
Interactive Kernel Performance
Kernel Performance in Desktop and Real-time Applications

Robert Love
MontaVista Software

rml@tech9.net, http://tech9.net/rml

Abstract

The 2.5 development kernel introduced multi-
ple changes intent on improving the interactive
performance of Linux. Unfortunately, the term
“interactive performance” is rather vague and
lacks proper metrics with which to measure.
Instead, we can focus on five key elements:

• fairness

• scheduling latency

• interrupt latency

• process scheduler decisions

• I/O scheduler decisions

In short, these attributes help constitute the feel
of Linux on the desktop and the performance
of Linux in real-time applications. As Linux
rapidly gains market share both on the desk-
top and in embedded solutions, quick system
response is growing in importance. This paper
will discuss these attributes and their effect on
interactive performance.

Then, this paper will look at the responses to
these issues introduced in the 2.5 development
kernel:

• O(1) scheduler

• Anticipatory/Deadline I/O Scheduler

• Preemptive Kernel

• Improved Core Kernel Algorithms

Along the way, we will look at the current in-
teractive performance of 2.5.

1 Introduction

Interactive performance is important to a wide
selection of computing classes: desktop, multi-
media, gamer, embedded, and real-time. These
application types benefit from quick system re-
sponse and deterministic or bounded behav-
ior. They are generally characterized as having
explicit timing constraints and are often I/O-
bound. The range of applications represented
in these classes, however, varies greatly—word
processors, video players, Quake, cell phone
interfaces, and data acquisition systems are
all very different applications. But they all
demand specific response times (although to
varying degrees) to various stimuli (whether its
the user at the console or data from a device)
and all of these applications find good interac-
tive performance important.

But whatis interactive performance? How can
we say whether a kernel has good interactive
performance or not? For real-time applica-
tions, it is easy: “do we meet our timing con-
straints or not?” For multimedia applications,
the task is harder but still possible: for ex-
ample, “does our audio or video skip?” For



Linux Symposium 286

desktop users, the job is even harder. How
does one express the interactive performance
of their text editor or mailer? Worse, how does
one quantify such performance? All too of-
ten, interactive performance is judged by the
seat of one’s pants. While actually perceiv-
ing good interactive performance is an impor-
tant part of their actually existing good inter-
active performance, a qualitative experience is
not regimented enough for extensive study and
risks suffering from the placebo effect.

For the purpose of this paper, we break down
the vague term “interactive performance” and
define five attributes of a kernel which benefit
the aforementioned types of applications: fair-
ness, scheduling latency, interrupt latency, pro-
cess scheduler decisions, and I/O scheduler de-
cisions.

We then look at four major additions to the 2.5
kernel which improve these qualities: the O(1)
scheduler, the deadline and anticipatory I/O
schedulers, kernel preemption, and improved
kernel algorithms.

2 Interactive Performance

2.1 Fairness

Fairness describes the ability of tasks to all
make not only forward progress but to do
so relatively evenly. If a given task fails to
make any forward progress, we say the task
is starved. Starvation is the worst example of
a lack of fairness, but any situation in which
some tasks make a relatively greater percent-
age of progress than other tasks lacks fairness.

Fairness is often a hard attribute to justify
maintaining because it is often a tradeoff be-
tween overall global performance and local-
ized performance. For example, in an effort
to provide maximum disk throughput, the 2.4
block I/O scheduler may starve older requests

in order to continue processing newer requests
at the current disk head position. This mini-
mizes seeks and thus provides maximum over-
all disk throughput—at the expense of fairness
to all requests.

Since the starved task may be interactive or
otherwise timing-sensitive, ensuring fairness to
all tasks (or at least all tasks of a given im-
portance) is a very important quality of good
interactive performance. Improving fairness
throughout the kernel is one of the biggest
changes made during the 2.5 development ker-
nel.

2.2 Scheduling Latency

Scheduling latency is the delay between a task
waking up (becoming runnable) and actually
running. Assuming the task is of a suffi-
ciently high priority, this delay should be quite
small: an interrupt (or other event) occurs
which wakes the task up, the scheduler is in-
voked to select a new task and selects the newly
woken up task, and the task is executed. Poor
scheduling latency leads to unmet timing re-
quirements in real-time applications, percepti-
ble lag in application response in desktop ap-
plications, and dropped frames or skipped au-
dio in multimedia applications.

Both maximum and average scheduling la-
tency is important, and both need to be min-
imized for superior interactive performance.
Nearly all applications benefit from minimal
average scheduling latency, and Linux pro-
vides exceptionally good average-case perfor-
mance. Worst-case performance is a differ-
ent issue: it is an annoyance to desktop users
when, for example, heavy disk I/O or odd VM
operations cause their text editor to go cata-
tonic. If the event is relatively rare enough,
however, they may overlook it. Both real-time
and multimedia applications, however, require
a specific bound on worst-case scheduling la-



Linux Symposium 287

tencies to ensure functionality.

The preemptive kernel and improved algo-
rithms (reducing lock hold time or reducing the
algorithmic upper bound) result in a reduction
in both average and worst-case scheduling la-
tency in 2.5.

2.3 Interrupt Latency

Interrupt latency is the delay between a hard-
ware device generating an interrupt and an in-
terrupt handler running and processing the in-
terrupt. High interrupt latency leads to poor
system response as the actions of hardware are
not readily perceived by the kernel.

Interrupt latency in Linux is basically a func-
tion of interrupt off time—the time in which
the local interrupt system is disabled. This only
occurs inside the kernel and only for short pe-
riods of time reflecting critical regions which
must execute without risk of an interrupt han-
dler running. Linux has always had compar-
atively small interrupt latencies—on modern
machines, less than 100 microseconds.

Consequently, reducing interrupt latency was
not a primary goal of 2.5, although it undoubt-
edly occurred as lock hold times were reduced
and the global kernel lock (cli() ) was finally
removed.

2.4 Process Scheduler Decisions

The behavior and decisions made by the pro-
cess scheduler (the subsystem of the kernel
that divides the resource of CPU time among
runnable processes) are important to maintain-
ing good interactive performance. This should
go without saying: poor decisions can lead
to starvation and poor algorithms can lead to
scheduling latency. The process scheduler also
enforces static priorities and can issue dynamic
priorities based on a rule-set or heuristic.

The process scheduler in 2.5 provides deter-
ministic scheduling latency via anO(1) algo-
rithm and a new interactivity estimator which
issues priority bonuses for interactive tasks and
priority penalties for CPU-hogging tasks.

2.5 I/O Scheduler Decisions

I/O scheduler (the subsystem of the kernel that
divides the resource of disk I/O among block
I/O requests) decisions strongly affect fairness.
The primary goal of any I/O scheduler is to
minimize seeks; this is done by merging and
sorting requests. This maximizing of global
throughput can directly lead to localized fair-
ness issues. Request starvation, particularly of
read requests, can lead to long application de-
lays.

Two new I/O schedulers available for 2.5, the
deadline and the anticipatory I/O schedulers,
prevent request starvation by attempting to dis-
patch I/O requests before a configurable dead-
line has elapsed.

3 Process Scheduler

3.1 Introduction

The process scheduler plays an important role
in interactive performance. The Linux sched-
uler offers three different scheduling policies,
one for normal tasks and two for real-time
tasks. For normal tasks, each task is assigned
a priority by the user (the nice value). Each
task is assigned a chunk of the processor’s time
(a timeslice). Tasks with a higher priority run
prior to tasks with a lower priority; tasks at the
same priority are round-robined amongst them-
selves. In this manner, the scheduler prefers
tasks with a higher priority but ensures fairness
to those tasks at the same priority.

The kernel supports two types of real-time



Linux Symposium 288

tasks, first-in first-out (FIFO) real-time tasks
and round-robin (RR) real-time tasks. Both
are assigned a static priority. FIFO tasks run
until they voluntarily relinquish the processor.
Tasks at a higher priority run prior to tasks at
a lower priority; tasks at the same priority are
round-robined amongst themselves. RR tasks
are assigned a timeslice and run until they ex-
haust their timeslice. Once all RR tasks of a
given priority level exhaust their timeslice, the
timeslices are refilled and they continue run-
ning. RR tasks at a higher priority run before
tasks at a lower priority. Since real-time tasks
can be scheduled unfairly, they are expected to
have a sane design which properly utilizes the
system.

All scheduling in Linux is done preemptively,
except FIFO tasks which run until completi-
tion. New in 2.5, preemption of tasks can now
occur inside the kernel.

For 2.5, the process scheduler was rewritten.
The new scheduler, dubbed the O(1) sched-
uler, features constant-time algorithms, per-
processor runqueues, and a new interactivity
estimator. The Linux scheduling policy, how-
ever, is unchanged.

3.2 Interactivity Estimator

The 2.5 scheduler includes an interactivity es-
timator [mingo1] which dynamically scales a
task’s static priority (nice value) based on its
interactivity. Interactive tasks receive a prior-
ity bonus while tasks which excessively hog
the CPU receive a penalty. Tasks in some theo-
retical neutral position (neither interactive nor
hoggish) receive neither a bonus nor a penalty.
By default, up to five priority values are added
or removed to reflect the degree of the bonus
or the penalty; note this corresponds to 25% of
the full -20 to 19 nice value range.

Interactivity is estimated using a running sleep

average. The idea is that interactive tasks are
I/O bound. They spend much of their time
waiting for user interaction or some other event
to occur. Tasks which spend much of their time
sleeping are thus interactive; tasks which spend
much of their time running (continually ex-
hausting their timeslice) are CPU hogs. These
rules are surprisingly simple; indeed, they are
essentially the definitions of I/O-bound and
CPU-bound. The fact the heuristic is basically
following the definition lends credibility to the
estimator.

The heuristic determines the actual bonus or
penalty based on the ratio of the task’s actual
sleep average against a constant “maximum”
sleep average. The closer the task is to the
maximum, the more of the five bonus priority
levels it can receive. Conversely, the closer the
task is to the negation of the maximum sleep
average, the larger its penalty is.

The results of the interactivity estimator are ap-
parent:

USER NI PRI %CPU STAT COMMAND
rml 0 15 0.0 S vim
rml 0 18 0.4 S bash
rml 0 25 91.7 R infloop

First, note the kernel priority values (thePRI
column) correspond to a mapping of the default
nice value of zero to the value 20. The low-
est priority nice value, 19, is priority 39. The
highest priority nice value, -20, is zero. Thus,
lower priority values are higher in priority. A
text editor, vim, has received the full negative
five priority bonus. Since it initially had a nice
value of zero, it now has a priority of 15. Con-
versely, a program executing an infinite loop
received the full positive five priority penalty;
it now has a priority of 25. Bash, which is ba-
sically interactive but performs computation in
scripts, has received a smaller bonus and now
has a priority of 18.

Higher priority (that is, lower priority val-



Linux Symposium 289

ued) tasks are scheduled prior to lower prior-
ity (higher priority valued) tasks. They also re-
ceive a larger timeslice. This implies that in-
teractive tasks are usually runnable; they are
scheduled first and generally have plenty of
timeslice with which to run. This ensures that
the text editor is capable of responding to a
keypress instantly, even if the system is under
load.

The interactivity estimator does not apply to
real-time tasks, which occupy a fixed priority
in a higher priority range than any normal task.
The estimator benefits interactive desktop pro-
grams, such as a text editor or mailer.

3.3 Reinsertion of Interactive Tasks

All process schedulers implement a mech-
anism of recalculating and refilling process
timeslices. In the most rudimentary of sched-
ulers, this work occurs when all processes have
exhausted their timeslice and then the times-
lice and priority of each process is recalculated
and reassigned. Scheduling then continues as
before, until again all processes exhaust their
timeslice and this work repeats.

The O(1) scheduler implements anO(1) algo-
rithm for timeslice recalculation and refilling.
Instead of performing a largeO(n) recalcu-
lation when all processes exhaust their times-
lice, the O(1) scheduler implements two arrays
of tasks, the active array and the expired array.
When a task exhausts its timeslice, it is moved
to the expired array and its timeslice is refilled.
When the active array is empty, the two ar-
rays are switched (via a simple pointer swap)
and the scheduler begins executing tasks out of
the new active array. This algorithm guaran-
tees a deterministic and constant-time solution
to timeslice recalculation.

Another benefit of this approach is it provides
a simple prevention to processor starvation of

interactive tasks. In the 2.4 scheduler, when a
task exhausts its timeslice it does not have a
chance to run again until the remaining tasks
also exhaust their timeslice and timeslices are
globally recalculated. This allows starvation of
the task, which might lead to perceptable de-
lays. To prevent this, the 2.5 scheduler will
reinsert interactive tasks into the active array
when they expire their timeslice.How interac-
tive a task need be in order to be reinserted into
the active array and not expired depends on the
task’s priority. To prevent indefinite starvation
of non-interactive tasks in the expired array, in-
teractive tasks are only reinserted into the ac-
tive array so long as the tasks on the expired
array have run recently.

3.4 Finegrained timeslice distribution

A final behavioral change in the O(1) sched-
uler is a more finegrained timeslice distribution
and calculation [mingo2]. Currently, this be-
havior is only present in the 2.5-mm tree but
will likely be merged into the mainline 2.5 tree
soon.

Normally, tasks are round-robined with other
tasks of the same priority (tasks with a higher
priority are run earlier and tasks with a lower
priority will run later). When they exhaust their
timeslice, their priority is recalculated (taking
into effect the interactivity estimator) and they
are either placed on the expired list or inserted
into the back of the queue for their priority
level.

This leads to two problems. First, the scheduler
may give an interactive task a large timeslice in
order to ensure it is always runnable. This is
good, but it also results in a long timeslice that
may prevent other tasks from running. Second,
since priority is recalculated only when a task
exhausts its timeslice, a task with a large times-
lice may go some time without a priority re-
calculation. The task’s behavior may change



Linux Symposium 290

in this time, reversing whether or not the task
is deemed interactive. Recognizing this, the
scheduler was modified to split timeslices into
small pieces—by default, 20ms chunks. Tasks
do not receive any less timeslice, instead a task
of equal priority may preempt the running task
every 20ms. The task is then requeued to the
end of the list for its priority and it continues
to run round robin with other tasks at its prior-
ity level. In addition to this finer distribution
of timeslices, the task’s priority is recalculated
every 20ms as well.

3.5 An O(1) Algorithm

An important property of real-time systems is
deterministic behavior. Time-sensitive applica-
tions demand consistent behavior that they can
understand a priori. Critical algorithms, there-
fore, need to operate in constant time or at least
within predefined bounds.

It is important that scheduling behavior (espe-
cially process selection and process wake up)
operate deterministically, as time-sensitive ap-
plications demand minimal latency from wake
up to process selection to actual execution. If a
scheduling algorithm is dependent on the total
number of processes (or runnable processes)
even a high priority task cannot make an as-
sumption about scheduling latency. Worse,
with a sufficiently large number of processes,
the time required to wake up and schedule a
task may be far larger than acceptable (e.g.,
your mp3 may skip or the nuclear power plant
may meltdown).

By introducing O(1) —constant time—
algorithms for all scheduler functions, the
O(1) scheduler offers not only deterministic
but constant scheduler performance. The
scheduler can wake up a task, select it to run,
and execute it in the same amount of time
regardless of whether there are five or five
hundred thousand processes on the system.

More so, since the O(1) scheduler has excep-
tionally quick O(1) algorithms, scheduling
latency may be reduced for a givenn over
previous scheduling algorithms. Thus, the
2.5 scheduler offers deterministic, constant,
and (perhaps) reduced scheduling latency over
previous Linux kernel schedulers.

4 I/O Scheduler

4.1 Introduction

The primary job of any I/O scheduler (some-
times called an elevator) is to merge adjacent
requests together (to minimize requests) and
to sort incoming requests seek-wise along the
disk (to minimize disk head movement). Re-
ducing the number of requests and minimizing
disk head movement is critical for overall disk
throughput. Disk seeks (moving the disk head
from one sector to another) are very slow. If the
number and distance of seeks are minimized by
reordering requests, disk transfer rates are kept
closer to their theoretical maximum.

In the interest of global throughput, however,
I/O scheduler decisions can introduce local
fairness problems. Sorting requests can lead
to the starvation of requests that are not near
other requests on the disk. If a heavy writeout
is underway, the incoming write requests are
inserted near each other in the request queue
and dealt with quickly, minimizing seeks. A
request to a far-off sector may not receive at-
tention for some time. This request starvation
is detrimental to system response as it is unfair.
Request starvation is a shortcoming in the 2.4
I/O scheduler.

The general issue of request starvation leads
to a more specific case of starvation, writes-
starving-reads. Write operations can usually
occur whenever the I/O scheduler wishes to
commit them, asynchronous with respect to the



Linux Symposium 291

submitting application or filesystem. Read op-
erations, however, almost always involve a pro-
cess waiting for the read to complete—that is,
read requests are usually synchronous with re-
spect to the submitting application or filesys-
tem. Because system response is largely un-
affected by write latency (the time required to
commit a write) but is strongly affected by read
latency (the time required to commit a read),
prioritizing reads over writes will prevent write
requests from starving read requests and in-
crease the responsiveness of the system.

Unfortunately, minimizing seeks and prevent-
ing unfairness from request starvation are
largely conflicting goals. With a proper solu-
tion, however, the fairness issues are resolvable
without a large drop in global disk throughput.

4.2 Request Starvation

To prevent starvation of requests, a new I/O
scheduler, the deadline I/O scheduler, was in-
troduced [axboe1, axboe2]. The deadline I/O
scheduler works by assigning tasks an expira-
tion time and trying to ensure (although not
guaranteeing) that requests are dispatched be-
fore they expire.

The 2.4 I/O scheduler [arcangeli] implements
a single queue, which is sorted ascendingly by
sector. Requests are either merged with ad-
jacent requests or sorted into the proper loca-
tion in the queue; requests are appended to the
tail if they have no proper insertion point. The
I/O scheduler then dispatches requests as the
block devices request them from the head of
the queue.

The deadline I/O scheduler augments this
sorted queue with two more queues, a first-in
first-out (FIFO) queue of read requests and a
FIFO queue of write requests. Each request
in the FIFO queues is assigned an expiration
time. By default, this is 500 milliseconds for

read requests and 5 seconds for write requests.
When a request is submitted to the deadline I/O
scheduler, it is added to both the sorted queue
and the appropriate FIFO queue. In the case
of the sorted queue, the request is merged or
otherwise inserted sector-wise where it fits. In
the case of the FIFO queues, the request is as-
signed an expiration value and placed at the tail
of the queue.

Normally, the deadline I/O scheduler services
requests from the sorted queue, to minimize
seeks. If a request expires at the head of either
FIFO queue (the requests at the head are the
oldest), however, the scheduler stops dispatch-
ing items from the sorted queue and begins dis-
patching from the FIFO queues. This behavior
ensures that, in general, seeks are minimized
and thus global throughput is maximized. Fair-
ness is maintained, however, as the I/O sched-
uler attempts to dispatch requests within the
specified expiration time. The deadline I/O
scheduler provides an upper bound on request
latency—ensuring fairness—at the expense of
a small degradation in overall throughput.

4.3 Writes-Starving-Reads

Usually, read operations are synchronous while
writes operations are asynchronous. Basi-
cally, when an application issues a read re-
quest, it cannot continue until the operation
completes and the application is given the re-
quested value. The completion of write opera-
tions, on the other hand, usually has no bearing
on the progress of the application. Aside from
worrying about power failures, an application
is unconcerned as to whether a write commits
to disk in one second or five minutes. In fact,
most applications are probably unaware if the
data is ever committed! Conversely, an appli-
cation usually needs the results of a read oper-
ation and will block until the data is returned.
Worse, read requests are often issued en masse
and each read is dependent on the previous.



Linux Symposium 292

The application or filesystem will not submit
read requestN until read requestN-1 com-
pletes.

In the 2.4 I/O scheduler, read and write re-
quests are treated equal. The 2.4 I/O sched-
uler tries to minimize seeks by sorting requests
on insert. If a request is issued that is between
(seek-wise) two other requests in the queue, it
is inserted there. If there is no suitable place
to insert the request (perhaps because no other
operations are occurring to the same area of the
disk), the request is appended to the end of the
queue. Consequently, something like

cat * > /dev/null

where there is even only a moderate number of
files in the current directory results in hundreds
of dependent read requests. If a heavy write is
underway, each individual read request will be
inserted at the tail of the queue. Assuming the
queue can hold a maximum of about one sec-
ond’s worth of requests, each individual read
request takes a second to reach the head of the
queue. That is, the heavy write operation con-
tinually keeps the queue full with write opera-
tions to some part of the disk. When the read
request is submitted, there is no suitable inser-
tion point so it is appended to the tail of the
queue. After a second, the read is finally at the
head of the queue, and it is dispatched. This re-
peats for each and every individual read. Since
each read is dependent on the next, the requests
are issued in serial. Thus the previouscat
takes hundreds of seconds to complete in 2.4
when the system is also under write pressure.

Recognizing that the asynchrony and in-
terdependency of read operations highlights
their much stronger latency requirements
over writes, various patches were introduced
[akpm1] to solve the problem. Acknowl-
edging that appending reads to the tail of
the queue is detrimental to performance,

these modifications insert reads (failing a
proper insertion elsewhere) near the head
of the queue. This drastically improves
application performance—more than ten-fold
improvements—as it prevents writes from
starving reads.

The deadline I/O scheduler, the current de-
fault I/O scheduler in 2.5, addresses this is-
sue as well. The deadline I/O scheduler pro-
vides a separate (generally much smaller) ex-
piration timeout for read requests. Conse-
quently, the I/O scheduler tries to submit reads
requests within a rather short period, ignor-
ing write requests that may be adjacent to the
disk head’s current location or that have been
waiting longer. This prevents the starvation of
reads.

Unfortunately, not all is well. While the dead-
line I/O scheduler solves the read latency prob-
lem, the increased attention to read requests re-
sults in a seek storm. For each submitted read
request, any pending writes are delayed, the
disk seeks to the location of the reads and per-
forms the operation, and then it seeks back and
continues with the writes. This results in two
seeks for each read request (or group of adja-
cent read requests) that are issued during write
operations.

Compounding the problem, reads are issued
in groups of dependent requests, as discussed.
Not long after seeking back and continue the
writes, another read request comes in and the
whole mess is repeated.

The goal of a research interest in I/O sched-
ulers, anticipatory I/O scheduling [iyer], is to
prevent this seek storm. When an application
submits a read request, it is handled within the
usual expiration period, as usual. After the re-
quest is submitted, however, the I/O scheduler
does not immediately return to handling any
pending write requests. Instead, it does nothing
at all for a few milliseconds (the actual value



Linux Symposium 293

is configurable; it defaults to 6ms). In those
few milliseconds, there is a good chance the
application will submit another read request. If
any read request is issued to adjacent areas of
the disk, the I/O scheduler immediately han-
dles them. In this case, the I/O scheduler pre-
vented another pair of seeks. It is important to
note that the few milliseconds spent waiting is
well worth the prevention of the seeks—this is
the point of anticipatory I/O scheduling. If a
request is not issued in time, however, the I/O
scheduler times out and returns to processing
any write requests. In that case, the anticipa-
tory I/O scheduler loses and we lost a few mil-
liseconds.

The key is properly anticipating the actions
of applications and the filesystem. If the I/O
scheduler can predict the actions of an applica-
tion a sufficiently large enough percentage of
the time, it can successfully limit seeks (which
are terrible to disk performance) and still pro-
vide low read latency and high write through-
put. A version of the deadline I/O scheduler,
the anticipatory scheduler [piggin], is avail-
able in 2.5-mm which supports anticipatory I/O
scheduling. The anticipatory I/O scheduler im-
plements per-process statistics to raise the per-
centage of correct anticipations.

The results are very satisfactory. Under a
streaming write, such as

while true; do
dd if=/dev/zero of=file bs=1M

done

a simple read of a 200MB file completes in 45
seconds on 2.4.20, 40 seconds on 2.5.68-mm2
with the deadline I/O scheduler, and 4.6 sec-
onds on 2.5 with the anticipatory I/O scheduler.
In 2.4, the streaming write results in terrible
starvation for the read requests. The anticipa-
tory I/O scheduler results in nearly a ten-fold
improvement in read throughput.

In 2.4, the effect of a streaming read upon a
series of many small individual reads is also
devastating. Perform a streaming read via:

while true
do

cat big-file > /dev/null
done

and measure how long a read of every file in
the current kernel tree takes:

find . -type f -exec \
cat ’{}’ ’;’ > /dev/null

2.4.20 required 30 minutes and 28 seconds,
2.5.68-mm2 with the deadline I/O scheduler
required 3 minutes and 30 seconds, and 2.5.68-
mm2 with the anticipatory I/O scheduler re-
quired a mere 15 seconds. That is a 121-times
improvement from 2.4 to 2.5.68-mm2 with the
anticipatory I/O scheduler.

How much damage does this benefit to read la-
tency do to global throughput, though? It is
clear that read throughput is improved, but at
what cost to write requests and global through-
put? Consider the inverse, under a streaming
read such as:

while true
do

cat file > /dev/null
done

A simple write and sync of a 200MB file
takes 7.5 seconds on 2.4.20, 8.9 seconds on
2.5.68-mm2 with the deadline I/O scheduler,
and 13.1 seconds on 2.5.68-mm2 with the an-
ticipatory I/O scheduler. The 2.5 I/O sched-
ulers are slower, but not overly so (certainly not
to the degree read latency is decreased). This
test does not show global throughput, though,



Linux Symposium 294

just write throughput in the presence of heavy
reads. Since the streaming read above may op-
erate much quicker, global throughput is often
largely unchanged.

The anticipatory I/O scheduler is currently in
the 2.5-mm tree. It is expected that it will be
merged into the mainline 2.5 tree before 2.6.

5 Preemptive Kernel

5.1 Introduction

The addition of kernel preemption in 2.5 pro-
vides significantly lowered average scheduling
latency and a modest reduction in worst-case
scheduling latency. More importantly, intro-
ducing a preemptive kernel installs the initial
framework for further lowering scheduling la-
tency by allowing developers to tackle spe-
cific locks as the root of scheduling latency as
opposed to entire kernel call chains. Conve-
niently, reducing lock hold time is also a goal
for large SMP machines

5.2 Design of a Preemptive Kernel

Evolving an existing non-preemptive kernel
into a preemptive kernel is nontrivial; the task
is greatly simplified, however, if the kernel
is already safe against reentrancy and concur-
recny. Therefore, in the case of the Linux ker-
nel, the safety provided by existing SMP lock-
ing primitives were leveraged to provide a sim-
ilar protection from kernel preemptions. SMP
spin locks were modified to disable kernel pre-
emption in a nested fashion; aftern spin locks,
kernel preemption is not again enabled until the
n-th unlock.

Theret_from_intr path (the architecture-
dependent assembly which returns control
from the interrupt handler to the interrupted
code) was then modified to allow preemption

even if returning to kernel mode. Thus, a task
woken up in an interrupt handler (a common
occurrence) can then run at the earliest possi-
ble moment, as soon as the interrupt handler
returns. Consequently, a high priority task will
preempt a lower priority task, even if the lower
priority task is executing inside the kernel.

The preemption does not occur on return from
interrupt, of course, if the interrupted task
holds a lock. In that case, the pending pre-
emption will occur as soon as all locks are
released—again at the earliest possible mo-
ment.

5.3 Improved Core Kernel Algorithms

Changes to core kernel algorithms (primarily
in the VM and VFS primarily) were made to
improve fairness, provide a better bound on
time complexity (and thus a bound on schedul-
ing latency), and reduce lock hold time to take
advantage of kernel preemption and reduce la-
tency.

Some of the most important changes were to
fix fairness issues in the VM, in code paths
such as the page allocator. These changes pre-
vent VM pressure caused by one process from
unfairly affecting VM performance of other
processes.

Many small changes were made to kernel func-
tions in known high latency code paths in the
kernel. These changes involved modifying the
algorithm to have a minimized or fixed bound
on time complexity and to reduce lock hold so
as to allow kernel preemption sooner.

5.4 Reducing Scheduling Latency

Measurements of scheduling latency are highly
dependent on both machine and workload
(workload being a crucial element—one work-
load may show no perceptible scheduling la-



Linux Symposium 295

tency while another may introduce horrid
scheduling latencies). Nonetheless, worst-case
scheduling latencies of under 500 microsec-
onds are commonly observed in 2.5.

Even on a 2.4 kernel patched with the preemp-
tive kernel (which undoubtedly does not bene-
fit from some of the algorithmic improvements
in 2.5), a recent whitepaper [williams] noted a
five-fold improvement in worst-case schedul-
ing latency and a 1.6-time improvement in av-
erage case scheduling latency. A long-term
test, part of the same whitepaper, testing the
kernel for over 12 hours (to exercise many high
scheduling latency paths) showed a reduction
from over 200 milliseconds worst-case latency
in the period to 1.5 milliseconds with a com-
bination of the preemptive kernel and the low-
latency patch [akpm2]. This drastic reduction
in worst-case latency over a long period with a
complex workload demonstrates the ability of
the preemptive kernel and optimal algorithms
to provide both excellent average and worst-
case scheduling latency.

One useful benchmark is the Audio Latency
Benchmark [sbenno], which simulates keeping
an audio buffer full under various loads. A
test of a 2.4 kernel vs. a 2.4 preemptive ker-
nel shows a reduction in worst-case scheduling
latency from 17.6 milliseconds to 1.5 millisec-
onds [rml]. The same test on 2.5.68 yields a
maximum scheduling latency of 0.4 millisec-
onds.

On a modern machine, scheduling latency is
low enough to prevent any perceptible stalls
during typical desktop computing and multi-
media work.

Further, the 2.5 kernel provides a base suf-
ficient for guaranteeing sub one millisecond
worst-case latency for demanded embedded
and real-time computing needs.

6 Acknowledgments

I would like to thank the OLS program com-
mittee for providing the opportunity to write
this paper and MontaVista Software for provid-
ing the means by which I work on the kernel.

Andrew Morton deserves credit for an abnor-
mally large amount of the interactivity work
which went into the 2.5 kernel. Jens Axboe
was the primary developer of the deadline
scheduler. Nick Piggin was the primary de-
veloper of the anticipatory scheduler, which is
based on the deadline scheduler. Ingo Molnar
was the primary developer of the O(1) sched-
uler. Various others played significant roles in
the design and implementation of other related
kernel bits.

References

[akpm1] Andrew Morton,Patch:
read-latency2, http://www.zip.
com.au/~akpm/linux/patches/
2.4/2.4.19-pre5/
read-latency2.patch .

[akpm2] Andrew Morton,Patch: low-latency,
http://www.zipworld.com.au/
~akpm/linux/schedlat.html .

[arcangeli] Andrea Arcangeli and Jens
Axboe,Source: 2.4 Elevator, linux/
drivers/block/elevator.c .

[axboe1] Jens Axboe,Email: [PATCH]
deadline io scheduler,
http://www.cs.helsinki.fi/
linux/linux-kernel/2002-38/
0912.html .

[axboe2] Jens Axboe,Source: Deadline I/O
Scheduler, linux/drivers/block/
deadline-iosched.c .



Linux Symposium 296

[iyer] S. Iyer and P. Druschel,Anticipatory
scheduling: A disk scheduling
framework to overcome deceptive
idleness in synchronous I/O. ACM
Symposium on Operating System
Principals (SOSP), 2001.

[mingo1] Ingo Molnar,Source: O(1)
scheduler, linux/kernel/
drivers/sched.c .

[mingo2] Ingo Molnar,Patch:
sched-2.5.64-D3,
http://www.kernel.org/pub/
linux/kernel/people/akpm/
patches/2.5/2.5.68/2.5.
68-mm2/broken-out/sched-2.
5.64-D3.patch .

[piggin] Nick Piggin and Jens Axboe,Source:
Anticipatory I/O Scheduler, linux/
drivers/block/as-iosched.c .

[rml] Robert Love,Lowering Latency in
Linux: Introducing a Preemptible
Kernel, Linux Journal (June 2002).

[sbenno] Benno Senoner,Audio Latency
Benchmark, http://www.gardena.
net/benno/linux/audio/ .

[williams] Clark Williams,Linux Scheduler
Latency, Whitepaper, Red Hat, Inc.,
2002.



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


