, the
inline assembly routines used to manipulate the
stack pointer and obtain the entry point from
a processor register are included in architec-
turally specific headers.

7.3 UGA Console Driver

The UGA console driver provides an interface
between the Linux kernel console subsystem
and the UGA ROM. Because the UGA is con-
ceptually encapsulated (i.e. registered) with
the EFI Boot Services Emulation driver, the
console driver will affect changes to the display
through the use of the UGA_IO_PROTOCOL
and UGA_DRAW_PROTOCOL protocols. As
a result, the console driver must obtain the
UGA protocol interface structures from the
EFI Boot Services Emulation Driver.

Unlike VGA, multiple UGAs may be used in

a single system. Therefore, the UGA console
driver must maintain data structures to handle
multiple UGA simultaneously. For early boot
message display, the console driver will ini-
tially employ the UGA used by the firmware,
the details of which are included in the boot
parameters.

Similar to the VGA console driver, the UGA
console driver supports the generic console
routines through theconsw structure. Once
the console driver obtains the protocol inter-
faces from the EFI Emulation Driver and the
driver is initialized the UGA may be used for
console display.

7.3.1 Firmware to OS Handoff Structure
Parsing

Details of the UGAs discovered during
firmware initialization are passed via the EFI
Configuration Table. Each entry in the Config-
uration Table consists of a GUID and pointer
pair. During kernel initialization, the pointer in
the Configuration Table is stored in the kernel’s
efi structure. In the case of UGA, this points to
the firmware-to-OS handoff header, which is of
the following form:

struct efi_os_handoff_hdr {
u32 version;
u32 hdr_size;
u32 entry_size;
u32 num_entries;

};

This header is immediately followed by the
driver handoff entries for all UGAs discovered
by the firmware. Each entry driver handoff
structure is of the following form:

struct efi_driver_handoff {
int type;
struct efi_dev_path *dev_path;

Linux Symposium 422

void *pci_rom;
u64 pci_rom_size;

};

The UGA Console driver parses each of these
driver handoff structures to obtain device in-
formation as well as the address of the PCI Ex-
pansion ROM that has been copied into mem-
ory by the firmware. The PCI Expansion ROM
is then parsed to locate the EBC UGA image.
Once the UGA image is located, the console
driver updates its internal data structures with
the image address and device information. Fig-
ure 7 shows the organization of the information
passed from the firmware to the kernel.

Figure 7: UGA Configuration Table Parsing

Details on the header information and layout of
the ROM image may be found in [2].

7.3.2 Executable Image Parsing

After the EBC image is located, the console
driver initializes a list of UGAs in the system
with device information as well as pointers to
the actual PE32+ UGA EBC image in mem-
ory. In order to use the driver, the image must
be effectively loaded. Although the image is
already in memory, the image must be parsed
to correctly identify the entry point and image
specific information. Once the entry point is
obtained, the EBC VM and Interpreter is in-
voked through the EFI Boot Services Emula-

tion Driver and the UGA is initialized. The ef-
fective loading and parsing of PE32+ EFI im-
ages requires PE header structure information
be included in the kernel.

8 Future Challenges

The possibility exists to offload kernel decom-
pression to the Elilo loader. This loader ex-
tension would provide the capability to boot
both compressed and uncompressed IA-32 ker-
nel images, similar to existing functionality on
Itanium platforms. This is an area that is still
under investigation.

Additional work to enable the use of the more
advanced features of UGA is ongoing. A
prototype implementation has been developed
that supports the UGA functionality discussed.
However, this support is currently limited to a
single console and does not account for possi-
ble UGA related changes to XFree86. Further,
the current implementation does not address is-
sues involved in supporting multi-head console
within the kernel through the use of UGA.

9 Conclusions

EFI provides a standard interface to platform
firmware from which to launch operating sys-
tems on legacy free platforms. The IA-32
Linux kernel requires several key changes to
initialize properly on EFI supported platforms.
The first change involves the inclusion of ad-
ditional IA-32 support in the Elilo Linux boot
loader. Modification of the kernel initialization
sequence to enable the use of EFI constructs
such as the EFI memory map and EFI Runtime
Drivers and Services are required. The kernel
also requires several additional driver modules
in order to use the legacy-free UGA for console
display.

As platform hardware evolves and legacy hard-

Linux Symposium 423

ware and legacy BIOS support is phased out,
operating systems must adapt. Inclusion of the
capabilities discussed in this paper constitutes
a significant step towards enabling Linux to
boot on EFI based, legacy free platforms.

10 Acknowledgements

Special thanks to Mark Doran, Andrew Fish,
Harry Hsiung, Mike Kinney, and Greg Mc-
Grath of the Intel EFI team for their contribu-
tions to this paper and always helpful advice.
Thanks to Steve Carbonari, Mark Gross, Tony
Luck, Asit Mallick, Mark Gross, Mohan Ku-
mar, Sunil Saxena, and Rohit Seth for review-
ing this paper.

Special credit is due to Mark Gross for his ef-
forts spent working on the design and imple-
mentation of the prototype EFI enabled kernel.

References

[1] EFI Specification Version 1.1, Intel
Corporation, 2003
http://developer.intel.com/
technology/efi

[2] PCI Local Bus Specification,Revision
2.3, PCI Special Interest Group,
Hillsboro, ORhttp://www.
pcisig.org/specifications

[3] Werner Almesberger,Booting Linux:
The History and the FutureProceedings
of the Ottawa Linux Symposium 2000,
July 2000

[4] David Mosberger and Stephane Eranian,
ia-64 Linux Kernel, Design and
Implementation.Prentice Hall, NJ 2002.

[5] ACPI SpecificationVersion 2.0bhttp:
//www.acpi.info/spec.htm

[6] David Mosberger and Stephane Eranian,
elilo-3.3a Documentation.2000.
ftp://ftp.hpl.hp.com/pub/
linux-ia64/elilo-3.3a.tar.
gz

[7] Werner Almesberger,Lilo Technical
Overview,
ftp://metalab.unc.edu/pub/
Linux/system/boot/lilo

[8] Eric Boleyn, et al.GNU Grub
http://www.gnu.org/
software/grub/grub.html

[9] Wired for Management Baseline,Intel
Corporation, 1998.
http://developer.intel.com/
ial/WfM/wfmspecs.htm

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

