
Effective HPC hardware management and Failure
prediction strategy using IPMI

Richard Libby
rml@hpc.intel.com

Abstract

Intelligent Power Management Interface
(IPMI) defines common interfaces to “intel-
ligent” hardware used to monitor a server’s
physical health characteristics, such as tem-
perature, voltage, fans, power supplies and
chassis. These capabilities provide infor-
mation that enables system management,
recovery, and asset tracking which help drive
down the total cost of ownership (TCO) and
increase reliability in today’s HPC market.
The new interfaces in IPMI v1.5 facilitate
the management of rack-mounted HPC
servers and systems in remote environment
over serial, modem and LAN connections.
New capabilities combined with the remote
management functionality allow HPC IT
managers to manage their servers and systems,
regardless of system health, power state
or supported communication media. IPMI
compliant servers essentially eliminate the
need for external hardware to perform the
same function, thus saving costs. This paper
will introduce the specification, the benefits of
IPMI with respect to HPC and other clusters
and how it could be used to generate alarms to
a monitoring system before hardware failures
become severe enough to cause cluster failure.

1 Introduction

If we were to look at what hinders large scale
cluster deployments, only a handful of barriers

come to mind. There is, of course, always the
barrier of limited bandwidth, be it in the front
side bus, the interconnect or any other form
of I/O. Others include space, power, cooling,
monitoring and management. This paper will
focus on monitoring, management and predic-
tive analysis: essentially overall HPC health
and ‘sickness prevention.’ Intelligent Power
Management Interface (hereafter referred to
as IPMI) is an abstracted hardware layer that
provides power control, alerting, sensor moni-
toring, Field Replaceable Unit (FRU) storage,
Sensor Data Record (SDR) storage, customiza-
tion, configuration all through multiple meth-
ods of secure access. The total cost of a hard-
ware and software package has come down
from US$30/node to sub-US$10, making man-
agement a viable solution to reduce the total
cost of ownership (TCO).

The IPMI specification itself is a mere 450
pages, and the other supporting documents
(four of them [Reference section: C, D, F & H],
plus 23 referenced documents or RFCs) make
for a good, long weekend of reading. This pa-
per is a brief summary on how to use IPMI to
get the most out managing large scale HPC de-
ployments, and be able to use it to predict fail-
ures before they happen, thereby reducing the
TCO of the entire system. The assumption is
made in this paper that IPMI is implemented
with strict consideration to the specifications.

Linux Symposium 276

2 Power Control

Hardware management of large scale HPC de-
ployments today is quite possible if you have
access to many people, infinite resources, or a
magic wand. Since most of us have either none
of these (in the case of the magic wand), or
limited amounts of them (in the case of many
people and infinite amounts of money), man-
aging large scale deployments of anything is
quite a chore. What do we really mean by
’managing?’ Most think of managing a clus-
ter as isolated systems: hardware and soft-
ware. I would submit that it is a combination
of both. If hardware fails, so does software.
If software fails, hardware becomes a really
expensive room heater. So, management be-
comes the ability to control software by look-
ing at hardware as one failure point, or have
the software control the hardware if thresholds
increase beyond set limits. These control meth-
ods include powering off a server, powering on
a server, resetting a server, and obtaining status
of the power condition.

Resetting the server from a remote location
seems trivial to most. “Why not just execute a
command such a remote ‘init 6’ (Soft reset)?”
or something similar depending on the operat-
ing system some might ask. Ah, but what hap-
pens if the operating system is hung? Oh, just
send one of your people down and hit the reset
button. In the case of the TeraGrid project, that
may not be possible since there are at least four
sites where the HPC might be at. So, a system
reset function has gone from being a trivial ac-
tion to a not-so-trivial action. Using IPMI, a
system reset is trivial with a mere command.

Powering on and off a system is not quite as
trivial to achieve. Sure it is, you say. You go
out and purchase a network power switch, and
spend about US$500.00 in the process. Ok,
so you can achieve power control this way,
but not cost effectively in a large scale HPC

deployment. Let’s say for example, that at
best you could control eight machines with one
network power switch. At US$63 per out-
let, 256 outlets would cost you US$16k, 512
outlets would cost US$32k and 1000 outlets
would cost US$63K. This adds only a little to
the overall cost, but hey, if it is offered with
an IPMI compliant server, you could use this
additional money to purchase more servers.
There’s more on powering on and off, but it
will be covered in another section.

In addition to being able to reset, power on
and off, having the ability to query the server
power status is also valuable. Instead of hav-
ing to force power off (if on and vice versa),
potentially losing a job or data, you can query
to see if the server’s power is on or off. This
seems rather trivial at times, but in some in-
stances when there is no OS available and the
server is not in any proximity to you, it is nice
to have this feature.

Lastly, one nice control feature is telling the
UID light what to do, and how long to do it
for. This is the little blue light found on the
front and rear of most servers that turns on to
identify it from other servers in cases of large
scale HPC build-outs.

3 Alerting

Power control is essential, but from a predic-
tive failure analysis standpoint, alerting is the
driving force of determining if any one point
of the HPC is suffering. Think of the alert-
ing component as pain identification. This
identification breaks down into event filtering,
trapping (via SNMP), and policy management.
Some aspects will not be mentioned fully, as
they will be covered in other sections.

Without going into too much depth, when
the Baseboard Management Controller (BMC,
a.k.a. the service processor) observes an event

Linux Symposium 277

that occurs (see sensor section for types of
events that might be interesting), it logs it into
non-volatile space into a Server Event Log
(SEL). Events generated either externally or
internally are run through a filter within the
BMC that can perform actions based on poli-
cies (more on policies later). These types
of events might indicate impending danger of
catastrophic events on any one machine, or in
more serious cases, could indicate rack-wide
implications, such as a fire. The ability to fil-
ter events combined with policy management
gives the HPC administrator a powerful tool in
predicting impending failure.

One of the keys to being able to predict (and
later analyze) whether there is an impending
failure, is knowing about it. The trapping com-
ponent forwards on messages via SNMP to a
“health master” that could look at the event
(and compare it against a set of policies), de-
termine if it was critical enough to ruin jobs on
that node, and take appropriate action(s).

Policies can be set up to read either discrete
or threshold-based values and define an action
based on the type of event it is. For example,
if a server in your HPC had a fan failure, the
most likely thing you would see from an end
user point of view is to hear the other fans ramp
up. That action is an event that was driven by
the BMC through a policy that was set either
by a factory setting, or specified by an admin-
istrator programmatically. Once the other fans
were ramped up to compensate for the missing
fan, alerts can be trapped and sent via any num-
ber of methods to the “health master,” which in
turn, can determine (possibly by its own set of
policies) if the event warrants moving data or
jobs from one machine to a spare. Data can
be recorded and analyzed later for recurring
trends or even external environment conditions
that might be causing failures. One example of
this might be as follows: One rack might be sit-
ting directly under a cooling source. The racks

adjoining it would read higher ambient chas-
sis temperature, and show skewed temperature
data, but with the information, a stealthy sysad-
min could correlate the HVAC ‘on’ times with
a drop in ambient temperature inside the rack
that gets hit with a blast of cool air. Although
this condition in and of itself is not bad, one
set of servers in the HPC might run faster due
to being slightly cooler and cause other bottle-
necks.

4 Common Sensor Model

So, what can IPMI in its present state touch and
feel? Presently, it includes voltage, tempera-
ture, fan speeds, and presence.

Servers based on IPMI give the ability to mon-
itor voltages on the baseboard and power sup-
ply. In cases where there is a lot of solar spot
activity, this data could be useful. For exam-
ple, too many voltage changes, and memory
might start to have single bit errors, and too
many of those might generate a multi-bit error
that is not recoverable. From an industrial and
commercial perspective, if the server suffered
this, jobs would either be lost, or potentially
have silent data corruption. Having the ability
to monitor and log this data could be useful to
see if there were external environment condi-
tions that would impact server stability. In this
particular example, a sysadmin might want to
spec out Telco grade hardware that runs on DC
power, thereby eliminating the external condi-
tion and increasing reliability.

With the tight thermal tolerances these days,
a fan failure in server chassis can result in
a catastrophic loss, especially in the smaller
form factors (i.e. 1U). Having the ability to
monitor fan speeds can greatly increase the
chance of keeping jobs that are running on one
member of the HPC and moving them to an-
other, provided the event deems it worthy of

Linux Symposium 278

doing so. This does not just include chassis
fans, but can be expanded to include processor,
memory, and hard drive bay fans.

Temperature is a key aspect to monitor for pre-
dicting failure in an HPC. Logging events, us-
ing stats to show trends, and reacting to gener-
ated alerts are the ways to decrease a sysad-
min’s possibilities of downtime. It will also
increase the ability to determine external envi-
ronment conditions that would affect HPC per-
formance, since heat is a critical aspect.

The last aspect of the common sensor model is
the ability to detect presence. At times it would
be nice to detect if the server chassis lid was
opened. The system might log an entry into the
SEL based on chassis intrusion. This might be
useful information later on to determine causes
of ambient temperature changes, or even to de-
termine what time the processors and memory
disappeared out of the best server.

5 Access Methods

Ok, so we are able to monitor all these cool
things on our server, but how does the sysad-
min or developerreally get to them? There
are multiple methods to get the information
you need from an IPMI-based server. They in-
clude KCS, LAN, serial, modem, I2C, IPMB
and ICMB. None of these methods will be dis-
cussed in too much detail here due to space and
scope constraints.

One of the most common methods to get to the
BMC is through an interface called Keyboard
Controller Style (KCS). For IPMI laymen, this
means a driver that is loaded and controlled
through the OS. This is the preferred method to
access the Intelligent Power Management Bus
(IPMB), but certainly not the only one, and cer-
tainly in cases where the OS has gone south for
the winter.

If the OS does go south, another nice method is
using the Remote Management Control Proto-
col (RMCP) over the LAN. IPMI-based servers
have 3.3 volts standby power that provides the
BMC with enough juice to live on. With the
cost of network interface cards (NIC) com-
ing down, and many board manufacturers plac-
ing them on their server boards, this becomes
the avenue on which to send UDP packets di-
rected to port 623 that can issue IPMI com-
mands. This becomes a close second to the
KCS in that it replaces legacy serial concentra-
tion servers, allowing the sysadmin or IT man-
ager to spend their US$50K (for every 40 ports
and US$1.2M for 1000 servers) elsewhere on
the HPC.

Other methods of access include direct serial
using a serial concentration server. The down-
side to this interface is the cost for the serial
concentration server. One nice feature worth
mentioning in a Linux environment is Serial
Over LAN (SOL). This allows the HPC sysad-
min to enable serial redirect and have it piped
over the network interface, thereby eliminat-
ing the need for a Keyboard-Video-Mouse con-
troller (KVM). Costs are exorbitant and ca-
bling becomes a nightmare for large scale HPC
deployments. (Other features include private
management bus (private I2C bus), and ability
to add above board remote management cards.)

One nice feature of IPMI is the ability to for-
ward information on to other IPMI compliant
servers. Essentially, each IPMI server can be-
come a proxy to relay messages to another
IPMB through the Intelligent Chassis Manage-
ment Bus (ICMB). A sysadmin or network ar-
chitect could design an ICMB network (really
an RS-845 multiport serial bus) that would al-
low up to 64 nodes per network. Manage-
ment packets could be routed over this network
instead of tying up the LAN channel, or in
cases when the LAN was down, routing over
ICMB. RS-845 also allows broadcasts, so the

Linux Symposium 279

sysadmin could invoke a broadcast to a bank
of servers. Imagine it, a command that said:
“Hello, rack of servers, shut down.”

6 Authentication

All the methods of access are excellent to have,
but how are they protected against intrusion?
This section briefly discusses the channel priv-
ilege levels and encryption methods used to au-
thenticate to the BMC.

There are four privilege levels to the BMC as
defined by the IPMI specification: callback,
user, operator, and administrative.

Callback is essentially irrelevant these days. It
calls only a predefined number via a modem. It
also only supports enough commands to initi-
ate a callback. If the user is not at that location,
then callback is not highly useful.

One nice channel privilege is called user. It
would allow subsystems to monitor HPCs
without being intrusive, and potentially lethal
from a job perspective. Think of this priv-
ilege as ’sensor snag’ only-essentially read-
only or only benign commands are allowed.
From a predictive analysis perspective, this
level would give alerting mechanisms with the
peace of mind that power control could be as-
signed to alternate members of the HPC.

Occasionally though, job scalability demands
delegation of authority, but not total relinquish-
ing of control. In these cases, the operator priv-
ilege level should be chosen. It has all com-
mands available to administration, except con-
figuration commands that can change the be-
havior of the out-of-band interfaces.

And then you have full rights-administrative
privilege level. This privilege allows for full
control over an IPMI-based server. In simple
“health master” implementations, this would

be the preferred privilege level to use. One
quick word of caution: an administrative privi-
lege level can even disable the channel they are
coming in over.

Encryption is tied closely to authentication.
There are basically three main points to re-
member on IPMI encryption. The first is that
passwords can be sent clear-text, so from a se-
curity standpoint, it is something to consider.
The second is that whatever the user initiates
as an encryption algorithm is what will be re-
turned, provided it falls into the third category.
That is that there are generally two supported
encryption algorithms, MD2 and MD5.

7 Field Replaceable Units (FRU)

An enterprise-class system will typically have
FRU information for each major system board
(e.g. processor board, memory board, I/O
board, etc.). The FRU data can include in-
formation such as serial number, part num-
ber, model, and asset tag. What is this really
good for in a failure prediction situation? Well,
the “health master” could be programmed such
that it could detect that a remote server’s part is
going to have a failure (let’s just say overheat-
ing CPU), look up the part in a parts database,
and alert the sysadmin which part they need to
take with them to service the unit, what the unit
serial number is, and possibly when it was last
serviced. It would minimize downtime. By the
way, FRU information can even be available
when the system is powered down. Another
useful example of FRUs being used is auto-
mated remote inventory. “IPMI does not seek
to replace other FRU or inventory data mech-
anisms, such as those provided by SM BIOS,
and PCI Vital Product Data. Rather, IPMI FRU
information is typically used to complement
that information or to provide information ac-
cess out-of-band or under ‘system down’ con-
ditions.”

Linux Symposium 280

8 Sensor Data Records

IPMI was created with extensibility and scala-
bility in mind. Unfortunately, with that capa-
bility comes a myriad of different components
that can be monitored and controlled in differ-
ent fashions. Sensor Data Records (SDRs) pro-
vide system management software the ability
to retrieve information from the platform, and
automatically configure itself to meet the capa-
bilities of the platform-essentially an abstrac-
tion layer.

SDRs exist primarily to describe to server man-
agement software what a sensor configura-
tion should look like, and to tell software to
pay special attention to certain sub functions.
SDRs are mostly not available to end users,
but could potentially, especially if purchasing a
board and chassis separately. For the most part,
SDRs are made specifically for certain config-
urations of board/chassis combinations.

SDRs also define thresholds and actions based
on those thresholds. For example, there might
be an upper critical threshold on a board ther-
mal sensor, and that might be tied via an SDR
to an action of ramping up fans if excessive
heat was detected. From a failure prediction
standpoint, the “health master” could detect
these changes, and ramp fans accordingly. This
is just one small case, but you can see that the
permutations get quite large with more servers
in your HPC. What kind of sensor types are
there? Two main categories exist-analog or
digital, or fan, voltage, temperature. SDRs tell
the BMC what the sensor type is in order to
know how to process it (i.e. analog fan situ-
ation: you actually get a voltage back when
polling it. The software will need to convert
it via a mathematical function (a slope func-
tion: logarithmic, square root, quadratic, sin
and many more defined in the IPMI spec.)

Realistically, the types of information that

SDRs can store configuration on are: CPU sen-
sors, chassis intrusion, power supply monitor-
ing, fan speeds, fan presence, board voltages,
board temperatures, bus errors, memory errors,
and even possibly ASF progress codes (where
the subsystem is in coming up-essentially a
POST code). “Sensor Data Records are kept in
a single, centralized non-volatile storage area
that is managed by the BMC. This storage
is called the Sensor Data Record Repository
(SDR Repository). Implementing the SDR
Repository via the BMC provides a mechanism
that allows SDRs to be retrieved via ‘out-of-
band’ interfaces, such as the ICMB, a Remote
Management Card, or other device connected
to the IPMB. Like most Intelligent Platform
Management features, this allows SDR infor-
mation to be obtained independent of the main
processors, BIOS, system management soft-
ware, and the OS.”

9 System Event Log

Every IPMI compliant server has a System
Event Log (SEL) which is a centralized, non-
volatile repository for all events generated.
Think of this not only as a BMC journal. Any
authenticated user can enter a SEL entry.

Common events that might be stored are re-
boots, processors offline, memory (both single
and multiple bit) errors, sensors that go beyond
set thresholds, PCI parity errors (PERR), Non-
maskable interrupts (NMI), and many more.
The “health master” could periodically poll se-
lect system event logs from the HPC, and deter-
mine if there are potential problems that could
be coming down the wire, and mitigate a re-
sponse to those problems.

Alerting is done off the SEL as well. When
an event is written to the SEL, it is checked
against policies and threshold values, and per-
forms actions based on those policies. Too

Linux Symposium 281

much of a health conscious sysadmin could
put in place tighter thresholds, and decrease
the possibility of downtime, while at the same
time possibly risking more time checking out
false alarms. A truly health conscious sysad-
min would determine standard thresholds to
work with safely, while keeping in mind that a
false alarm here and there might keep them on
their toes and possibly prevent a catastrophic
failure on a node (or more in some cases).

Clearing the SEL is possible as well, in fact,
once a SEL is queried and data is stored on the
“health master,” it is advisable to clear the SEL.
The main reason for this is that if the SEL fills
up, new entries are dropped. This could cause a
sysadmin to miss critical events that could lead
either to extensive downtime, or a catastrophe.

10 Configuration

IPMI gives such flexibility that many aspects
can be configured to fit the end-user’s needs.

These parameters include: BMC policies,
LAN configuration (such as static or dynamic
IP address, mask, and gateway), privilege lev-
els, alerting functions (such as whom to for-
ward alerts to), sensor polling rates, etc.

Imagine for a moment that your “health mas-
ter” detects that it one of the nodes in the HPC
is going down due to some failure, and you are
able to retrieve the critical data off the hard
drive. When you bring up a spare node in its
place, you can dump the hard drive data back
down, right? Sure, but what about BMC con-
figuration? This is where IPMI shines through
if implemented properly. With most IPMI
compliant servers today, a sysadmin can re-
trieve the BMC information. But stuffing it
back onto another machine is a little trickier,
especially if it is over the LAN interface.

11 Questions Users Might Ask

A few questions might remain in the reader’s
mind still after this brief whetting. One such
question might be, “What is the relationship
or difference between IPMI and Alert Standard
Forum (ASF)?” “While somewhat of an over-
simplification, ASF may be considered to be
scoped for ‘desktop/mobile’ class systems, and
IPMI for ‘servers’ where the additional IPMI
capabilities such as event logging, multiple
users, remote authentication, multiple trans-
ports, management extension busses, sensor
access, etc., are valued. However there are no
restrictions in either specification as to the class
of system that the specification can be used.
[(i.e.)] you can use IPMI for desktop and mo-
bile systems and ASF for servers if the level of
manageability fits your requirements.”

Another might be, I don’t have IPMI capable
servers today, can I add in an IPMI card? The
short answer to that question is possibly, but it
depends on your server base board. Provided it
has an interface to IPMB, the possibilities in-
crease. But, the best thing to do is to weigh the
costs associated with not having IPMI (as men-
tioned earlier-no KVM, network power switch,
serial concentration server) and see what bene-
fits it can bring to predict an impending failure
before it happens.

12 Summary

The key to using IPMI for failure prediction
analysis is the polling and listening software,
and how intelligent it is at analyzing the data
to make predictions as to where problems lie.

As most HPC sysadmins know, one large
scale cluster deployment barrier is manage-
ment, monitoring, fault isolation and failure
prediction. IPMI enables a sysadmin a great
way to reduce the TCO of HPCs by monitor-

Linux Symposium 282

ing overall HPC health and ‘prevent sickness’
by providing an abstracted hardware layer that
provides power control, alerting, sensor mon-
itoring, Field Replaceable Unit (FRU) stor-
age, Sensory Data Record (SDR) storage, cus-
tomization, configuration all through multiple
methods of secure access-all through software.

13 Call to Action

When writing RFQs, make sure to include
IPMI as a required feature in order to reduce
TCO and increase manageability in HPC de-
ployments.

14 References

A. Alert Standard Format v1.0 Specification,
©2001, Distributed Management Task
Force.http://www.dmtf.org

B. The I2C Bus And How To Use It, ©1995,
Philips Semiconductors. This document
provides the timing and electrical specifi-
cations for I2C busses.

C. Intelligent Chassis Management Bus
Bridge Specification v1.0, rev. 1.2,
©2000 Intel Corporation. Provides
the electrical, transport protocol,
and specific command specifications
for the ICMB and information on
the creation of management con-
trollers that connect to the ICMB.
http://developer.intel.com

/design/servers/ipmi

D. Intelligent Platform Management Bus
Communications Protocol Specifica-
tion v1.0, ©1998 Intel Corporation,
Hewlett-Packard Company, NEC Corpo-
ration, and Dell Computer Corporation.
This document provides the electri-
cal, transport protocol, and specific

command specifications for the IPMB.
http://developer.intel.com

/design/servers/ipmi

E. Intelligent Power Management In-
terface Specification v1.5; rev. 1.1,
©2002 Intel Corporation, Hewlett-
Packard Company, NEC Corpora-
tion, and Dell Computer Corporation.
http://developer.intel.com

/design/servers/ipmi

F. IPMI Platform Event Trap Format Spec-
ification v1.0, ©1998, Intel Corporation,
Hewlett-Packard Company, NEC Corpo-
ration, and Dell Computer Corporation.
This document specifies a common for-
mat for SNMP Traps for platform events.

G. Proposal for Callback Control Protocol
(CBCP), draft-ietf-pppext-callback-
cp-02.txt, N. Gidwani, Microsoft,
July 19, 1994. As of this writ-
ing, the specification is available via
the Microsoft Corporation web site:
http://www.microsoft.com

H. Platform Management FRU Informa-
tion Storage Definition v1.0, ©1999
Intel Corporation, Hewlett-Packard
Company, NEC Corporation, and Dell
Computer Corporation. Provides the
field definitions and format of Field
Replaceable Unit (FRU) information.
http://developer.intel.com

/design/servers/ipmi

I. RFC 1319, The MD2 Message-Digest Al-
gorithm, B. Kaliski, RSA Laboratories,
April 1992.

J. RFC 1321, The MD5 Message-Digest Al-
gorithm, R. Rivest, MIT Laboratory for
Computer Science and RSA Data Secu-
rity, Inc. April, 1992.

Linux Symposium 283

K. System Management BIOS Specification,
Version 2.3.1, ©1997, 1999 American
Megatrends Inc., Award Software Inter-
national, Compaq Computer Corporation,
Dell Computer Corporation, Hewlett-
Packard Company, Intel Corporation, In-
ternational Business Machines Corpora-
tion, Phoenix Technologies Limited, and
SystemSoft Corporation.

L. System Management Bus (SMBus) Spec-
ification, Version 2.0, ©2000, Dura-
cell Inc., Fujitsu Personal Systems Inc.,
Intel Corporation, Linear Technology
Corporation, Maxim Integrated Prod-
ucts, Mitsubishi Electric Corporation,
Moltech Power Systems, PowerSmart
Inc., Toshiba Battery Co., Ltd., Unitrode
Corporation, USAR Systems.

M. The TeraGrid Project, National Center for
Supercomputing Applications, San Diego
Supercomputer Center, Argonne National
Laboratory and Pittsburgh Supercomput-
ing Center; http://www.teragrid.org

N. Wired for Management Baseline Version
2.0 Release, ©1998, Intel Corporation.
Attachment A, UUIDs and GUIDs, pro-
vides information specifying the format-
ting of the IPMI Device GUID and FRU
GUID and the System Management BIOS
(SM BIOS) UUID unique IDs.

15 Glossary of Terms

BMC Baseboard Management Controller

CMOS In terms of this specification, this describes the
PC-AT compatible region of battery-backed 128
bytes of memory, which normally resides on the
baseboard.

Diagnostic Interrupt A non-maskable interrupt or sig-
nal for generating diagnostic traces and ‘core
dumps’ from the operating system. Typically NMI
on IA-32 systems, and an INIT on Itanium®-based
systems.

EFI Extensible Firmware Interface. A new model for
the interface between operating systems and plat-
form firmware. The interface consists of data
tables that contain platform-related information,
plus boot and runtime service calls that are avail-
able to the operating system and its loader. To-
gether, these provide a standard environment for
booting an operating system and running pre-boot
applications.

FRB Fault Resilient Booting. A term used to describe
system features and algorithms that improve the
likelihood of the detection of, and recovery from,
processor failures in a multiprocessor system.

FRU Field Replaceable Unit. A module or component
which will typically be replaced in its entirety as
part of a field service repair operation.

Hard Reset A reset event in the system that initializes
all components and invalidates caches.

HPC High Performance Computing, commonly com-
putationally intense.

I2C Inter-Integrated Circuit bus. A multi-master, 2-
wire, serial bus used as the basis for the Intelligent
Platform Management Bus.

ICMB Intelligent Chassis Management Bus. A se-
rial, differential bus designed for IPMI messag-
ing between host and peripheral chassis. Refer to
[ICMB] for more information.

I/O Input / Output. Typically refers to I/O subsystems
such as PCI (and variants), memory, and CPU
buses.

IPM Intelligent Platform Management.

IPMB Intelligent Platform Management Bus. Name
for the architecture, protocol, and implementation
of a special bus that interconnects the baseboard
and chassis electronics and provides a communi-
cations media for system platform management in-
formation. The bus is built on I2C and provides a
communications path between ’management con-
trollers’ such as the BMC, FPC, HSC, PBC, and
PSC.

NMI Non-maskable Interrupt. The highest priority in-
terrupt in the system, after SMI. This interrupt has
traditionally been used to notify the operating sys-
tem fatal system hardware error conditions, such
as parity errors and unrecoverable bus errors. It is
also used as a Diagnostic Interrupt for generating
diagnostic traces and ‘core dumps’ from the oper-
ating system.

Linux Symposium 284

MD2 RSA Data Security, Inc. MD2 Message-Digest
Algorithm. An algorithm for forming a 128-bit
digital signature for a set of input data.

MD5 RSA Data Security, Inc. MD5 Message-Digest
Algorithm. An algorithm for forming a 128-bit
digital signature for a set of input data. Improved
over earlier algorithms such as MD2.

PEF Platform Event Filtering. The name of the col-
lection of IPMI interfaces in the IPMI v1.5 spec-
ification that define how an IPMI Event can be
compared against ’filter table’ entries that, when
matched, trigger a selectable action such as a sys-
tem reset, power off, alert, etc.

PERR Parity Error. A signal on the PCI bus that indi-
cates a parity error on the bus.

PET Platform Event Trap. A specific format of SNMP
Trap used for system management alerting. Used
for IPMI Alerting as well as alerts using the ASF
specification. The trap format is defined in the
PET specification. See [PET] and [ASF] for more
information.

POST Power On Self Test.

RFQ Request for Quote.

SDR Sensor Data Record. A data record that provides
platform management sensor type, locations, event
generation, and access information.

SEL System Event Log. A non-volatile storage area
and associated interfaces for storing system plat-
form event information for later retrieval.

SERR System Error. A signal on the PCI bus that indi-
cates a ’fatal’ error on the bus.

Soft Reset A reset event in the system which forces
CPUs to execute from the boot address, but does
not change the state of any caches or peripheral
devices.

TCO Total Cost of Ownership. All of the possible
costs involved in the purchase, installation, man-
agement, support and use of the IT infrastructure
within an organization throughout a product’s life
cycle, from acquisition to disposal.

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

