Towards an O(1) VM:

Making Linux virtual memory management scale towards large amounts of physical

memory

Rik van Riel
Red Hat, Inc.
riel@surriel.com

Abstract * Reverse mapping, pte based vs. object
based.

Linux 2.4 and 2.5 already scale fairly well
towards many CPUs, large numbers of files2? Page launder
large numbers of network connections and sev-

eral “other kinds of big.” However, the VM . .
. , Traditionally the virtual memory management
still has a few places with poor worst case (or . . .
ubsystems in Unix and Linux systems have

: S
ceven average case) behaV|_o r that needs to t?1ead either a clock algorithm or Mach-style ac-
improved in order to make Linux work well on

. . . tive and inactive lists to do both LRU aging and
machines with many gigabytes of RAM. eviction of pages. Linux 2.4 and 2.5 have what

amounts to simple Mach-style active and in-
1 Introduction active lists (Figure 1), at least when it comes

to the writeout and reclaiming of pages that

aren’t mapped in processes. In this paper, the
In this paper | will explore the problem spacesy;ach vMm pageout algorithm is used as an ex-
and algorithmic complexi_ties of the_ virtual ample because it is a decent approximation of
memory subsystem. This paper will focus\ynai the different Linux VMs have done and
mostly on the page replacement code, which byha Mach VM is quite possibly the best docu-

definition has all of physical memory and parts,ented virtual memory subsystem.
of virtual memory as its search space. The fol-

lowing aspects of page replacement will be disin the Mach VM, pages get recycled once they
cussed: reach the end of the inactive list and are clean,
meaning they do not need to be written to disk.
If the page needs to be written to disk, a so-

« Page launder, the reclaiming of pages thatalled dirty page, disk 10 is started and the
are selected for pageout. page is moved to the beginning of the inactive

list. Presumably the disk 10 will have finished
* Page aging, how to select which pages tgind the page will be clean by the time it gets to

evict. the end of the inactive list again.

» Balancing filesystem cache vs. anony-This organisation works reasonably well when
mous memaory. dealing with filesystem cache pages, since

Linux Symposium 368

= <= Allocations » The page is moved to the far end of the
inactive list.

Active * The page reclaiming code encounters the
next dirty page, starts writeout, etc.. ..

— * Since only a finite number of disk 10 op-

Referenced Moved on erations can be underway at any time, the
Inactive shortage page reclaiming code needs to wait for
= current 10 operations to finish once it has

ot started writeout on a certain number of

Inactive gfffym““ed pages.

DO stared « 10 on the pages that were written out first

finishes, meaning the pages are now clean
Not and reclaimabile.

Referenced

| G « The page reclaiming code continues with
the write out of the other dirty pages on
the inactive list.

Free
= Allocations

Of course, this has a number of serious draw-
Figure 1: Mach pageout lists backs. The most obvious one is that on large
memory systems the system will wait for most
pageout 10 to have finished before it can even

those are usually clean pages which can be réstart the last 10. Worse yet, it won't be able to
claimed the moment they reach the end of théree a page before all IO has been submitted.

inactive list. However, when the fllesystemIn the early 1990s, when the Mach VM was

cache is small and the system is dealing mOSt%opular systems had up to a few megabytes
with dirty, swap or mmap backed pages fromof mem’ory with maybe a few hundred kilo-

rocesses, this strategy has a big drawback on . . .)
Fnodern large memor?/)éomputerg ytes of inactive pages, which could be written

to disk in one or at most a few seconds. Mod-
ern systems, on the other hand, often have mul-
tiple gigabytes of memory. Since the speed of
hard disks hasn’t increased nearly as much as
the size of memory, the time needed to write

Memory used by processes is often dirty, t all of the inactive list b tabl
meaning it needs to be written back to disk, 24" @l of the inactive TSt can be Uhacceptably
high, up to dozens of seconds.

The problem with this becomes obvious when
we look at exactly what happens when all of
the pages on the inactive list are dirty:

2.1 The problem with Mach-style page laun-
dering

2.2 Solutions

» The pageout code encounters a dirty page(?ne obvious SOIU“Q” IS _to o.nly write OUt. part
of the pages on the inactive list. After all, if the
» Disk IO is started, the page is written to system needs to free ten megabytes of memory,

disk. there is little reason to write out one gigabyte of

Linux Symposium 369

data. The implementation of this solution is ason for having an inactive_clean list is that the
little less obvious, since there are various waysgree page list in a VM is never the right size.
to approach this goal and there is a tradeoff tdr'he list should be as large as possible in or-
make between CPU usage and page freeing laler to be able to satisfy allocations with low la-
tency. tency, but at the same time the list should be as
_) _) small as possible so almost all of memory can
Thg f'|rst solution would be to S|mply write o'ut be used for processes and the cache. Having a
a limited number of pages and skip the dirtyjis; of immediately reclaimable pages with use-

pages on the list, scanning the list like usuak,| gata in them avoids most of this dilemma.
and freeing all the clean pages encountered. In

situations where the inactive list has both clean T Active

and dirty pages this tactic will allow you to al- I

ways free the clean pages, reaching your free N eed

target and allowing allocations to go on with as _ —

little latency as possible. Of course, if the list Inactive

only has dirty pages, then the system could end Dirty

up spending a lot of CPU time scanning the list ! N

over and over again. Referenced Disk I0 started
| (if needed)

For the rmap VM a different, hopefully more Inactive

predictable and CPU friendly solution (Fig- Laundry

ure 2) has been chosen. Instead of just one] Not

inactive list, there are various lists for the dif- j Referenced

ferent stages of the pageout process a page can _ clean

be in. Initially all rarely used pages are placed Inactive

on the inactive_dirty list, regardless of whether] Clean e e

or not they need to be written back to disk. Not oeom

Referenced
When a page reaches the end of the inac™ ™" | _
tive_dirty list and wasn’t referenced, the VM Free

. —= Allocations
will move it to the inactive_laundry list, start-

ing disk IO if the page was dirty. Referenced _
pages get moved back to the active list. Figure 2: O(1) page launder

On the other end of the inactive_laundry list the

VM removes clean pages, until the system has

enough immediately freeable and free pages3 Page aging
Referenced pages are moved back to the active

list; cleaned pages are moved on to the inacsjnce the performance penalty of evicting the
diately reused by the page allocation code. enormous speed differential between memory

The inactive_clean list is just an extension ofand disk, any virtual memory subsystem needs

the free page list. It contains clean pages thalP .take great care in selecting which pages to

were not referenced and can be immediately re@VICt and which pages to keep in memory. On

claimed by the page allocation code. The real"® Other hand, on systems with more than a
few megabytes of memory you do not want to

Linux Symposium 370

Active N-1

scan all the active pages every time the system
is short on inactive memory.

While it is impossible to ensure this situation
will never happen, because some applicationé’;fjvifizﬁ
just have access patterns you cannot tune andividual
page replacement algorithm for, we can im- referep‘fgejs
prove the situation a lot by pre-sorting the ac-
tive pages in various lists (Figure 3), according

to activity.

Pageout
Shifts down
whole lists
at a time

%VVVVWVWV%V%

Active 0 =
The pageout code will only look at the pagesReferenced Pages, not

that most likely aren’t very active, meaning it " Inactive | referenced
has a better chance of finding the proper pages Dirty
for eviction without needing to resort to a full _ . '
scan of memory. If the list with least used Figure 3: Multi list page aging
pages is empty, the pageout code simply shifts

down all of the active lists and starts looking at

the pages that came from the next list up. 4 Balancing cache vs program

The page aging (sorting) code scans the ac- MEMOry
tive lists periodically and moves the pages that

were accessed to higher lists. It only needg gy style page replacement algorithms have
to age pages upwards, because the downwardgs||-documented, known problems. There are
movement is done by the pageout code shiftyeyeral replacement algorithms available that
ing down whole lists at a time. The period with improve the replacement of pages within one
which the page aging code scans the active listgat of data e.g. EELRU, SEQ and LRFU:

is varied in reaction to the amount of pageoutowever none of these address the problem of
activity. Ideally the system would do & sim- pajancing replacement between various sets of
ilar number of up aging scans as the numbefata. Since all currently implemented page re-
of times it shifts down active lists. The scan pjacement algorithms for Linux have this prob-

interval of the up aging code is reduced if the|em, the replacement algorithm needs some

VM did too many down shifting of active pages pe|p palancing the file cache with memory used
and increased if the VM was quiet in-betweeng, programs.

two aging scans. The page aging interval has
both a lower and an upper bound, to keep th&he rmap VM borrows a common trick from
overhead under control and to have some baclkether systems here. There are separate ac-
ground aging in an otherwise idle system. Theive lists for file cache memory and program
only time the page aging doesn't run is whenmemory, active_cache and active_anon, re-
there are more active pages on the higher listspectively. While the cache is larger than a
than on the lower lists. certain percentage of active memory only the
cache pages are a candidate for pageout, this
value is the so-called borrow percentage and
is 15 by default. Below the borrow percent-
age the VM will move both cache pages and
pages belonging to processes to the inactive

Linux Symposium 371

list, reclaiming the pages that haven't been refalso do the right thing as a second level cache
erenced again by the time they reach the far en¢e.g. an NFS server, page cache on a web proxy
of the inactive list. This gives cache and pro-where squid itself has the first level cache)
cesses a chance to balance against each othreake the implementation of LIRS for Linux a
by referencing pages. If the cache takes lespromising future experiment.

than a predetermined minimum of the active
list, one percent by default, the VM will only
reclaim pages from processes.

The de_eper_ reasons b_ehind the need for the%?everse mappings provide an inverse to the
balancing hints are a little more complex tha”page tables of the processes: that is, they keep
the reasons behind other design choices in thﬁack of which processes aré using ihe physi-

VM. One of the factors is that the amount al pages, at which virtual addresses. Using

of data on the filesystems tends to be Severa:leverse mappings, the pageout code can:
magnitudes larger than the amount of mem- ’ '

ory taken by the processes in the system. This

means that the number of accesses to pages. Unmap a page from all processes using

from the file cache could overwhelm the to- it, without needing to search the virtual

tal number of accesses to the pages of the pro- memory of all processes.

cesses, even though the individual pages of the

processes get accessed more frequently than * Unmap only those pages it really wants to

most file cache pages. In other words, the sys- evict, instead of scanning the virtual mem-

tem can end up evicting frequently accessed ory of all processes and unmapping more

pages from memory in favor of a mass of re- pages than it wants to evict in order to be

cently but far less frequently accessed pages. on the safe side. This could reduce the
number of minor page faults.

5 Reverse mapping

A replacement algorithm like LIRS, Low Inter-

reference Recency Set, would probably do e Evict pages in a certain physical address
the right thing since it replaces pages with range, which is useful since Linux divides
a higher interval between references before physical memory into various zones.
pages that have a lower interval between ref-

erences. However, for LIRS to work properly ¢ Scan only the virtual mappings of known
the VM would need to keep track of pages that inactive pages, which means the pageout
have already been evicted from memory. Since ~ code has a smaller search space in virtual
Linux does not have an infrastructure to keep ~ mMemory. Combined with smarter page ag-

track of those, the rmap VM uses an LRFU ing and page laundering, this results in a
style page replacement algorithm with cache ~ smaller overall search space for the page-
size hints. out code.

Even if the direct value of LIRS over _

LRU/LFU for use as a primary cache wouldn't >-1 Page based vs object based

be big enough to offset the overhead of the

needed infrastructure, the facts that LIRSThere are pros and cons to doing reverse map-

would make the file cache vs process memping on a per-page or a per-object basis. Re-

ory balancing automatic and that LIRS wouldverse mapping on a per-page basis is more ef-
ficient for the pageout code, but the reverse

Linux Symposium 372

mapping code affects more than just the pagestage kernel development is at.
out code path. The page fault, fork, exit, and
mmap paths all modify the reverse mappings,Users have shown beyond any doubt that there

so doing reverse mappings on objects largef® legitimate Wo_rkloa_ds that br'ing out the
than a page (like a vma) would reduce the reWWOrst case behaviour in any VM; because of
verse mapping overhead in those code paths, §1iS there is a constant need to bring the al-

the cost of the pageout code needing to searc@rithmic complexity of any part of the vir-
more space. tual memory management subsystem closer to

the holy grail of constant-time, or O(1) com-
The big question here is how much theplexity. The author expects development of
overhead and algorithmic complexities wouldthe Linux virtual management subsystem to re-
change, especially under larger workloads. Amain challenging for years to come.
guadratic increase in complexity in the pageout
path is almost certainly more expensive than7 References
what could be offset by a linear speedup in the
other code paths, even though the pageout path
is rarely run. Draves, Richard FPage Replacement and

_ _ Reference Bit Emulation in Machn
Large workloads, with many gigabytes of Proceedings of the USENIX Mach

memory and hundreds or thousands of largeSymposium, Monterey, CA, November 1991.
active processes are certainly able to bring out

the worst of any VM; with the current imple- Y. Smaragdakis, S. Kaplan, and P. Wilson,
mentations it doesn’t even matter which styleEELRU: Simple and Effective Adaptive Page
of reverse mapping is used. Bad behaviour caRReplacemenh Proceeding of the 1999 ACM
be triggered in either case. SIGMETRICS Conference, 1999.

It appears that for both object-based and pagesideon Glass and Pei CaAdaptive Page
based reverse mappings, Linux is in need oReplacement Based on Memory Reference
smarter data structures that aren’t susceptiBehavior.In Proceedings of ACM

ble to quadratic algorithmic complexities any- SIGMETRICS 1997, June, 1997.

where. Once those are written we will be able _ _

to make a proper comparison between bottP: L€, J. Choi, J.-H. Kim, S.H. Noh, S.L.
methods of reverse mapping. It is conceiv-Min, Y- Cho, and C.S. KimLRFU: A

able that Linux would end up using a hybrid of spectrum of policies that subsumes the least
object-based and page-based reverse mappid§Cently used and least frequently used

with each type being used where it is most appoliciesIEEE Trans. Computers, vol. 50, no.
propriate. 12, pp. 1352-1360, 2001.

S. Jiang and X. Zhuand.IRS: An efficient low
6 Conclusions inter-reference recency set replacement policy
to improve buffer cache performanda.Proc.

: of SIGMETRICS 2002.
Linux memory management has come a long

way in the last few years, but at the same time
users have deployed Linux in more and more
demanding environments. In fact, demand al-
ways seems to be one step ahead of whatever

Proceedings of the
Linux Symposium

July 23th—-26th, 2003
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. HuttonSteamballoon, Inc.
Stephanie Donovar,inux Symposium
C. Craig Rossl.inux Symposium

Review Committee

Alan Cox,Red Hat, Inc.

Andi Kleen,SuSE, GmbH

Matthew Wilcox,Hewlett-Packard

Gerrit HuizengalBM

Andrew J. HuttonSteamballoon, Inc.

C. Craig Rossl.inux Symposium

Martin K. Petersenyild Open Source, Inc.

Proceedings Formatting Team

John W. LockhartRed Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

