
Lustre: Building a File System for 1,000-node
Clusters

Philip Schwan
Cluster File Systems, Inc.

phil@clusterfs.com, http://www.clusterfs.com/

Abstract

Lustre is a GPLed cluster file system for Linux
that is currently being tested on three of the
world’s largest Linux supercomputers, each
with more than 1,000 nodes. In the past 18
months we’ve tried many tactics to scale to
these limits, and the first half of this paper will
discuss some of our successes and failures. The
second half will explore some of the changes
that we plan to make over the next year, as we
scale towards tens of thousands of clients and
petabytes of data.

1 Introduction

The Lustre cluster file system has been de-
signed and implemented with the goal of re-
moving the bottlenecks traditionally found in
such systems. Lustre runs on commodity hard-
ware and provides a cluster storage layout that
is efficient, scalable, and redundant. Metadata
Servers (MDSs) contain the file system’s di-
rectory layout, permissions, and extended at-
tributes for each object. Object Storage Tar-
gets (OSTs) are responsible for the storage and
transfer of actual file data, and already scale
to many dozens of OSTs and hundreds of ter-
abytes of data. Both types of service node can
operate in pairs which automatically take over
for each other in the event of failure. Each also
runs an instance of the Lustre distributed lock
manager, access to which forms the core of the

Lustre protocols.

Although Lustre’s design dates from 1999, de-
velopment began in earnest in early 2002. In
the time since, surprisingly few of the major
points have changed from the original plan, and
the implementation has undergone fewer false
starts as a result. Our distributed lock manager
has weathered the storm and remains largely
as it was a year ago. The choice of a system
designed around object protocols has proven
to be correct, and Lustre has so far scaled to
the limits of available hardware. Lustre’s inter-
nal networking has shown itself to be relatively
flexible and high-performance, and network
abstraction layers exist for TCP/IP, Quadrics
Elan, Myrinet, and SCI.

Not all of our original decisions were ideal,
however. One source of bugs continues to be
the interaction between Lustre and the Linux
VFS layer, which is not very well suited to net-
work file systems that want a great deal of con-
trol. This interaction had a significant impact
on one of Lustre’s major metadata architecture
choices, the concept of “intent-based” locking
operations, described in more detail later. Ulti-
mately, we had to make significant changes to
our intent-based metadata implementation.

The last year of working with government
and industry has suggested which activities are
most important to pursue in the next year. First,
and most significantly, two major caching im-



Linux Symposium 381

provements will be made beginning this sum-
mer: a write-back metadata cache, and a per-
sistent data/metadata cache. The write-back
cache will be enabled in times of low concur-
rency, and allows for metadata updates which
can be made in local memory and later re-
played on the server. Making this cache per-
sistent for both metadata and file data will en-
able features such as disconnected operation
and server replication. Finally, our collabo-
rative read cache will reduce the load on pri-
mary OSTs for the most frequently accessed
files, removing a very common bottleneck in
distributed systems.

2 Distributed Lock Manager

All of Lustre’s consistency guarantees are en-
forced, in one way or another, by the Lus-
tre distributed lock manager (DLM). Core op-
erational decisions, such as when to switch
between writeback caching and synchronous
metadata updates, will be delegated to the
DLM.

The design of the Lustre DLM borrows heav-
ily from the VAX Clusters DLM, plus exten-
sions that are not found in others. Although
we have received some reasonable criticism for
not using an existing package (such as IBM’s
DLM[1]), experience thus far has seemed to
indicate that we’ve made the correct choice:
it’s smaller, simpler and, at least for our needs,
more extensible.

The Lustre DLM, at just over 4,000 lines of
code, has proven to be an overseeable main-
tenance task, despite its somewhat daunting
complexity. The IBM DLM, by comparison, is
nearly the size of all of Lustre combined. This
is not necessarily a criticism of the IBM DLM,
however; to its credit, it is a complete DLM
which implements many features which we do
not require in Lustre.

In particular, Lustre’s DLM is not reallydis-
tributed, at least not when compared to other
such systems. Locks in the Lustre DLM are al-
ways managed by the service node, and do not
change masters as other systems allow. Omit-
ting features of this type has allowed us to
rapidly develop and stabilize the core function-
ality required by the file system.

Next, we feel that our extensions to the basic
DLM API and protocol have been quite suc-
cessful. File range locking is managed inter-
nally as part of the regular lock matching and
compatiblity functions. Through the use of a
small policy function, the lock manager is able
to grant larger locks than originally requested.
In this way we avoid the bottleneck found in
some other file systems, for which a client must
lock each page or block individually. For the
very common case of a file being accessed by
only one user, Lustre’s DLM will grant exactly
one lock for the entire file.

Finally, intent locking is designed around
the concept of allowing the lock manager to
choose between different modes depending on
its view of resource contention. In a direc-
tory with very little contention—a user’s home
directory, for example—the DLM can grant a
write-back lock, allowing the client to cache
a large number of metadata updates in mem-
ory. In this way it will avoid an interaction
with the server for each request and batch them
at some later time. In a directory with very
high concurrency—such as/tmp —the DLM
will refuse to grant any lock at all. Instead, it
will perform the operation on the client’s be-
half, notify it of the result, and avoid bouncing
the directory lock between hundreds or thou-
sands of simultaneous users.



Linux Symposium 382

3 Object Protocols

Of all of the concepts that went into Lustre’s
architecture, the use ofobject protocolsis by
far the most pervasive. Although Lustre is cer-
tainly not unique in its use of storage objects,
we have also designed many of the internal
APIs to allow for additional layering (RAID
0 as one example) or short-circuiting (a client
running on an OST with no networking layer
between them). This symmetry between inter-
nal APIs and network protocols has served us
well.

During the initial design it became quite clear
that a shared block file system would abso-
lutely not scale to the required limits for many
reasons. First, shared disk arrays on any-
thing but the smallest clusters quickly become
cost ineffective for even the largest customers;
this would certainly violate our goal of run-
ning on inexpensive commidity hardware. Sec-
ond, high-level object protocols remove a key
bottleneck for scaling beyond a dozen or two
nodes: locking and allocation of metadata.

In a traditional shared-block file system, those
blocks which store inode and block alloca-
tion information are subject to incredible con-
tention. By organizing the protocol around ob-
jects instead of blocks, the OSTs remain re-
sponsible for the internal metadata allocation.
Parallel file I/O to a single file has been shown
to scale to more than 1,100 nodes, the limit of
available hardware.

For those customers who have already invested
in a large storage area network (SAN) based
around shared disk, Lustre is still an option. In
the SAN mode, OSTs are still responsible for
managing the object locking and shared stor-
age metadata, but clients can read and write in-
dividual data pages directly from the SAN.

4 Networking

Lustre’s networking layer has not changed sig-
nificantly from its original form more than a
year ago. It uses a simple message-passing
package called Portals[2], which has from an
API standpoint served us fairly well. Impor-
tantly, it provides the right abstractions for en-
hancements such as remote DMA as supported
by the networking hardware. We’ve made a
few relatively minor API changes to accomo-
date the different needs of the filesystem, as op-
posed to the scientific community from which
Portals emerged.

The original implementation of Portals, how-
ever, caused many serious problems. The port
to run in the Linux kernel and userspace was
fairly straightforward, but Portals had never
been run in a multi-threaded environment and
had absolutely no internal locking. Given that
we had to rewrite more than 80% of the code
and put up with serious race conditions for
many months, it would likely have been a bet-
ter choice to keep the API and start the imple-
mentation from scratch.

The API and the internal abstraction layers,
however, have been both simple enough to
understand and modify, and flexible enough
to cope with the needs of many networking
drivers. Lustre (and therefore Portals) needs
to support a variety of interconnects, including
kernel TCP/IP, TCP/IP offload cards, Quadrics
Elan 3, Myrinet, and SCI.

For each network type we have a Portals Net-
work Abstraction Layer (NAL), approximately
one to two thousand lines of code each. Al-
though they are small, they are generally quite
complicated, and may depend on a fair bit of
wizardry to get the most out of a particular in-
terconnect. Nevertheless, the Lustre network
regression test running on our Elan NAL be-
tween two nodes is bottlenecked by the PCI bus



Linux Symposium 383

at more than 300 MB/s.

5 Intent Operations Explained

Most distributed file systems perform meta-
data operations in the same way all the
time, regardless of contention. Some systems
choose to give locks on objects to clients, and
some choose to perform all operations syn-
chronously on the server.

In the first mode, a client wanting to perform
metadata operations will first take a lock on the
parent directory, download the applicable di-
rectory information, and make many changes
locally. This is extremely efficient in times of
low contention; it can perform as many opera-
tions as it wants locally without contacting the
server, as long as no other nodes try to acquire
the lock. In times of high contention, however,
it is a disaster: imagine users on 1,000 nodes
all runningtouch /tmp/foo . The lock on
/tmp will have to be given to each node in
turn, and the cluster will grind to a halt.

In the second mode, the client sends a mes-
sage to the server for each operation, and the
server performs the operation without giving
any locks out. Not only is this much simpler to
code properly, it also avoids the problem with
lock ping-pong. When this mode is used, how-
ever, even directories with no contention have
this behaviour, and you suffer the effects of a
server round-trip for each operation.

Lustre currently executes all operations as if
there were high concurrency, with exactly one
RPC per metadata operation. With the comple-
tion of the writeback metadata cache later this
year, the DLM will be able to make the choice
between giving the client a writeback lock on a
subtree or performing one RPC per op.

6 Intents Gone Wrong

Our first attempt at writing the client-side VFS
code to support the intent mechanism was
roughly as follows. Consider the case of a
mkdir operation: normal filesystems will lock
the parent directory, lookup the new directory
to see if it already exists, create it, then release
the lock. Lustre added alookup intentstructure
to each lookup call, to tell the lock manager on
the server why we asked for the lock (in this
case, to mkdir). If the server decided not to
give out the lock, it would perform the opera-
tion on the client’s behalf and return a success
or error code.

When the Lustre client received this reply, it
would do complicated things to cooperate with
the VFS. If the mkdir succeeded, for example,
it needed to create anegativedirectory entry
(dentry) before returning from lookup (if we
returned a new positive dentry, the VFS would
return-EEXISTS ). Later, the VFS would call
us back to do the “actual” mkdir, at which time
we would instantiate the dentry based on the
reply stored in the lookup intent.

This turned out to be a disaster of race con-
ditions, both on the server and on the client.
On the server, the lock manager would perform
these operations before the lock was granted,
so that it could give the client a lock on the new
file. By the time the lock was actually granted,
however, anything could have changed. On the
client, our ability to control the dcache, partic-
ularly in the window between lookup and final
creation, proved insufficient.

Our final solution was to make two fairly major
changes to both sides. Instead of the lock man-
ager performing an operation before locks are
granted, the metadata server is able to specify
an already-granted lock to give to the client.
This allows the MDS to perform the opera-
tion and then return the still-granted lock on



Linux Symposium 384

the new file without races. The client has been
simplified to call directly into the filesystem
and return the result immediately: no dcache,
no VFS code, no races.

7 Client Metadata Caching

When a node asks to lock a directory for read-
ing or writing, the Lustre DLM will soon be
able to grant asubtree lock, if the directory has
not recently seen conflicting activity. This al-
lows the client to keep a cache which can be
filled and selectively revalidated as necessary.

As a client with a subtree lock fills its cache
from the MDS, the MDS may revoke locks on
other objects. If during this process the MDS
encounters an opened file or a file with hard
links, it flags this file for special attention by
the client. Specifically, the client also flags
these as shared objects which cannot be cached
locally and must use the intent path for updates.

Once a client has a subtree lock, it can begin
to keep a local journal of updates. Each update
is a short record which describes one logical
filesystem operation on an object, for example
“create directory, mode 0755, parent inode 12,
new directory name foo”. Because all update
operations are now reduced to the creation of
a single record in client memory, they are in-
credibly fast.

When another client attempts to perform a con-
flicting operation beneath a subtree lock, that
lock must be found and revoked. The MDS
server code can easily walk the dentry tree,
looking at each path component of the affected
object, and revoke subtree locks as necessary.
It is now easy to see why we flag hard linked
files for special handling, as they have more
than one path by which they can be reached.

When a subtree lock is revoked, any accumu-
lated updates must be flushed to the MDS and

replayed on stable storage. This is exactly the
same mechanism which already exists for in-
tent locks, except that they are grouped into
pages of operations which are all guaranteed
to succeed by virtue of the subtree lock. Now a
single network exchange can contain hundreds
of records.

8 Persistent Caching

To this design there is one particularly at-
tractive extension, which is a persistent
cache in the style of AFS[3], Coda[4], and
InterMezzo[5]. Two new pieces are required
for such an extension: the local cache itself,
and a way to revalidate its contents after locks
are lost and re-acquired.

Lustre’s stackable object protocols allow a very
symmetric design for the persistent cache by
adding a metadata server to the client. Today
the file system code interacts with a metadata
client (MDC) via function calls, which exe-
cutes network commands to an MDS. In this
new model, the MDC can be replaced with a
caching MDCwhich can talk to both a local
and remote MDS. The local MDS is respon-
sible for maintaining the local cache, either in
memory or on disk; the caching MDC resolves
cache misses and replays updates to the real
MDS as before.

At some point, after a client has lost and re-
acquired a lock, we need a way to validate
the data that already exists in the cache. Unix
filesystems already provide the concept of a
change time(ctime), which is updated when-
ever the inode changes. For Lustre directories
we will add a newsubtree change time(stc-
time) which will be updated whenever any in-
ode in the subtree is changed. These stctimes
have a nanosecond granularity and will allow
a client to very quickly establish whether large
portions of a cache are up to date.



Linux Symposium 385

Caching MDC

Data
in

cache?

Local MDS

Get locks and
attributes from
local MDS cache

No

Query Cache

Yes
Perform
local updates

Send lock request
with intent
to remote MDS,
populate local
MDS with
this data

Remote MDS

File System

Metadata operations

MDC

Disk

Figure 1: Persistent Caching

Updates to the sctime will of course dirty more
(possibly many more) inodes during each up-
date. For customers pushing their metadata
server to the limits, they have the option of
disabling the sctime and revalidating each ob-
ject individually, or going without a persistent
cache.

9 Collaborative Caching

A very common load pattern found in industry
filesystem installations is one where read traf-
fic vastly outnumbers write traffic. One such
example is a cluster of web servers serving
mostly static content.

Unless some effort is made to distribute the
load in these situations, the servers will be
completely overwhelmed, based purely on the
raw bandwidth that a single server can provide.
Consider the load placed on central servers
if workstations have remote root filesystems
and are all booted simultaneously following a

Object Storage Client 

Lustre Lite
file system

Object Storage Target

Client

(OST)

4. Get requested
data from target OST
(if data not in cache yet)

Cache Server
Dedicated

1. Read request 2. Referral

forwarding
3. Read request

Figure 2: Collaborative Caching

power outage; or a lab of students all loading
large applications at the beginning of a class.

Lustre is once again leveraging the object pro-
tocols into a symmetric collaborative caching
device. Instead of working directly with an
OST, a client communicates with one or more
caching devices which can take locks on the
client’s behalf, locally service cache misses,
and provide an alternative path to the high-
demand data. These caching devices can also
run on the clients themselves, which is thecol-
laborativepart of the collaborative cache.

With the addition of caching devices, recovery
becomes somewhat more complicated. Nor-
mally the decision to give up on a particular
OST following a network timeout is a very
simple one. However with a cache in the mid-
dle it’s important to distinguish between a fail-
ure of the cache node and a failure of the OST
itself.

10 Conclusion

After more than a year of development, the
Lustre framework has deviated surprisingly lit-
tle from the original architecture. The lock
manager and object protocols have served us
well and will continue to form the centre of the
design. Despite the fairly serious setbacks with



Linux Symposium 386

the VFS and client caching, our intent lock-
ing strategy has been shown to be successful
on very large clusters and will be the primary
mechanism for dealing with high-contention
directories.

Today Lustre scales comfortably to more than
1,000 nodes and is running on 3 of the 8 largest
clusters in the world[6] (at Lawrence Liver-
more and Pacific Northwest National Labora-
tories). We have every reason to believe that
today’s Lustre code will scale to 2,000 nodes
without serious difficulties; the next two years
of development are planned to address scala-
bility and performance issues on a completely
new scale of clusters which are only just begin-
ning to be designed.

11 Acknowledgments

Lustre has benefitted significantly from the
experience, guidance, and funding of several
US Government national laboratories, notably
Lawrence Livermore National Laboratory and
Pacific Northwest National Laboratory. We
have also received the support of the National
Nuclear Security Administration ASCI Path-
Forward Program, which provides funding for
many of the advanced features in Lustre’s fu-
ture. Amongst our partners we are grateful for
the support of and opportunities with Hewlett-
Packard and Dell. The views and conclusions
contained in this paper are those of the au-
thor and should not be interpreted as neces-
sarily representing the official policies or en-
dorsements, either express or implied, of our
partners or the US Government.

12 Availability

Lustre is released under the terms and con-
ditions of the GNU General Public License,
and can be downloaded from our FTP site

or checked out of our public CVS repository.
More information can be found athttp://
www.lustre.org/

Founded in 2001 by Dr. Peter Braam, Cluster
File Systems, Inc. is a privately held company
headquartered on the internet, with developers
in five countries. CFS is focused on high-end
storage solutions, including the development
of advanced file systems, novel architectures,
and the storage industry as a whole. More
information about how we can improve your
storage offering, business, or laboratory can be
found athttp://www.clusterfs.com/
or by writing to info@clusterfs.com

References

[1] IBM, Programming Locking
Applications, Version 4.3.1, Second
Edition, 1999.

[2] Brightwell et al,The Portals 3.1 Message
Passing Interface, Revision 1.0, 1999.

[3] J. Howard,An Overview of the Andrew
File System, In Proceedings of the
USENIX Winter Technical Conference,
1988.

[4] Satyanarayanan, M, Kistler, J. J., Kumar,
et. al.,Coda: a Highly available File
System for a Distributed Workstation
Environment, IEEE Trans. on
Computers, 39(4): 447-459, 1990.

[5] Braam, Callahan, and Schwan,The
InterMezzo Filesystem, In Proceedings of
the Ottawa Linux Symposium, 1999.

[6] http://www.top500.org/list/
2003/06/



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


