
Machine Check Recovery for Linux on Itanium®
Processors

Tony Luck
Intel Corporation

Software and Solutions Group

tony.luck@intel.com

Abstract

The Itanium1 processor architecture provides
a machine check abort mechanism for report-
ing and recovering from a variety of hardware
errors that may be detected by the processor
or chip set. Simple errors such as single bit
ECC may be corrected transparently to the op-
erating system by hardware and firmware, but
more complex errors where data has been lost
require OS intervention. In cases where the OS
can reconstruct the lost data, then execution
can continue transparently to the application
layer, otherwise the OS may decide to sacri-
fice affected user processes to allow the system
to continue. This paper describes how Linux
can recover from TLB errors without affecting
applications, and also how Linux can recover
from certain memory errors at the expense of
terminating user processes.

1 Introduction

Server systems are not just about increased
speed and capacity. They must also provide
better reliability than their desktop and mo-
bile cousins. The Intel Itanium architecture in-

1Itanium is a registered trademark of Intel Corpo-
ration or its subsidiaries in the United States and other
countries. Other names and brands may be claimed as
the property of others.

cludes a machine check architecture that pro-
vides the mechanism to detect, contain and in
many cases correct processor and platform er-
rors.

2 Source of errors

There are several sources of errors within a
computer system:

1. Electrical supply line fluctuations

Can be mitigated with a high quality
power supply with surge suppression ca-
pability.

2. Static electricity

Effects can be lessened by good enclosure
design and special static reducing floor
covering.

3. Heat

Reduced by good thermal design of sys-
tem enclosure and air-conditioning of the
computer room. Hardware may also de-
tect excess temperature and automatically
switch to mode where less power is dis-
sipated (e.g. a lower clock speed and/or
voltage, or a reduction in the number of
available functional units for retiring in-
structions).



Linux Symposium 298

4. Interaction with high energy particles due
to radioactive decay

Can be reduced by careful selection of
the materials used to build the system
(e.g. use of ultra pure dopants consisting
of only stable isotopes), and addition of
shielding.

5. Interaction with high energy particles
from cosmic ray showers in the earth’s at-
mosphere

Reduce by shielding (locate computer
room in the basement) and avoiding high
altitude locations for computer systems
(intensity in Denver, altitude 5280 feet, is
over four times higher than at sea level lo-
cations).

Why is this important? Other aspects of hard-
ware are getting more reliable, but as feature
size is reduced they become more susceptible
to particles (as lower energy particles are capa-
ble of flipping bits). Software is getting more
reliable too: we cannot just blame crashes on
the OS. Clusters of computers multiply the er-
ror rates. A mean time between failure of sev-
eral years for a processor isn’t too bad of a
problem if you only have one processor, when
you build a cluster of several thousand proces-
sors, then you have a big problem.

For each of the error sources listed above I have
suggested methods by which the error rate may
be reduced, but it may be impractical or too ex-
pensive to reduce all of these errors to insignif-
icant levels, hence computer systems must be
designed to detect, isolate and recover from er-
rors when they do occur.

3 Itanium Machine Check Archi-
tecture

The Itanium machine check architecture pro-
vides a framework in which diverse types of

errors can be handled in a logical and consis-
tent way.

3.1 Error severity

Errors are divided into three categories:

1. Corrected errors are those that are re-
paired by hardware or by firmware. In ei-
ther case an interrupt (CMCI2 for proces-
sor errors, CPEI3 for platform errors) may
be raised for logging purposes.

Examples of this type of error are a cor-
rectable single-bit ECC error in the pro-
cessor cache or a correctable single-bit
ECC error on the system bus.

2. Recoverable errors involve some loss of
state. They require operating system in-
tervention to determine whether it is pos-
sible for the system to continue operation.

An example of a recoverable error is one
where incorrect data is about to be passed
to a processor register (e.g. from a load
from memory with a multi-bit ECC error).

3. Fatal errors cannot be corrected. A system
reboot is required.

On this kind of error, the processor gener-
ates a signal that is broadcast on the sys-
tem bus (called BINIT#) that causes the
processor to discard all in-flight transac-
tions to prevent error propagation. The er-
ror is fatal because there is no way to re-
cover the state of the discarded bus trans-
action, hence the need for a system reboot.

An example of a fatal error is a processor
time-out (when the processor has not re-
tired any instructions after a certain time
period).

2Corrected Machine Check Interrupt
3Corrected Platform Error Interrupt



Linux Symposium 299

In
cr

ea
sin

g 
Se

ve
rit

y 
of

 E
rro

r
Error Corrected

by hardware;
process continues

Error Corrected
by firmware;

process continues

Error Correction
dependent on OS

analysis & capapilities
error is signalled to
local processor only

Error Correction
dependent on OS

analysis & capapilities
error is signalled to

all processors

OS is not stable;
reboot is required;
error is signalled to

all processors

Corrected, CMCI or CPEI

Recoverable, Local MCA

Recoverable, Multiple
MCA

Fatal MCA

Corrected, Local MCA,
CMCI or CPEI

3.2 Control flow

This diagram shows how the hardware, pro-
cessor, processor abstraction layer, system ab-
straction layer and operating system interact to
handle machine checks:

Operating System Software

System Abstraction Layer
(SAL)

Processor Abstraction Layer
(PAL)

Processor (Hardware)

Platform (Hardware)

SAL MCA
Procedure

Call

PAL MCA
Procedure

Call

MCA
Hardware

events

MCA
Handoff

MCA
Handoff

At the hardware level, hardware redundancy
(parity and ECC) is used to detect and possi-
bly correct errors during program execution. In
some correctable cases the hardware may sim-
ply fix the error on the fly and raise a corrected

error interrupt to allow logging of the event. In
other cases the processor will save all machine
state and pass control to the PAL (Processor
Abstraction Layer) code at the PAL_MCA en-
try point for analysis and further processing by
firmware. Different members of the Itanium
processor family may make different choices
about whether to fix errors in hardware or pass
responsibility up to firmware.

Entry to the PAL is made in physical mode
with caches disabled. This provides the option
for the PAL to handle some types of errors de-
tected in the cache, which is useful since on
chip caches make up so much of the die area
of modern processors that they are statistically
one of the most likely forms of errors (from the
processor itself. . . memory errors from a large
array of DIMMS are probably the most likely
system-wide source of errors). If the error is
corrected at this point, then execution can be
resumed, but again an interrupt is raised to al-
low the error to be logged.

Next layer in the firmware stack is the SAL
(System Abstraction Layer) which is respon-
sible for components outside of the processor
itself (e.g. chip set, memory, I/O bus bridges
etc.). The processor is still executing in phys-
ical mode (MMU disabled), we may have en-
abled the caches by this point (depending on
whether the SAL machine check entry point is
located in cacheable or uncacheable memory).
SAL code examines the details of the error and
determines whether it can fix it without caus-
ing loss or corruption of any data. As above, if
the error is fixed, then execution resumes with
a pended interrupt to log the details.

At the highest level is the operating system.
Errors that have not been corrected at lower
levels, but which leave the processor in an in-
ternally consistent state, are still recoverable.
These can be passed to the operating system
if it is interested in trying to recover. An op-



Linux Symposium 300

erating system indicates it is capable and will-
ing to handle machine check errors by regis-
tering an entry point with the SAL using the
SAL_SET_VECTORS call. Note that the op-
erating system entry point must be a physi-
cal address because it is possible that the error
to be handled is in the memory management
H/W, hence the MMU must still be disabled
when the SAL transfers control to the operating
system entry point. The physical entry point
means that the code to service machine check
abort must either be position independent, or
at least very aware of relocation issues since it
will not be executing at the kernel’s linked ad-
dress. Also the SAL_SET_VECTORS call al-
lows the operating system to provide the length
and a simple byte checksum of the code so that
the SAL may validate that the routine has not
been corrupted.

4 Reporting corrected errors

As mentioned above, errors that are corrected
by hardware, PAL, or SAL may be reported
to the operating system by means of a CMCI
(Corrected Machine Check Interrupt) for errors
inside the processor, or a CPEI (Corrected Plat-
form Error Interrupt) for system errors outside
of the processor. The operating system may
choose to disable these interrupts and period-
ically poll the SAL to see if any errors have
been corrected. It might do this to avoid be-
ing swamped by corrected error interrupts (e.g.
a stuck data line causing hard single-bit mem-
ory errors across a wide range of physical ad-
dresses, we would like to ensure that the op-
erating system can continue to make forward
progress).

Whether the operating system takes interrupts
or polls, once a corrected error record is found
the OS can retrieve the whole record, parse it
to find any useful information, and then output
details to its own log. As a final step in error

reporting the operating system must request the
SAL to clear the error record from non-volatile
memory (to ensure that space is available for
future errors to be logged).

User level tools could be written to analyze the
operating system logs to check for patterns that
may be predictive of future hard errors in com-
ponents that generate a high level of soft errors.

5 Poisoned memory

Another feature of the machine check archi-
tecture is the concept of “poisoned memory.”
This allows a platform the option of deferring
error processing in some circumstances. Sup-
pose a modified cache line is being written
back to memory when an uncorrectable error
is detected in the data contained in the cache
line. The current execution state of the pro-
cessor probably has no connection with this
data, so signaling a machine check abort at
this time may be an over-reaction to the situ-
ation. Instead, the data can be written to mem-
ory together with an indication that it is corrupt
(the “poison” flag, typically indicated with bad
ECC bits). A regular CMC interrupt is then
raised, and the OS is allowed to examine the
situation later. Deferring the error in this case
may be useful, because it is not certain that the
corrupted data will ever be needed (e.g., the
page to which the cache line belongs may al-
ready have been freed by the operating system,
or the word that was corrupted in the cache line
may have only been present in the cache be-
cause of false sharing).

Note that in the “read” case data poisoning
does not apply, the processor will immediately
begin MCA processing.

If the operating system writer is concerned that
the poisoned data may be consumed before the
interrupt is processed, there is an option to pro-
mote CMCI to MCA to allow immediate ac-



Linux Symposium 301

tion to be taken (though this option applies to
all CMCI, not just to those caused by poison
data).

6 Operating system examples

Here are some example cases of recoverable er-
rors where the operating system can intervene
to recover from an error that has been detected
and reported using the above mechanism.

6.1 TLB translation register error

The Translation lookaside buffer in the Ita-
nium processor is not only divided into sepa-
rate structures for instruction and data access,
it is also conceptually divided into two types of
entries.

1. Translation cache entries can freely be re-
placed as new mappings are added.

2. Translation register entries are locked into
the TLB. These are used to “pin” trans-
lations for critical regions to ensure that
a TLB miss will never occur for a virtual
address mapped by a locked entry.

Errors in translation cache can be trivially han-
dled by H/W or PAL by simply discarding cor-
rupted entries from the cache. This will only
affect performance, if the discarded entry is
needed, the processor will simply reload using
the normal TLB miss execution path. How-
ever, if an error is detected in one of the transla-
tion registers, then the fault cannot be handled
by F/W, PAL or SAL, since the entry cannot
just be dropped and the firmware does not have
enough information to reconstruct the damaged
entry. So the error is propagated up to the OS
which needs to reload the errant register. The
ia64 Linux implementation uses the following
TR registers:

ITR(0) maps one large kernel page4 as the
kernel text (code)

DTR(0) maps one large kernel page as the ker-
nel data

ITR(1) maps one granule5 for PAL

DTR(1) maps one page6 for per-cpu area

DTR(2) maps one granule for kernel stack

The first four of these are loaded during ker-
nel initialization, and are never changed, so it
is a simple matter to add code to save the cor-
rect values for these registers in memory, so
that the MCA handler can reload when needed.
The last, mapping the kernel stack, can poten-
tially be reloaded on every context switch (ac-
tual reloads occur when the task structure for
the new process is in a different large kernel
page). The Linux kernel uses one of the su-
pervisor mode registers (ar.k4) to keep track of
which large kernel page is currently mapped,
and this register can be used to reconstruct the
DTR(2) value during the MCA handler.

Although the SAL error record generated for
an error in a translation register provides in-
formation on which register(s) have errors, it
would require a large amount of code to re-
trieve and parse the error record to determine
exactly which registers need to be reloaded.
All this code would have to run in physical
mode (remember that SAL passes control to
the operating system MCA entry point in phys-
ical mode, and it is not possible to transition to
virtual mode for this particular error, since we
know that one or more of the translation reg-
isters are corrupt). The simple solution to this
issue is to have the MCA TLB recovery code
purge and reload all of the TR registers in the

4Kernel is always mapped with a single 64MB page
5another type of large kernel page, configurable as

either 16MB or 64MB
6PAGE_SIZE on 2.4, 64k on 2.5



Linux Symposium 302

physical mode code. Then we can safely tran-
sition to virtual mode to retrieve and examine
the record from the SAL error log to report the
actual register(s) that were affected by the er-
ror.

6.2 Multi bit ECC error in memory

In this case some data has been irretrievably
lost, so the operating system cannot escape
from this situation unscathed. The basic strat-
egy for the OS is to identify the address of the
memory that reported the error. If the mem-
ory is owned by the kernel, this will currently
be reported as a fatal error by the Linux MCA
handler and the OS will reboot (to be strictly
accurate the Linux MCA handler will return to
SAL with a request to reboot, and the error will
be reported by Linux after the reboot when the
SAL error record is retrieved from NVRAM).
If the memory is allocated to one or more user
processes, the processes can be sacrificed to
allow the system to continue running (just as
the OOM killer will terminate processes when
Linux runs out of memory). Life is rarely that
simple. In this case a complication is that ma-
chine checks are not reported synchronously to
the instructions that trigger them, they may be
deferred for a long time (in the worst case until
the values are consumed). The processor pre-
cisely identifies the location at which the fault
is detected, but does not provide information
about the point at which the fault occurred. The
processor does not automatically7 raise ma-
chine checks across privilege transitions from
user to kernel mode and vice versa, so it is pos-
sible that an error caused in one privilege state
will be reported in the other state. Easy cases:

a) fault triggered in user mode is reported in
user mode—kill process

7There is a PAL call PAL_MC_DRAIN to do this,
but it would be a major performance issue to use this on
every transition

b) fault triggered in kernel mode is reported
in kernel mode—system reboot

Harder cases:

c) fault triggered in kernel mode is reported
in user mode—this is a very subtle case.
At first sight it appears that our error han-
dler cannot do the right thing. This case
is indistinguishable from case ‘a’ above,
since we only have precise information
about where the error was detected. But
if the error occured in some kernel data,
just killing the process is not the correct
action. It would leave the kernel running
with a corrupted data structure! However,
we are saved by the fact that the error
is detected when the user process tries to
consume the data, and we know that only
a buggy kernel would leak details of a ker-
nel data structure to user mode. So we can
assume that any such error that happened
in kernel mode and was detected in user
mode must have occurred when the ker-
nel was restoring registers that belonged
to the user process. Thus killing the pro-
cess is sufficient to contain the error.

d) fault triggered in user mode is reported
in kernel mode—sadly this will cause a
reboot because it isn’t possible to distin-
guish this from case ‘b’ above (though it
might be possible to eliminate many of
these cases by a special case for faults re-
ported during the code that saves user reg-
isters).

6.3 PCI errors

The Itanium processor family machine check
architecture provides a framework for report-
ing platform errors, such as PCI bus errors.
From an OS perspective, these may be far more
complex to handle. Issues are:



Linux Symposium 303

1. We would like a framework that is min-
imally invasive to the existing driver
model.

2. Linux is just starting to get support for
hot-add and hot-remove of devices, but it
is a big step from there to support surprise
removal of devices when errors occur.

3. Even in the case of transient errors, recov-
ery may be complicated by the firmware
on the card, which typically has been writ-
ten with an expectation that the system
will reboot after an error.

7 Acknowledgments

Thanks to all the people at Intel who spent time
reviewing this paper and providing invaluable
feedback.

References

[Menyhárt] Z. Menyhárt and D. Song,OS
Machine Check Recovery on Itanium
Architecture-base Platforms, Intel
Developer Forum, Fall 2002

[Ziegler] J.F. Ziegler,Terrestrial cosmic ray
intensities, IBM Journal of Research and
Development, Volume 42, Number 1,
1998

[SDV] Intel, Intel Itanium Architecture
Software Developer’s Manual, Volume
1–3

[EHG] Intel, Itanium Processor Family Error
Handling Guide, August 2001

[SAL] Intel, Itanium Processor Family
System Abstraction Layer (SAL)
Specification, November 2002



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


