
A 2.5 Page Clustering Implementation

William Lee Irwin III
IBM Linux Technology Center

wli@holomorphy.com | wlirwin@us.ibm.com

Abstract

Page clustering is a form of “large pages” that
increases the kernel’s minimum allocation unit
for physical memory (base page size). There
are several good reasons to do this. One is a
form of prefaulting accomplished by instanti-
ating groups of PTE’s mapping a given base
page. Another is a constant factor reduction
of the number of objects the kernel must tra-
verse in order to manipulate a given collec-
tion of pages. The increase inPAGE_SIZE
also implies an increase inPAGE_CACHE_
SIZE , which enables the use of filesystems
with larger blocksizes. Last, but not least,
the constant factor reduction of lowmem con-
sumed bymem_mapis crucial for the perfor-
mance of 64GB i386 machines.

Page clustering has a number of technical chal-
lenges involved in a 2.5 counterpart of the 2.4.7
implementation. First, highpte poses unusual
difficulties, as neither sub-PAGE_SIZE high-
mem allocations nor sub-PAGE_SIZE kmap-
ping were supported in the original imple-
mentation. Rmap also poses challenges, as it
makes direct assumptions about PTE’s being
of sizePAGE_SIZE. Finally, arch code above
all makes many assumptions aboutPAGE_
SIZE ’s relationship to the area mapped by
PTE’s, particularly in arch support and VM ini-
tialization code.

In summary, the author will describe the prob-
lems that arose during his implementation of
page clustering for 2.5 along with their solu-

tions, for an audience of kernel programmers.

1 What is page clustering?

1.1 Background

Memory present in a system is described by
physical addresses. Most (if not all) mod-
ern machines are byte addressable, but the
MMU usually operates at a lower “resolution,”
and its finest resolution is what page clus-
tering refers to asMMUPAGE_SIZE. When
the MMU’s translations are set up, be they
in hardware-interpreted data structures or in
software-programmable TLB’s, they refer to
“page frames” of that size or larger, which ef-
fectively are a unit of measurement for mem-
ory. Similarly one may refer to virtual mem-
ory in those units, and arbitrary relationships
between virtual page frames and physical page
frames are constructible with a combination of
hardware and software translation tables.

Demand-paged virtual memory systems, when
a task takes a TLB miss not resolvable via the
kernel’s software translation tables (which may
be interpreted directly by hardware) are then
faced with the task of finding a physical page
frame to back a virtual page frame with.

Without page clustering, the kernel maintains a
data structure, thestruct page , represent-
ing each physical page frame, and another, the
page table entry, to represent each virtual page
frame. When not constrained by hardware, the

Linux Symposium 234

kernel is free to make ridiculous choices of
structures for the page tables. For instance,
each virtual page frame could (in principle) be
represented by a node in a binary search tree
or a linked list. Linux® uses radix trees as
mandated by hardware on i386 on all architec-
tures, which are somewhat more efficient than
various choices, though some architectures na-
tively use other structures such as inverted page
tables for them.

The page tables are assisted by a binary search
tree of virtual extents representing either ex-
tents of files or zero-filled regions, whose
nodes are calledvma’s. The physical page is
chosen so as to arrange virtual contiguity of
file pages in tandem with file offset contigu-
ity, or otherwise to fetch largely arbitrary pages
and zero them out before mapping them. When
the relationship of a pagetable entry to a physi-
cal page frame and its correspondingstruct
page data structure, is restricted to within a
singlevma it is a 1:1 relationship.

A system for tracking memory in use and not in
use is built around this relationship, and so the
MMUPAGE_SIZEbecame the allocation unit
for memory. PAGE_SIZE is used to simulta-
neously refer to the notion of the MMU’s finest
granularity and the memory allocator’s finest
granularity in preexisting Linux ® code.

1.2 How page clustering differs

First, one should observe that if the MMU’s
finest granularity isMMUPAGE_SIZE, one
may simulate an MMU with a granular-
ity of any power of two multiple (PAGE_
MMUCOUNT) by simply instantiatingPAGE_
MMUCOUNTPTE’s at a time, and making each
struct page refer to PAGE_MMUCOUNT
contiguous and aligned native page frames.
Also, if the pagetables are not constrained
by hardware, one can easily alter their struc-
ture to only have one PTE for eachPAGE_

SIZE instead ofMMUPAGE_SIZEand by so
doing reduce their space consumption. Ad-
ditionally, if the MMU supports translations
of sizePAGE_SIZE one can simply perform
one TLB insertion (or PTE instantiation if
hardware-interpreted) for eachPAGE_SIZE
area mapped by the pagetables.

One could say this is a “weak form” of page
clustering. It has the undesirable side-effect
of breaking binary compatibility and hence
not being transparent, but has several advan-
tages. The port of Linux ® to the IA64 pro-
cessor already uses this low code impact tech-
nique for performance reasons, as it reduces
TLB misses and the overhead of manipulat-
ing large collections of pages by a factor of
PAGE_MMUCOUNT. Some performance bene-
fits for I/O are possible, as physical contiguity
is better preserved so larger scatter/gather lists
are possible, though this is offset by a larger
cost of preparing buffers for small I/O transac-
tions. BSD’s VAX port did it this way.

The binary incompatibility inherent in the
above approach makes it unsuitable for prac-
tical deployment on systems with significant
preexisting userbases. For instance, ELF ex-
ecutables are linked in ways mandating dif-
fering protections within what could poten-
tially be a single PAGE_SIZE virtual re-
gion, and mmap() is often performed at off-
sets that are notPAGE_SIZE-aligned or in
lengths divisible byPAGE_SIZE. To address
the mmap() granularity issue, the 1:1 rela-
tionship between virtual page frames and ac-
counting structures for physical memory must
be extended toPAGE_MMUCOUNT:1. There
is also a very invasive audit required to en-
force the newly introduced distinction between
MMUPAGE_SIZEand PAGE_SIZE by pro-
gramming dimensional analysis into various
address and index calculations. This could be
called the “strong form” of page clustering.

Linux Symposium 235

The solution, in high-level terms, essentially
has two cases for userspace. The first, which
is easier, is file-backed memory. The unit
of memory cacheing file contents isPAGE_
CACHE_SIZE, which (for 2.5) is identical to
PAGE_SIZE. An index in units of PAGE_
SIZE is usable for recovering the struct page
representing the area of the file that would need
to be faulted in. However, to preserve mapping
semantics one must also recover an offset into
the area represented by thestruct page in
units ofMMUPAGE_SIZE. The second case is
anonymous memory, which is not forced to be
simultaneously virtually and physically con-
tiguous by virtue of its contents. Userspace
demands oneMMUPAGE_SIZEunit of mem-
ory but receivesPAGE_SIZEunit of memory,
and so to prevent very noticeable amounts of
waste, one scans nearby PTE’s for other vir-
tual pages anonymizing faults, that is, write
faults on COW file pages or on the zero page,
could be taken on. These are candidate pages
for copying (the zero page is special cased to
use faster zeroing algorithms on most architec-
tures). The anonymizing case results in a com-
plex relationship between the virtual pages in a
process and the anonymous page.

In summary, page clustering divorces the ker-
nel’s internal allocation unit, or the size of an
area represented by a struct page, from the no-
tion of the MMU’s mapping granularity with
the constraint that the allocation unit be larger.

1.3 Why page clustering?

Page clustering introduces several advantages.
The first is that by using a larger unit for
cacheing file pages, one can support filesys-
tems with larger block sizes. The second is that
the additional physical contiguity introduced
by the larger allocation unit allows one to con-
struct larger scatter gather lists for I/O (again
with the proviso about preparing write buffers).
The third is that the number of objects in vari-

ous collections of pages is reduced for a linear
speedup of the algorithms. The fourth is that
the page faults may be batched, reducing the
page fault rate.

The fifth, which is the primary reason why this
project to resurrect the 2.4.7 page clustering
patch was carried out, is largely specific to i386
PAE, though possibly also applicable to 32-bit
kernels running on large memory 64-bit ma-
chines. sizeof(struct page)/PAGE_
SIZE is the constant of proportionality for the
fraction of memory consumed by thestruct
page ’s required to account for all the phys-
ical memory in the system. On 32-bit sys-
tems with extended addressing or when the
kernel runs in 32-bit mode, this is irrespective
of virtualspace and the total memory consumed
may be larger than kernel virtualspace. For
instance, with a fully-populated 40-bit physi-
cal address space, a 32-bit virtualspace, a 4KB
PAGE_SIZE, and a 64Bsizeof(struct
page) , the coremap is 16GB in size, which is
infeasible to simultaneously map. Page cluster-
ing reduces this space overhead by a factor of
PAGE_MMUCOUNT, which is arbitrary (within
the constraints of the quality of implementa-
tion), and so renders the coremap’s space over-
headO(1) with respect to physical memory.

2 Implementation

2.1 Early boot

The issues encountered in early boot were
largely simple, but widespread. Early boot de-
bugging was done on a 16 processor NUMA-
Q ® with 16GB RAM. First, pagetables and
various fragments of memory that were for-
merly assumed to be 4KB but described with
PAGE_SIZE needed to be updated, including
mappings for the IO-APIC, numerous pageta-
bles, and structures like the idle threads’ stacks.
Then memory detection required various kinds

Linux Symposium 236

of dimensional analysis to properly calculate
coremap indices from page frame numbers and
vice-versa.

Numerous index calculations and indexing op-
erations into the coremap were broken. They
had no counterpart in 2.4.x, but didn’t require
much thought to correct:

#define pfn_to_page(pfn) (mem_map + (pfn))

#define page_to_pfn(page) \

((unsigned long)((page) − mem_map))

#define pfn_valid(pfn) ((pfn) < max_mapnr)

became

#define pfn_to_page(pfn) \

(&mem_map[(pfn)/PAGE_MMUCOUNT])

#define page_to_mapnr(page) \

((unsigned long)((page) − mem_map))

#define page_to_pfn(page) \

(PAGE_MMUCOUNT∗page_to_mapnr(page))

#define pfn_valid(pfn) \

((pfn) < max_mapnr∗PAGE_MMUCOUNT)

and so on.

Of the issues, kmap_pte and pkmap_
page_table were particularly troublesome;
to get booting, they were removed in favor of
walking kernel pagetables, but are to be rein-
stated in the near future. The issue was that
they were allocated 4KB at a time using the
bootmem allocator, but were assumed to point
at contiguous pagetables capable of mapping
the entire permanent kmap and atomic kmap
arenas, which had grown to where they re-
quired multiple pagetables each.

An unusual issue arose from maintaining an
8KB stack size while raisingPAGE_SIZE to
arbitrary sizes.fork_init() first received
a divide by zero from the following code frag-
ment:

/ ∗ create a slab on which task_structs can be allocated ∗/

task_struct_cachep =

kmem_cache_create("task_struct",

sizeof(struct task_struct),0,

SLAB_MUST_HWCACHE_ALIGN, NULL, NULL);

if (!task_struct_cachep)

panic("fork_init(): cannot create

task_struct SLAB cache");

/ ∗

∗ The default maximum number of threads is set to a safe

∗ value: the thread structures can take up at most half

∗ of memory.

∗/

max_threads = mempages /

(THREAD_SIZE/PAGE_SIZE) / 8;

This was clearly due to THREAD_
SIZE/PAGE_SIZE vanishing. But then
unusual errors arose for unclear reasons. As
it turned out, I’d changed kernel stacks to be
slab allocated, but, the kernel stacks were so
small compared toPAGE_SIZE they used
on-slab slab management and so failed to be
8KB-aligned. Changing the threshold to use
off-slab slab management for objects larger
thanMMUPAGE_SIZEin addition to the other
criteria sufficed, with zero runtime impact on
thePAGE_SIZE == MMUPAGE_SIZEcase.

Next, the placement of vmallocspace relative
to fixmapspace and the overrunning of vmal-
locspace by fixmapspace for unusually large
values ofPAGE_SIZE became issues. This
was resolved by some painful compile-time
mechanics to shove the kmap and permanent
kmap windows into vmallocspace, dynami-
cally size them with respect toPAGE_SIZE,
and make poor guesses in assembly as to the
boundaries between vmallocspace andZONE_
NORMAL. The boundaries out to be safe be-
cause the assumptions were not truly used
apart from an indirect reference to them via
MAXMEM. Specifically:

Linux Symposium 237

#define VMALLOC_END

(FIXADDR_START−2∗MMUPAGE_SIZE)

#define __VMALLOC_START \

(VMALLOC_END− VMALLOC_RESERVE\

− 2∗MMUPAGE_SIZE)

#define VMALLOC_START \

(high_memory \

? max(__VMALLOC_START, \

(unsigned long)high_memory) \

: __VMALLOC_START \

)

#define __MAXMEM \

((VMALLOC_START − 2∗MMUPAGE_SIZE \

− __PAGE_OFFSET) \

& LARGE_PAGE_MASK)

#define MAXMEM \

__pa((VMALLOC_START−2∗MMUPAGE_SIZE)\

& LARGE_PAGE_MASK)

This is actually a side effect of a design de-
cision which makes the virtualspace layout
change dynamically withPAGE_SIZE. That
is, virtual mapping windows raise an issue now
that the area callers want to map is usually
PAGE_SIZE in size, and to make it the size
they expect, fixmapspace must grow. There is
an alternative design possible, which is to keep
fixmapspace a fixed size or at most some fixed
size, and to have “sliding windows into a par-
tial page.” Using such an API would proceed
something like the following:

This is somewhat more invasive, but more ef-
ficient with respect to virtualspace. AsPAGE_
SIZE grows in a 32-bit environment with
progressively more extended physical mem-
ory, such measures become progressively more
prudent. However, the need to take such mea-
sures may be significantly mitigated by elim-
inating the permanent kmap pool in combi-
nation with using per-cpu pagetables for the
kmap windows, as the typical targets needing
the largestPAGE_SIZE values have a maxi-

int k;

void ∗old, ∗new;

old = kmap_atomic_start(old_page, KM_USER0);

new = kmap_atomic_start(new_page, KM_USER1);

for (k = 0; k < PAGE_KMAP_COUNT; ++k){

memcpy(new, old, KMAP_SIZE);

old = kmap_atomic(old_page, KM_USER0, k);

new = kmap_atomic(new_page, KM_USER1, k);

}

kmap_atomic_end(old_page, old, KM_USER0);

kmap_atomic_end(new_page, new, KM_USER1);

mum of 32 or 64 cpus. Eliminating the perma-
nent kmap pool has the additional advantage
of preventing deadlocks caused by a number of
tasks each attempting to acquire multiple per-
manent kmaps but acquiring fewer than desired
by the time the pool is exhausted.

2.2 coremap initialization

The coremap initialization is worthy of its own
discussion. First, in order to satisfy the early
boot setup code, the coremap must be laid out
so it mapsPAGE_SIZE units of memory to
properly aligned positions in the coremap. Si-
multaneously, most (if not all) of the calcula-
tions are done with pfn’s so various bits of di-
mensional analysis must be programmed in.

First, zone->zone_start_pfn and
zone->spanned_pages need to be treated
consistently. Then,zones_sizes[] needs
to be converted to passPAGE_SIZEunits and
free_area_init_core() fixed up to in-
crement its pfn counter byPAGE_MMUCOUNT.
bad_range() must then be adjusted for unit
conversion before doing its bounds checks.
Finally, the page allocator need not keep so
many orders around to satisfy allocations of
a given size, so useMAX_ORDER - PAGE_
MMUSHIFTinstead ofMAX_ORDER.

Bootmem also needed large adjustments; they

Linux Symposium 238

were largely done to make its own internal ac-
counting based onMMUPAGE_SIZEand then
interface it with the page allocator which has a
PAGE_SIZEgranularity. This ended up being
rather invasive.

2.3 Kernel pagetables

vmalloc() usage was too widespread to
undergo a full audit for space conserva-
tion. The choice was between usingPAGE_
SIZE or MMUPAGE_SIZEas the unit of
vmalloc() mapping and allocation, and I
choseMMUPAGE_SIZE. This is transparent to
userspace, so either would be legitimate, but
on i386 PAE vmallocspace is too constrained
to take internal fragmentation hits. This meant
that instead of a full audit for space conserva-
tion, a full audit for misuse ofPAGE_SIZE is
needed. This turned out not to be very prob-
lematic at all, as few drivers needed the conver-
sion, and those that did had mild failure modes,
failing only to probe.

page_table_range_init() and rela-
tives greatly disliked the change of units and
the ambiguous location ofkmap_pte and
pkmap_page_table . It proved infeasible
rapidly bring up the system while preserving
them intact, so they were removed and the code
greatly simplified at the expense of a very large
diff.

2.4 Process pagetables

User pagetable manipulations consisted largely
of straightforward substitutions in pagetable
code. Of course, something was missed. It
appeared that an unusual binary compatibility
bug arose with respect to shared libraries that
was very difficult to trigger. The cause of this
was that there was only one caller ofpte_
modify() in the core VM in a corner case
of mprotect() . This passed a first pass of
inspection because_PAGE_CHG_MASKdidn’t

trip grep, but it turned out to rely onPTE_
MASK, which by virtue of the macro indirec-
tion, also slipped past grep. After over a
week of chasing it, the substitution that slipped
through my fingers was finally carried out.

The next “interesting” binary compatibility
bug was that core dumps were corrupted.
The get_user_pages() calling conven-
tion had become lossy. It was returning
struct page ’s to refer to the areas mapped
by PTE’s, and it along withfollow_page()
was the only area of the kernel exibiting this
particular kind of confusion. The solution was
to return pfn’s and notstruct page ’s, and
was highly successful. Badari Pulavarty as-
sisted in implementing the portion relevant to
direct I/O.

The most interesting bug of all was actually
the first, which prevented userspace from run-
ning at all. /sbin/init would be stuck in a
loop somewhere in userspace, and it could only
very rarely be caught in the kernel. What even-
tually had to be done to track down the issue
was to log all page faults. What was eventu-
ally discovered was that pid 1 has a special sta-
tus in the kernel, and loops when taking invalid
faults instead of being delivered SIGSEGV. Af-
ter some poking around, it became evident they
were always anonymous pagefaults.

So at first, the workaround was to fragment
anonymous pages. But this could only be tem-
porary in order to meet the performance goals.
The issue was resurrected when it came time
to attempt to fully utilize anonymous pages
for performance reasons. It took some time
to come around to examining the contents of
the purportedly zeroed memory, but eventu-
ally divining the page pointed to by the PTE
taking the fault, which pointed to the zero
page. And the fact a nonzero address was be-
ing fetched from the zero page prompted the
examination of its contents. By an unusual

Linux Symposium 239

coincidence the author had been implement-
ing the GDT setup for an i386 executive ear-
lier that day, and noticed a very clear resem-
blance to the contents of the supposed zero
page. Very shortly thereafter it was discov-
ered that theempty_zero_page[] used on
i386 as backing memory for the zero page was
a 4KB array followed immediately by the ker-
nel’s GDT. The bug was resolved by using a
custom-allocated and zeroed page instead of
the struct page trackingempty_zero_
page[] .

Finally, userspace pagetables required fixups
in order to prevent extremely wasteful frag-
mentation. The code turned out to be some-
what hairy, as it required reference counting
pagetable pages and some scanning of PMD
entries in an alignedPAGE_MMUCOUNT-sized
group. Furthermore, in order to interoper-
ate with highpte, significantly more complex
definitions of pte_offset_map() , pmd_
populate() and relatives were required.

#define pte_offset_map(dir, address) \

((pte_t ∗) \

kmap_atomic(pmd_page(∗(dir)),KM_PTE0) \

+ (PTRS_PER_PTE \

∗ ((pmd_val(∗(dir))/MMUPAGE_SIZE) \

% PAGE_MMUCOUNT) \

+ pte_index(address)) \

)

pmd_populate() became too large to paste
here because it had to deal with several is-
sues to recover from partial unmappings of the
PAGE_MMUCOUNTPMD group and PTE page
refcounting. For the wary, it collapses to its
prior size whenPAGE_MMUCOUNT == 1.

2.5 file-backed memory

Handling userspace faulting semantics for file-
backed memory was actually trivial. The most

unsophisticated fault handling scheme imagin-
able suffices.

There was a small issue withsys_remap_
file_pages() where the populate methods
used theinstall_page() API internally to
perform the dirty work of walking the pageta-
bles down to the PTE to edit, and as it referred
to the location to map by thestruct page ,
lost the offset into the page to map. This was
trivially corrected with an additional argument
with the offset.

2.6 Swap-backed memory

Swap faults are not truly worth optimizing with
pagetable scanning; they don’t fragment like
freshly zeroed anonymous pages because the
swapcache is an effective lookup structure and
userspace can fetch things just fine. Instead
they are faulted in one by one, and that simpli-
fied things at least temporarily while the scan-
ning code wasn’t in place.

The organization of the swap map differs from
the 2.4.7 patch, which created a swap map en-
try for eachMMUPAGE_SIZEpiece of a page,
and so had to account for reference counts on
the page held by multiple swap entries. The 2.5
page clustering implementation instead uses
a single swap map entry for everyPAGE_
SIZE -sized page, and so simplified swap ref-
erence count semantics, reduces the vmalloc-
space consumption of the swap map by a factor
of PAGE_MMUCOUNT, and reduces the search
space for swapoff. Some differences there
are also visible with the encoding ofswp_
entry_t ’s, which directly play with swap
map indices and offsets into pages in various
points throughout the core VM where before-
hand they didn’t need to..

Linux Symposium 240

2.7 anonymizing faults

There is a problem to solve caused by the fact
that a process faulting on anonymous mem-
ory requestsMMUPAGE_SIZEbytes of mem-
ory but is grantedPAGE_SIZEbytes of mem-
ory. Again, there is more than one way to deal
with this.

The first, not used here, is to maintain a one
PAGE_SIZEarea as a “ready list” and service
anonymous faults until it’s exhausted.

The second is to speculatively prefault neigh-
boring anonymous pages in order to utilize the
entire anonymous page. Scanning neighboring
PTE’s for zero-mapped or COW pages (i.e. to
be anonymized). This has the potential to re-
duce the fault rate for some loads at the cost
of not guaranteeing full utilization. Initial in-
dications appear to be that even heuristics that
appear relatively weak in comparison to those
of the 2.4 patch suffice.

The logic is relatively complex, and some ad-
ditional complexity as compared to the 2.4.x
code was added by simultaneously scanning
PTE’s both upward and downward. Some
additional code is required to crossvma
boundaries and detect whether a given page
is anonymous or COW. Crossing pagetable
page boundaries was not implemented, for the
basic reason thatPAGE_MMUCOUNT*PMD_
SIZE is enough virtualspace to scan to mit-
igate most of the fragmentation, and also to
remain future-compatible with pagetable shar-
ing, which is somewhat adverse to crossing
pagetable pages. Additionally, totally un-
bounded scanning could result in some over-
head.

When the scanning code is done, what it has
done is assembled a vector of pfn’s for all the
mmupages it has to copy, and they are by no
means contiguous. In order not to be grossly
TLB-inefficient, an interface is provided to

map vectors of pfn’s,kmap_atomic_sg() .
The use of it is obvious, as it maps each compo-
nent of the pfn vector to a virtually contiguous
PAGE_SIZE virtual area in its corresponding
piece of the virtual page, and the only non-
straight-line code in copying is checking for
the zero page.

2.8 I/O

I/O by and large had relatively simple is-
sues. The i386 PCI DMA API had some
address calculations in need of minor sub-
stitutions, and the block layer was largely
immune to the whole affair apart from di-
rect I/O and SCSI ioctl’s usingget_user_
pages() . An unfortunate limitation ex-
ists in that the block layer is incapable
of dealing with512*q->max_sectors <
PAGE_SIZE. I didn’t produce a fix for this, as
it’s a somewhat obscure condition that can only
occur when particularly crippled devices meet
particularly large value ofPAGE_SIZE. I feel
that it should eventually be handled as part of
the implementation.

IDE had a small issue in that its PRD tables
were sized in terms ofPAGE_SIZE, which it
appears to expect not to vary from 4KB. AGP
also had an unusual issue involving mapping
its aperture. But most drivers that failed sim-
ply performed avmalloc() or ioremap()
of an area sized proportionally toPAGE_SIZE
during initialization and failed to probe, which
was harmless apart from failing to provide
functionality (i.e. no data corruption) and very
easy to correct. The starfire ethernet adapter
fell in this category.

3 Trademarks

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM is a trademark of International Business Ma-

Linux Symposium 241

chines Corporation.

Linux® is a trademark of Linus Torvalds.

Other company, product or service names may be
trademarks or service marks of others.

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

