
Porting Linux to the M32R processor

Hirokazu Takata
Renesas Technology Corp., System Core Technology Div.

4-1, Mizuhara, Itami, Hyogo, 664-0005, Japan

takata.hirokazu@renesas.com

Naoto Sugai, Hitoshi Yamamoto
Mitsubishi Electric Corp., Information Technology R&D Center

5-1-1, Ofuna Kamakura, Kanagawa 247-8501, Japan

{sugai,hitoshiy}@isl.melco.co.jp

Abstract

We have ported a Linux system to the Renesas1

M32R processor, which is a 32-bit RISC mi-
croprocessor designed for embedded systems,
and with an on-chip-multiprocessor feature.

So far, both of UP (Uni-Processor) and SMP
(Symmetrical Multi-Processor) kernels (based
on 2.4.19) have been ported and they are op-
erating on the M32R processor. A Debian
GNU/Linux based system has been also devel-
oped on a diskless NFS-root environment, and
more than 300 unofficial.deb packages have
already been prepared for the M32R target.

In this paper, we describe this new architecture
port in detail and explain the current status of
the Linux/M32R project.

1Renesas Technology Corp. is a new joint semicon-
ductor company established by Hitachi Ltd. and Mit-
subishi Electric Corp. on April 1, 2003. It would be the
industry’s largest microcontroller (MCU) supplier in the
world. The M32R family microcontroller and its succes-
sor will be continuously supplied by Renesas.

1 Introduction

A Linux platform for Renesas M32R proces-
sor has been newly developed. The Renesas
M32R processor is a 32-bit RISC microproces-
sor, which is designed for embedded systems.
It is suitable for a System-on-a-Chip (SoC) LSI
due to its compactness, high performance, and
low power dissipation. So far, the M32R fam-
ily microcomputers have widely used for the
products in a variety of fields—for example,
automobiles, digital still cameras, digital video
camcorders, cellular phones, and so on.

Recently, the Linux system has begun to be
used widely and employed even in the embed-
ded systems. The embedded systems would be
more software-oriented systems hereafter. The
more complex and larger the embedded system
is, the more complicated the software becomes
and harder to develop. In order to build these
kinds of embedded systems efficiently, it will
be more important to utilize generic OSes such
as Linux to develop software.

This is the first Linux architecture port to the
M32R processor. This porting project, called a
“Linux/M32R” project, has been active since

Linux Symposium 399

2000. Its goal is to prepare a Linux plat-
form for the M32R processor. At first, this
Linux porting was just a feasibility study for
the new M32R processor development, and it
was started by only a few members of the
M32R development team. Then, this project
has grown to a lateral project among Renesas
Technology Corp., Renesas Solutions Corp.,
and Mitsubishi Electric Corp.

In this feasibility study, we have ported not
only Linux kernel, but also whole GNU/Linux
system including GNU tools, libraries, and
other software packages, so called “userland.”
We also enhanced the M32R processor to add
MMU (Memory Management Unit) facility in
order to port Linux system. And we have also
developed an SMP kernel to investigate multi-
processing by M32R’s on-chip-multiprocessor
feature[1]. At present, the Linux/M32R system
can operate on the dual M32R cores in SMP
mode.

In this paper, we describe this new architecture
port in detail and explain about the current sta-
tus of the Linux/M32R project.

2 Linux/M32R Platform for Em-
bedded Systems

Recently, due to the continuous evolution of
semiconductor technologies, it is possible to
integrate a whole system into one LSI chip, so
called “System-on-a-Chip (SoC).”

In an SoC, microprocessor core(s), peripheral
I/O functions, internal memories, and user log-
ics can be integrated into a single chip.

By making use of wide internal buses, an LSI
can achieve high performance which can not
be realized by combination of several general-
purpose LSIs. In other words, we can optimize
system performance and cost by using SoC, be-
cause we can employ optimum hardware archi-

tecture and circuit configuration.

In such an SoC, a microprocessor core is a
key part; therefore, the more compact and
higher performance microprocessor is signif-
icantly required. To make such a high per-
formance embedded processor core, not only
in circuit and process technology but also ar-
chitectural breakthrough is necessary. Espe-
cially, multiprocessor technology is important
even for the embedded processor, because it
can improve processor performance and lower
system power dissipation by increasing proces-
sor number scalably and without increasing op-
erating clock frequency.

For an SoC with embedded microprocessor,
software is also a key point. The more sys-
tem is highly functional, the more software will
be complex and there is an increasing demand
for shortening development time of SoC. Un-
der such circumstance, recently the Linux OS
becomes to be adopted for embedded systems.
Linux platform makes it easy to port applica-
tion programs developed on a PC/EWS to the
target system. We believe that a full-featured
Linux system will come into wide use in em-
bedded systems, because embedded systems
will become more functional and higher per-
formance system will be required.

In the development of embedded systems,
it is important to tune system performance
from both hardware and software points of
view. Therefore, we used M32R softmacro
and FPGA (Field Programmable Gate Array)
devices to implement an evaluation board for
rapid system prototyping. FPGA devices are
slow, but make it possible to develop a system
in short turn-around time.

In this feasibility study, to construct a Linux
platform, we ported Linux to the M32R archi-
tecture, and validated the hardware system ar-
chitecture through the porting, and developed
the software development environment.

Linux Symposium 400

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14 (link register)

R15 (stack pointer)

0 31

General Purpose Registers

PC

0 31

Control Registers

CR0 (PSW)

CR1 (CBR)

CR2 (SPI)

CR3 (SPU)

CR5 (EVB)

CR6 (BPC)

0 31

Program Counter

0 8 63

Accumulators

processor status word

condition bit register

interrupt stack pointer

user stack pointer

EIT vector base register

backup PC

A0

A1

Figure 1: M32R register architecture

2.1 M32R architecture

The M32R is a 32-bit RISC microprocessor,
and employs load-store architecture like other
RISC processors. Therefore, memory access
is executed by only load and store instruc-
tions and logical and arithmetic operation is
executed among registers. Except for multi-
ply and divide instructions, most of instruc-
tions can be executed in one clock, and instruc-
tion completion does not depend on the the in-
struction issuing order (out-of-order comple-
tion). The M32R supports DSP operation in-
structions such as multiply and accumulate in-
structions.

Figure 1 shows the M32R register architec-
ture. The M32R has sixteen 32-bit general pur-
pose registers (R0∼ R15) and 56-bit accumu-
lators for the multiply and accumulate opera-
tions. R14 is also used as a link register (LR)
which keeps return address for a subroutine
call. There are two stack pointer registers, SPI
(interrupt stack pointer) and SPU (user stack
pointer). The CPU core selects one of them as
a current stack pointer (R15; SP) by the SM
(stack mode) bit of the PSW (processor status
word).

2.2 M32R softmacro

The M32R softmacro is a compact micropro-
cessor, developed to integrate into a SoC. It is
a full synthesizable Verilog-HDL model and it
has an excellent feature that the core does not
depend on a specific process technology. Due
to a synchronous edge-triggered design, it has
good affinity to EDA tools.

This M32R softmacro is so compact that it can
be mapped into one FPGA. Utilizing such an
M32R softmacro, we developed software on a
prototype hardware and co-designed hardware
and software simultaneously.

To port Linux to the M32R, some enhance-
ment of the M32R softmacro core was needed;
processor mode (user mode and supervisor
mode) was introduced and an MMU module
was newly supported.

• TLB (Translation Lookaside Buffer): in-
struction/data TLBs are full-associative,
32-entries each, respectively.

• page size : 4kB/16kB/64kB (user page),
4MB (large page)

2.3 Integrated debugging function and SDI

The integrated debugging function is a signifi-
cant characteristic of the M32R family micro-
computer. The M32R common debugging in-
terface, called as SDI (Scalable Debug Inter-
face), is utilized via five JTAG pins; the in-
ternal debug functions are controlled through
these debug pins.

Using the JTAG interface defined as IEEE
1149.1, internal debug function can be used.
No on-chip or on-board memory to store mon-
itor programs is necessary, because such moni-
tor programs can be provided and executed via
JTAG pins.

Linux Symposium 401

3 Porting Linux to the M32R

The Linux system consists of not only the
Linux kernel, but also the GNU toolchain and
libraries. Of course, a target hardware environ-
ment is also necessary to execute Linux.

Therefore we had to accomplish the following
tasks:

• Porting the Linux kernel

• Development of Linux/M32R platforms
(M32R FPGA board, etc.)

• Enhancement of the GNU toolchain

• Porting libraries (GNU C library, etc.)

• Userland; preparing software packages

Actually, in the Linux/M32R development,
these tasks have developed concurrently.

3.1 Porting Kernel to the M32R

In the Linux kernel, the architecture-dependent
portion is clearly distinguished. Therefore, in
case of a new architecture port, all you need to
do is prepare only architecture dependent code,
which is far less than whole Linux code. In
the M32R case,include/asm-m32r/ and
arch/m32r/ are needed.

To be more precise, we can prepare the
architecture-dependent portion in reference to
the other architecture implementation. How-
ever, it has some difficulties in rewriting these
portions:

asm function : It was very difficult to port
some headers in which asm statement
is extensively used, because an insuf-
ficient and inadequate rewriting easily
cause bugs which are very hard to debug.

function inlining : In the Linux source code,
function inlining is heavily used. We can
not disable the compiler’s inline optimiza-
tion function to compile the kernel source,
but a buggy toolchain sometimes causes a
severe problem in optimization.

In this porting, we started with a minimum
configuration kernel. We prepared stub rou-
tines, built and checked the kernel operation,
and gradually added files ofkernel/ , mm/,
fs/ , and other directories. When we started
kernel porting, there was no evaluation board.
So, we made use of GNU M32R simulator to
port a kernel at first.

The GNU simulator was very useful at the ini-
tial stage of kernel porting, though it does not
support MMU. It had also good characteris-
tics that downloading was quite fast comparing
with evaluation board and C source level debug
was possible.

Employing the simulator and initrd image of
romfs root filesystem, it is possible to develop
and debug kernel’s basic operation, such as
scheduling, initialization and memory manage-
ment. Indeed, the demand loading is per-
formed after/sbin/init is executed by a
execve() system call at the end of kernel
boot sequence ofinit() .

At first, we started to port the kernel 2.2.16.
The current stable version of the M32R kernel
is 2.4.19 and now we are developing 2.5 series
kernel for the M32R.

3.1.1 System Call Interface

In the M32R kernel, like other processors, a
system call is handled by a system call trap
interface. In the system call interface (syscall
I/F), all general purpose registers and accumu-
lators are pushed onto the kernel stack to save

Linux Symposium 402

System Call : TRAP#2
R7 : System Call Number
R0 .. R6 : arg0 .. arg6 (max. 7 arguments)

User Process

User Stack (SPU)

Kernel

Kernel Stack (SPI)

System Call
Execution

System Call
Invocation TRAP#2

Change Stack Pointer

Figure 2: System call interface

the context.

In Fig. 2, the syscall ABI (Application Binary
Interface) for the M32R is shown. Two stack
pointers, kernel stack (SPI) and user stack
(SPU), are switched over by software at the en-
try point of syscall I/F routine, because stack
pointers do not change automatically byTRAP
instruction. In order to switch stack point-
ers without working register and avoid multi-
ple TLB miss exception,CLRPSWinstruction
is newly introduced.

The stack frame formed by the syscall I/F rou-
tine is shown in Fig. 3. It should be noted
that there is a special system call in Linux,
like sys_clone(), that has particular interface
passing a stack top address as a first argu-
ment. Therefore, we employ a parameter pass-
ing method: The stack top address (∗pt_regs)
is always put onto the stack as a implicit stack
parameter like the SuperH implementation.

According to the ABI of the M32R gcc com-
piler, the first 4 arguments are passed by regis-
ters and the following arguments are passed by
stack. Therefore, the∗pt_regs parameter can
be accessed as the eighth parameter on the ker-

R4
R5
R6

*pt_regs
R0
R1
R2
R3
R7
R8
R9

R10
R11
R12

syscall_nr
ACC0H
ACC0L
ACC1H
ACC1L
PSW
BPC
SPU
R13
LR
SPI

ORIG_R0

+0x00
+0x04
+0x08
+0x0c
+0x10
+0x14
+0x18
+0x1c
+0x20
+0x24
+0x28
+0x2c
+0x30
+0x34
+0x38
+0x3c
+0x40
+0x44
+0x48
+0x4c
+0x50
+0x54
+0x58
+0x5c
+0x60
+0x64

Lower Address

Upper Address

Stack Top; SPI
(= pt_regs)

Figure 3: Stack frame formed by a system call

nel stack.

The syscall_nr and ORIG_R0 field are
used for the signal operations. When a sys-
tem call is issued, its system call number is
stored intoR7 and trap instruction is executed.
syscall_nr also holds the system call num-
ber in order to determine if a signal handler is
called from a system call routine or not. Be-
cause theR0 field might be changed to the re-
turn value of a system call,ORIG_R0 keeps
the original value ofR0 in preparation to restart
the system call.

3.1.2 Memory Management

Linux manages the system memory bypaging.
In the M32R kernel, the page size is 4kB like
the other architecture.

Linux Symposium 403

TLB miss handler

access exception handler

do_page_fault()

handle_mmu_fault()

(1) TLB miss exception
(2) access exception

reexecute after
the execution of
exception handlers

MMU exception!

Figure 4: Exception handling for the demand-
loading operation

In demand loading and copy-on-write opera-
tions, a physical memory page can be newly
mapped when apage faulthappens. Such a
page fault is handled by bothTLB miss handler
andaccess exception handler(Fig. 4).

demand loading : If an instruction fetch or
operand access to the address which is not
registered in page table, an MMU excep-
tion happens. In case of a TLB miss ex-
ception, TLB miss handler is called. To
lighten the TLB miss handling operation,
TLB handler only sets TLB entries. Page
mapping and page-table setting operations
are to be handled by the access exception
handler; For accessing a page which does
not exist in the page table, the TLB miss
handler sets the TLB entry’s attribute to
not-accessible at first. After that, since
the memory access causes an access ex-
ception due to not-accessible, access ex-
ception handler deal with the page table
operations.

copy-on-write : In Linux, copying a process
by fork() and reading a page in read-
only mode are handled as a copy-on-write
operation to reduce vain copy operations.
For such a copy-on-write operation, TLB
miss handler and access exception handler
are used like a demand loading operation.

The M32R’s data cache (D-cache) is indexed
and tagged physically. So, it does not have to
take care the cache aliasing. Therefore the D-
cache is flushed only for a signal handler gen-
eration and a trampoline code generation.

To simplify and speed up the cache flushing
operations for trampoline code, a special cache
flush trap handler (trap#12) is established in the
M32R kernel.

3.1.3 SMP support

In Linux 2.4, multiprocessing performance is
significantly improved compared with Linux
2.2 or before, because the kernel locking for
accessing resources is finer.

To implement such a kernel locking on SMP
kernel, spinlock is generally used for mutual
exclusion control. But the M32R has no
atomic test-and-set instruction, the spinlock
operations can be implemented withLOCKand
UNLOCKinstructions in the M32R kernel.

The LOCK and UNLOCKinstructions are a
load and store instructions for mutual exclu-
sion operation, respectively.LOCKacquires
and keeps a privilege to access the CPU bus
until UNLOCKinstruction is executed. Access-
ing a lock variable byLOCK/UNLOCKinstruc-
tion pair under a disabled interruption condi-
tion, we implemented an atomic access.

Figure 5 shows an M32R on-chip-
multiprocessor prototype chip. Linux SMP
kernel can be executed on the on-chip mul-
tiprocessor system. On-chip multiprocessor
might be a mainstream in near future even in
embedded systems, because multiprocessor
system can enhance the CPU performance
without increasing operating clock frequency
and power dissipation. In this chip, two M32R
cores are integrated and each has its own cache
for good scalability.

Linux Symposium 404

(a) Chip (b) CPU

Figure 5: A micrograph of an on-chip-multiprocessor M32R prototype chip

3.2 Development of Linux/M32R Platform

To execute full-featured Linux OS, an MMU
is necessary; therefore, we developed a new
M32R softmacro core with an MMU and made
an evaluation board “Mappi,” which used FP-
GAs to map the M32R softmacro core, as a
Linux/M32R platform.

As shown in Fig. 6, the Mappi evaluation
board consists of two stacked boards. The up-
per board is a CPU board and the lower board
is an extension board. The CPU board has no
real CPU chip, but it has two large FPGAs on
it. We employ the M32R softmacro core and
map it onto the FPGAs.

The Mappi board is a very flexible system for
prototyping. If we have to modify a CPU or
other integrated peripherals, we can immedi-
ately change and fix them by modifying their
Verilog-HDL model.

At first, we could only useinitrd and
busybox on it, because the Mappi system
had only a CPU board and it had only 4MB
SRAMs. After the extension board was devel-
oped, more memory (SDRAM), Ethernet, and

PC-card I/F became available. So, we intro-
duced NFS and improved the porting environ-
ment. It was Dec. 2001 that we succeeded
in booting via a network using the extension
board.

Utilizing the M32R’s SDI function and JTAG-
ICE, mentioned before, we can download and
debug a target program via JTAG port. It
is much faster than a serial connection be-
cause the Debug DMA function is used for
downloading and refering internal resources.
Of cource, it is also possible to set hardware
breakpoints for the PC break and the access
break via SDI.

Generally speaking, it is too difficult to de-
velop and debug software programs on an un-
steady hardware which is under development.
But, we could debug and continued to develop
the system by using the SDI debugger, because
the SDI debugger made it possible to access
the hardware resources directly and it was very
useful for the kernel debugging.

Finally, we constructed an SMP environment
to execute the SMP kernel, mapping the M32R
softmacro cores to two FPGAs on the Mappi

Linux Symposium 405

CPU

Mem BIU

FPGA#0

I/O

FPGA#1

User
Logic

CPU Board

Display
Cont. LAN

Extension Board

PC-card

FlashROM
 4MB

SDRAM
 64MB

Figure 6: Mappi: the M32R FPGA evaluation board; it has the M32R softmacro on FPGA (CPU,
MMU, Cache, SDI, SDRAMC, UART, Timer), FPGA Xilinx XCV2000E×2, SDRAM(64MB),
FlashROM, 10BaseT Ethernet, Serial 2ch, PC-card slot×2, and Display I/F(VGA)

CPU board; concretely, we replaced the user
logic portion in FPGA#1 shown in Fig. 6
with an another M32R core with a bus arbitor,
and modified the ICU (Interrupt Control Unit)
to support inter-processor interruption for the
multiprocessor.

After the M32R prototype on-chip-
multiprocessor chip was developed, the
Linux/M32R system including userland appli-
cations has been mainly developed by using
the real chip, because the operating clock
frequency of the M32R FPGA is 25MHz but
the M32R chip can run more than 10 times
faster.

3.3 M32R GNU toolchain enhancement

The GNU toolchain is necessary to develop the
Linux kernel and a variety of Linux application
programs. When we started the Linux port-
ing, we had only Cygnus’s (now it’s Red Hat,
Inc.) GNUPro™m32r-elf toolchain. It was
sufficient for the kernel development; how-
ever, it could not be applicable to user applica-
tion development on Linux, because in a mod-
ern UNIX system a dynamic linking method

is strongly required to build a compact system
and achieve higher runtime performance. (Al-
though a static linked program is much faster
than a dynamic linked program if the program
size is small. The bigger a program becomes,
the larger cache miss penalty would be.)

We enhanced the M32R GNU toolchain to sup-
port shared libraries:

• Change BFD library to support dynamic
linking; some relocations were added for
dynamic linking.

• Change GCC and Binutils to support PIC
(Position Independent Code).

Because the version of the GNUpro m32r-elf
gcc was 2.8 and too old, we had to upgrade
and develop a new m32r-linux toolchain. We
applied GNUpro patch to the gcc of the FSF
version and developed GCC (v2.95.4, v3.0,
v3.2.2) and Binutils (v2.11.92, v2.13.90).

In a prologue portion of a C function, the fol-
lowing code is generated when the-fPIC op-
tion is specified.

Linux Symposium 406

; PROLOGUE
push r12
push lr
bl .+4 ; get the next instruction’s

; PC address to lr
ld24 r12,#_GLOBAL_OFFSET_TABLE_
add r12,lr

We also modified BFD libraries to support
dynamic linking. We referenced the i386
implementation and supported the ELF dy-
namic linking. In the ELF object format [3],
GOT (Global Offset Table) and PLT (Proce-
dure Linkage Table) are used for the dynamic
linking. In the M32R implementation, the
GOT is refered by R12 relative addressing and
the RELA type relocation is emoployed. Like
a IA-32 implementation, the code fragment of
PLT refers the GOT to determine the symbol
address, because it is suitable and efficient for
the M32R’s cache which can be simply flushed
whole caching data.

As for GDB, we enhanced it to support a new
remote targetm32rsdi to use the SDI remote
connection. By using the gdb, we can do a re-
mote debugging of the kernel in C source-level.
In the latest version ofm32r-linux-gdb/
m32r-linux-insight (v5.3), we have
employed aSDI server that engages in ac-
cessing the JTAG port of the ICE/emmulator
connected with the parallel port of the host PC.
This gdb makes it possible to debug using SDI,
communicating with the SDI server in back-
ground. Though the SDI server requires priv-
ileged access to use parallel port, we can use
gdb in user mode.

3.4 Porting GNU C library

The GNU C library is the most fundamental
library, which is necessary to execute a variety
kind of application programs. So we decided to
port it to implement full-featured Linux system
for a study, though its footprint is too large for
a tiny embedded system.

We started to port glibc-2.2.3 (v2.2.3) in eary
stage of the Linux/M32R porting, it was about
the same time that the kernel’s scheduler began
to work.

Then, the glibc for the M32R have been devel-
oped step by step;

• Check by a statically linked program, for
example,hello.c (newlib version→
glibc version).

• Build a shared library version of glibc and
check by dynamically linked programs,
hello.c, busybox, etc.

• Port the LinuxThreads library to support
Pthreads (POSIX thread).

The latest version of the glibc for the M32R
is glibc-2.2.5 (v2.2.5). It also supports a
LinuxThreads library, that implements POSIX
1003.1c kernel threads for Linux. In this Lin-
uxThreads library, we implemented fast user-
level mutual exclusion using the Lamport’s
algorithm [2], because the system call im-
plementation was quite slow due to context
switching.

After the glibc porting was finished, we started
to build various kind of software. But it has
taken several months to implement and debug
the following:

• Fixup operations of the user_copy rou-
tines in the kernel

• Resolve the relocation by a dynamic
linker ld-linux.so

• Signal handling

Especially, the dynamic linking operation was
the one of the most difficult portions in this

Linux Symposium 407

GNU/Linux system porting, because the dy-
namic linker/loader resolved global symbols
and subroutine function addresses in runtime.
Furthermore, the dynamic linker itself is also
a shared library, so we can not debug it in
C source-level. However, we debugged the
linker, making use of a simulator, a SDI de-
bugger, and all kinds of things.

3.5 Userland

For the sake of preparing software packages
and making the Linux/M32R distributable, we
built major software packages.

We chose the Debian GNU/Linux as a base dis-
tribution, because it is well-managed and all of
the package sources are open and published.
In Debian, using command programs such as
dpkg andapt , it is possible to manage abun-
dant software packages easily.

To build a binary package for the M32R, we
did as the following:

1. Expand the source tree from the Debian
source package (*.dsc and *.orig.tar.gz)

2. Rebuild a binary package by using a
dpkg- buildpackage command,
specifying the target architecture tom32r
(dpkg-buildpackage -a m32r
-t m32r-linux).

So far, more than 300 unofficial.deb pack-
ages have been prepared for the M32R target,
including the basic commands, such as self-
tools and shells, utilities, package management
tools (dpkg , apt), and application programs
as follows:

adduser, anacron, apt, base-files, bash, bc,
binutils, bison, boa, bsdgames, bsdutils, busy-
box, coreutils, cpp-3.2, cvs, debianutils, de-

Figure 7: A snapshot of the desktop image of
X; the window manager isAfterStep

vfsd, diff, dpkg, e2fsprogs, elvis-tiny, ex-
pect, file, fileutils, findutils, flex, ftp, g++-
3.2, gcc-3,2, grep, gzip, hostname, klogd, less,
libc6, locales, login, lynx, m4, make, mawk,
modutils, mount, nbd-client, net-tools, net-
base, netkit-inetd, netkit-ping, passwd, perl-
base, perl-modules, portmap, procps, rsh-
client, rsh-server, samba, sash, sed, strace,
sysklogd, tar, tcl8.3, tcpd, tcsh, telnet, textu-
tils, util-linux, wu-ftpd, . . .

Most of these packages were developed under
the cross environment, except some software
packages, such as Perl, Xserver, gcc, etc. Be-
cause they had to be configured in the target
environment. Therefore, self tools were nec-
essary in order to build packages under the
self environment. Fortunately, by using.deb
packages anddpkg-cross commands, the
same package files can be completely shared
between the self and the cross environment.

Regarding the GUI environment, we have
ported some window systems (X, Microwin-
dows, Qt-Embedded). We ported them eas-
ily using a framebuffer device. Figure 7 is a
sample screen snapshot of X desktop image.
gears and bounce are demonstration pro-

Linux Symposium 408

grams of the Mesa-3.2 3D-graphics library.

4 Evaluation

The Linux/M32R system’s conformance have
been checked and validated by using the LSB
(Linux Standard Base) testsuites, which are
open testsuites and based on the LSB Specifi-
cation 1.2 [5]. In this validation, we compared
the following two environments.

Linux/M32R
based on the Debian GNU/Linux (sid)
linux-2.4.19 (m32r_2_4_19_20030109)
glibc-2.2.5 (libc6_2.2.5-6.4_m32r.deb)
gcc-3.0 (self gcc; m32r-20021112)

RedHat7.3 2

linux-2.4.18-10 (kernel-2.4.18-10.i686.rpm)
glibc-2.2.5 (glibc-2.2.5-42.i686.rpm)
gcc-2.96

The result of validation is shown in Table 1.
Judging from the result, the LSB conformance
of the Linux/M32R is no less good than the
RedHat Linux 7.3, because the original De-
bian distribution has basically good LSB con-
formance and quality.

5 Future work

To apply the Linux/M32R to embedded sys-
tems, it is indispensable to tune and shrink the
whole system more and more. As for the ker-
nel, particulary, tuning and improving realtime
performance will be strongly required.

At present, we are porting the Linux 2.5 se-
ries kernel for the M32R in order to support
the state of the art kernel features, such as

2The kernel and glibc are upgraded and different
from the original Red Hat 7.3 distribution.

O(1) scheduler, the preemptible kernel, the no-
MMU support, the NUMA support, and so on.

We are also planning to utilize DMA function
and internal SRAM to increase Linux system
performance. And for the high-end embedded
systems, we intend to continuously focus on
the SMP kernel for the on-chip-multiprocessor.

6 Summary

To build a Linux platform, we have ported
a GNU/Linux system to the M32R processor.
In this work, a hardware/software co-design
methodology was employed, using a full syn-
thesizable M32R softmacro core to accelerate
Linux/M32R development. To develop SoC in
a short time, such a hardware and software co-
design and co-debugging methodology will be-
come more important hereafter.

Linux will play a great role in the field of not
only PC servers but also embedded systems in
the near future. Through the feasibility study,
we believe that the Open Source will provide
a quite large impact on developing embedded
system design and development. If we have op-
portunity, we hope to publish the Linux/M32R
and M32R GNU toolchain.

7 Acknowledgements

The authors greatly acknowledge the collabo-
ration and valuable discussion with the M32R
development team [1] and thank Takeo Taka-
hashi, Kazuhiro Inaoka, and Takeshi Aoki for
their special contributions, and we would also
like to thank Dr. Toru Shimizu and Hiroyuki
Kondo for their promotion of the M32R pro-
cessor development project.

Linux Symposium 409

ANSI.os POSIX.os LSB.os RedHat7.3
Section ANSI.hdr

F M
POSIX.hdr

F M F M
Total

Total

Expect 386 1244 1244 394 1600 1600 908 908 8284 8284
Total

Actual 386 1244 1244 394 1600 1600 908 908 8284 8284
Succeeded 176 1112 86 207 1333 0 695 0 3609 3583
Failed 4 0 0 5 2 0 49 0 60 45
Warnings 0 12 0 0 5 0 2 0 19 18
FIP 2 0 0 2 2 0 1 0 7 7
Unresolved 0 0 0 0 0 0 5 0 5 4
Uninitiated 0 0 0 0 0 0 0 0 0 0
Unsupported 203 0 0 179 72 0 59 0 513 513
Untested 0 4 0 0 7 0 39 0 50 43
NotInUse 1 116 1158 1 179 1600 58 908 4021 4021

Key: F:function, M:macro; FIP: Further Information Provided

Table 1: LSB 1.2 testsuites result

References

[1] Satoshi Kaneko, Katsunori Sawai, Norio
Masui, Koichi Ishimi, Teruyuki Itou,
Masayuki Satou, Hiroyuki Kondo, Naoto
Okumura, Yukari Takata, Hirokazu Takata,
Mamoru Sakugawa, Takashi Higuchi,
Sugako Ohtani, Kei Sakamoto, Naoshi
Ishikawa, Masami Nakajima, Shunichi
Iwata, Kiyoshi Hayase, Satoshi Nakano,
Sachiko Nakazawa, Osamu Tomisawa,
Toru Shimizu,A 600MHz Single-Chip
Multiprocessor with 4.8GB/s Internal
Shared Pipelined Bus and 512kB Internal
Memory, Proceedings of 2003
International Solid-State Circuits
Conference, 14.5.

[2] Laslie Lamport,A Fast Mutual Exclusion
Algorithm, ACM Trans. on Computer
System, Vol. 5, No. 1, Feb. 1987, pp. 1-11.

[3] Executable and Linkable Format (ELF),
http:
//www.cs.northwestern.edu/
~pdinda/ics-f01/doc/elf.pdf

[4] Debian GNU/Linux,
http://www.debian.org/

[5] LSB testsuites, http:
//www.linuxbase.org/test/ ,
ftp://ftp.freestandards.org/
pub/lsb/test_suites/
released-1.2.0/runtime/

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

