
SCSI Mid-Level Multipath

Michael Anderson, Patrick Mansfield
IBM Linux Technology Center

andmike@us.ibm.com, patmans@us.ibm.com

Abstract

Multipath IO is the ability to address the same
storage device over multiple connections, pro-
viding improved reliability and availability.
This concept is not new to Linux®. Multi-
path capabilities exist in the volume manage-
ment layer, SCSI upper level, and in the SCSI
lower level device driver. This paper examines
an approach to providing multipath support in
the Linux 2.5+ SCSI mid-level. An implemen-
tation at this level gives the reduced resource
usage and better performance of lower level
implementations, along with the device inde-
pendent capabilities of upper level implemen-
tations.

The target audience is developers knowledge-
able about SCSI or Linux SCSI internals that
are also interested in multipath storage support.

1 Introduction

This section provides an overview of the char-
acteristics of the multiple paths and multiple
ports presented to the Linux kernel by the stor-
age IO transport and by the storage device it-
self.

A path is the connection between the host sys-
tem and the storage device. Multiple paths to
a device result from the storage device having
more than one port (multi-port storage device)
or the host system having multiple connections
into a given bus or fabric that connects to a stor-

Interconnect

Multi-Port

Multi-Initiated

Host

HA-AHA-B

Figure 1: Multi-Initiated and Multi-ported
multipath configuration

age device port (multi-initiated interconnect).

Utilization of a multipath device can increase
the availability of the storage device presented
to the operating system by reducing the loss
of access due to a single transport problem.
Multipath device support may also provide an
increase in performance due to load balanc-
ing if the performance attributes of the stor-
age device are greater than a single transport
can deliver. When a system architecture like
NUMA exhibits increased latency between lo-
cal memory and non-local adapters multipath
with NUMA aware routing can be used to route
IO to adapters with the lowest latency.

Although the necessity for multipath in enter-
prise systems is clear, the selection of where to



Linux Symposium 24

implement it has lead to several different ap-
proaches in the Linux kernel. This SCSI mid-
level multipath solution was created to address
the following:

• Implementation at a level higher in the
stack than vendor unique lower level
driver solutions, while not exposing de-
vice specific knowledge to layers above
SCSI.

• Reduction of kernel resources while still
utilizing the existing IO scheduler and in-
terfaces of the block layer.

• Binding paths to devices without obtain-
ing information from the devices media,
allowing support for both block and char-
acter devices.

• The ability to distinguish between path
and device errors.

• Selection of the optimal path for IO based
on Lower Level Device Driver (LLDD)
attributes, NUMA topology, and device
attributes.

1.1 Multi-Initiated Interconnect

A multi-initiated interconnect results from at-
taching multiple host adapters to a single inter-
connect. For example, a multi-initiated SCSI
bus or multi-initiated Fibre Channel.

Multi-initiated paths to a single storage device
normally present equal characteristics. Some
hardware platforms can create performance in-
equalities down separate paths to a storage
device port when different latencies exist be-
tween a host adapter and the memory it is ref-
erencing. A NUMA architecture based plat-
form can present such latencies; depending on
the magnitude of the latency, platform spe-
cific routing policies can increase performance.
Path selection will be discussed in detail later
in the document.

1.2 Multi-Port Storage Device

A storage device can present multiple proto-
col communication ports to an IO intercon-
nect. These ports can be accessed from the
host through a single host bus adapter (single
initiator) or multiple host bus adapters (multi-
initiated).

While the performance characteristics of IO
down multiple paths to a single port of a de-
vice are nominally equal (excluding NUMA),
the performance to different ports of the device
can vary greatly due to the architecture of the
storage device.

These different storage device architectures
can be grouped into three behavior models
based on the device’s differing response to IO
sent to more than one port. A device may ex-
hibit differing port behavior only on ports that
cross logical unit ownership boundaries. Some
storage devices can be configured to operate in
more than one behavior mode.

• Failover – When a device is operating
with Failover behavior, IO to a secondary
port must be preceded by control com-
mands indicating a redirection of all IO to
an alternate port. Once the storage device
has transitioned, “Failed over” IO may be
directed to an alternate port. This be-
havior model is exhibited in devices with
some performance penalty in the tran-
sition of logical unit ownership. Clus-
tered shared storage systems may use this
model to keep port thrashing from degrad-
ing performance.

• Transparent Failover – IO to a single
volume should only be sent to a single
port until an availability condition arises
to cause IO to be redirected to a secondary
port. The storage device will transition
transparently to using the secondary port



Linux Symposium 25

on the receipt of the first IO to this port.
The storage device transition delta for this
first IO is significant when compared to
subsequent IOs, such that performance
would degrade noticeably if port transi-
tions occurred frequently (i.e., if round
robin routing policy were used).

• Active Load Balancing – IO to a single
storage device volume can be sent down
any path without degrading performance
(note: some cache warmth benefits may
be achieved by using more sophisticated
path selection algorithms, but this is ven-
dor unique). These storage devices usu-
ally have a cache that can be symmetri-
cally accessed from any input port or a
single cache that all input ports feed into.

1.3 Linux Multipath Implementations

Multipath support to a storage device can be
implemented at different levels in the Linux
operating system’s IO stack. This support can
be provided by storage vendors, adapter ven-
dors, and the base kernel.

• Volume Management– Multipath at this
level is usually implemented as a modified
case of existing RAID support. Multiple
block devices exposed by the operating
system point to the same storage device
and are configured to be failover paths for
IO. The “md” driver [3] and LVM multi-
path patch [2] are examples of support at
this level.

• Upper Level – Support at this level in-
volves chaining or linking the multiple
block devices exposed by the operating
system as failover paths. An example of
this type of implementation is the T3 Mul-
tipath failover driver written by Linuxcare
Inc. [5].

• Mid-Level – This is the level of imple-
mentation described in this document.

• Lower Level – An implementation at
this level involves a binding of common
vendor adapters exposing only one de-
vice to the operating system. On fail-
ure, the adapter driver re-drives the IO
through another adapter previously paired
as a failover adapter. An example of this
type of implementation is the Qlogic Fi-
bre Channel failover driver.

2 Data Model

2.1 Current Linux SCSI Device Data Model

This section provides a high level overview of
the Linux 2.5 SCSI subsystem data structures
with a focus on providing a background for
later discussion on multipath support. Gen-
eral Linux SCSI information can be obtained
by viewing the "The Linux 2.4 SCSI subsys-
tem HOWTO" [1] and [4] listed in the Refer-
ence section.

Each LLDD that wishes to register with the
Linux SCSI sub-system provides a SCSI host
template (Scsi_Host_Template ) data
structure that describes the capabilities of the
driver and interface functions.

The LLDD can register with the SCSI subsys-
tem in two ways. One method is a Legacy
interface, which is driven from the SCSI mid-
level code and calls into the LLDD detect rou-
tine, which causesscsi_register() to be
called for each adapter card detected by the
driver. The other method allows the LLDD
to callscsi_register() directly and then
call scsi_add_host() when it is initial-
ized and ready to be scanned. These two meth-
ods result in aScsi_Host data structure be-
ing allocated for each instance of an adapter
card.



Linux Symposium 26

If an adapter contains multiple busses or chan-
nels (not a PCI bridge of two cards), there will
be only one SCSI host structure (Scsi_Host )
created.

After a kernel boot, a insmod of a LLDD, or
hotplug event, a list (scsi_hostlist ) will
contain a SCSI host structure representing each
adapter detected.

During device scanning a SCSI device data
structure (scsi_device ) will be allocated
for each logical unit discovered. Each SCSI
device structure will be added to a linked list
member of its SCSI host parent.

See figure 2 for a diagram of the data struc-
tures and their relationships.

scsi_host
 list_head

scsi_device
 request_queue

scsi_hostlist scsi_host
 list_head

scsi_device
 request_queue

scsi_device
 request_queue

scsi_device
 request_queue

Figure 2: Linux SCSI Data Structures

Once the scanning phase is complete a
struct scsi_device will be associated
to only onestruct Scsi_Host .

2.2 Mid-Level Multipath Data Model

When no multipath capabilities are enabled in
the Linux SCSI subsystem, multiple paths re-
sult in a SCSI device structure being created
and eventually exposed through the block or
character layer for each path. This redundancy
wastes system resources and creates a non-
optimal presentation of structures to the block
layer and user level.

The mid-level multipath implementation coa-
lesces these extraneous SCSI device structures
while still maintaining the information relating
to the paths.

The child relationship of the SCSI device struc-
ture to the SCSI host structure is removed and
a new relationship is created using the mid-
level multipath structures. The SCSI multi-
path structure (struct scsi_mpath ) is a
container for all the paths to the storage de-
vice. The SCSI mpath structure also contains
information on the path routing policy, a count
of active paths, and a reference to where the
last IO was routed. Thescsi_mpath struc-
ture is associated with the SCSI device struc-
ture through a new member,sdev_paths .

Each path is represented by a SCSI path
structure (struct scsi_path ). This path
structure contains a fast reference to the next
sibling path, the state of the path, and a SCSI
nexus structure (struct scsi_nexus ).

The nexus object contains the transport spe-
cific knowledge to communicate with the stor-
age device. In an ideal world, this nexus would
be an opaque object (i.e., a handle) that was
handed to the SCSI mid-level during the device
scanning process.

See figure 3 for a diagram of the multipath data
structures and their relationships.

2.2.1 Multipath Data Model General Ap-
plicability

The data model presented for multipath has ad-
vantages even in non-multipath cases.

Because the mid-level model has separated the
request queue presented to the block layer from
the nexus object that is associated with the
SCSI hosts, paths containing nexus objects can
be added to or removed from a SCSI device



Linux Symposium 27

scsi_device
 request_queue
 sdev_paths

scsi_mpath
 list_head

scsi_sdev_list

scsi_path
 nexus

scsi_path
 nexus

scsi_nexus
 host

scsi_nexus
 host

scsi_host scsi_host

scsi_hostlist

scsi_device
 request_queue
 sdev_paths

Figure 3: Mid-Level Multipath Data Structures

structure.

When all paths have failed or there are no paths
to a device, a policy could be created to allow
the SCSI device structure to remain in place,
but suspend SCSI IO request processing. This
would allow block and file system level at-
tachments to remain established while trans-
port connectivity is in flux.

If UUID authentication can be ensured (this
would be the case for multipath devices sup-
ported by this implementation) new paths
could bind to the SCSI device and IO request
processing would resume. If authentication
cannot be ensured, lower level resources can
be released in less time than current structures
allow.

Depending on the future direction of the SCSI
mid layer, this separation could be used to add
or remove SCSI subsystem components while

IO is active.

3 Mid-Level Multipath

3.1 Linux SCSI Scanning Overview

Following is an overview of the SCSI scan
algorithm for a given logical unit within
scsi_scan.c as pertains to modifications
for use with multipath (per code in linux ver-
sion 2.5.68).

A call to scsi_alloc_sdev allocates and
initializes ascsi_device (sdev). Note that
a sdev , logical unit, and I_T_L nexus are all
equivalent in the current linux SCSI code. The
LLDD slave_alloc() function is called
for thesdev [4].

The sdev is sent an INQUIRY. Device
attributes settings are obtained by calling
scsi_get_device_flags() .

If the logical unit responds, and it has a logi-
cal unit configured, thesdev is left in place,
otherwise it is removed.

scsi_load_identifier() function is
called to get a UUID (universal unique iden-
tifier) via SCSI INQUIRY VPD pages [6], and
the result is stored insdev->name .

scsi_device_register() is called,
generating a hotplug event.

Last of all, the LLDD slave
_configure() function is called for
thesdev .

Upper level attaches are done after all scan-
ning (on insmod or initialization of a LLDD)
or the upper level attach is done after a single
logical unit is scanned via /proc/scsi/scsi (in
scsi_add_device() ). These in turn can
generate their own set of hotplug events as the
upper level drivers (sd, st, sr, and sg) attach to



Linux Symposium 28

eachsdev .

This means that a series of hotplug events oc-
curs for many scsi_devices, followed by a se-
ries of hotplug events for each upper level de-
vice (such as a block device).

3.2 Scan Modifications for Multipath

The scanning code is changed as follows for
mid-level multipath support.

The allocation of ansdev is modified to not
only allocate the actualscsi_device ,
but to also allocate and add a single
path (struct scsi_path , including
a struct scsi_nexus ) to the sdev .
slave_alloc() is modified to take both
an sdev andscsi_nexus as an argument,
such that it can access both logical unit data
(in thesdev ) and nexus specific data.

Future plans are to supply a set of parallel
slave_nnn interfaces for use with multipath, so
that existing drivers not supporting the new in-
terfaces will behave as if the multipath patch
were not applied (each path to a storage device
will generate a newscsi_device ).

After a UUID is retrieved, all existingsdev ’s
are searched for a match.

If no match is found, this is the first path to the
device, and it is handled the same way as the
current non-multipath code.

If a match is found, the new path is added to
the matchingsdev (the paths are coalesced),
and the currentsdev is freed.

slave_configure() is also modified to
take both ansdev and ascsi_nexus as ar-
guments.

3.3 UUID

The immutability of the UUID is key to deter-
mining if more than one nexus can access the
same storage device. This is not a simple prob-
lem to deal with, as some devices return no
UUID, some return a UUID that is not unique,
and others require device specific methods to
retrieve a truly unique UUID. Future changes
(such as a UUID white list) are required to
properly handle the UUID in all cases; user
level scanning would simplify the problem.

Discussions were actively in progress at the
time this paper was written on whether or not
to keep the existing UUID retrieval code in
the kernel. Depending on the outcome, and
amount of time available, the multipath patch
might have to carry the UUID retrieval.

The primary problem with moving UUID re-
trieval to user level (for use with multipath, as-
suming full user level scanning is beyond the
scope of the current implementation) is that the
current scan and upper level attach are initi-
ated without the ability for user level interven-
tion - all upper level devices are attached to
all scsi_devices with no synchronization
from user space.

Without the coalescing of paths as described
above devices can show up multiple times,
leading to potential resource shortages (mem-
ory as well as major/minor numbers), and po-
tential problems for applications dependent on
the hiding of duplicate paths.

Further investigation is needed to determine if
it is practical to modify the scan and upper
level attach to be user initiated (versus the more
difficult problem of complete user level scan-
ning). Such that all devices are scanned in ker-
nel code, and then from user level: UUID’s
retrieved, coalesced, and then upper level at-
taches triggered.



Linux Symposium 29

3.4 Current SCSI I/O Request Flow Overview

Following is an overview of the current IO re-
quest flow as it pertains to functions modified
for use with SCSI mid-level multipath IO.

A SCSI device structure request queue mem-
ber (request_queue ) is registered with the
block layer at SCSI scan time for en-queuing
requests. Both SCSI character and block de-
vices utilize this queue, as do the commands
issued during SCSI scan and by upper level at-
tachment.

For block IO devices, an IO request
is sent to the block layer via the
__make_request() function. In turn
it eventually calls the SCSI block request
function,scsi_request_fn() .

For SCSI character devices, scanning, and
commands sent during upper level attaches,
scsi_do_req() or scsi_wait_req()
are used to send SCSI commands to
the scsi_device . These functions
setup the sr_done function pointer, in-
sert a request, and trigger a call to the
scsi_request_fn() via a call to the
block queueblk_insert_request() .

The scsi_request_fn() func-
tion retrieves a request and calls the
scsi_prep_fn() via a call to the
elv_next_request() .

scsi_prep_fn() allocates and initial-
izes the scsi_cmnd . The scsi_cmnd
done function is set in upper level drivers
via calls to their init_command func-
tions. For users ofscsi_wait_req() or
scsi_wait_req() , the done function is
set to thesr_done .

Thescsi_cmnd is the key data structure used
to issue a request to a LLDD.

Control continues in scsi_request

_fn() , where resource limitations and hard-
ware limits (such as queue depth) are checked
via calls to scsi_dev_queue_ready()
andscsi_host_queue_ready() .

If resources are available, scsi
_dispatch_cmd() is called, it adds a
timeout, and transfers control to the LLDD
by calling thescsi_host queuecommand
function, passing thescsi_cmnd , and
scsi_done() .

The LLDD is responsible for sending the com-
mand to the actual logical unit. After the re-
quest is submitted,queuecommand returns.

Upon completion of the IO request, the LLDD
calls thescsi_cmnd scsi_done() func-
tion.

scsi_done() puts the completed com-
mand onto a per-CPU queue, and raises the
SCSI_SOFTIRQ.

scsi_softirq() determines the comple-
tion status of eachscsi_cmnd via calls to
scsi_decide_disposition() .

scsi_decide_disposition() clas-
sifies the completion status of the IO (the
scsi_cmnd) and returns the following values to
scsi_done() , that lead to further actions:

SUCCESS: the IO has completed without er-
ror, the command is completed by calling
scsi_finish_command() . This includes
an IO completion with failures (for example,
an IO went to a disk, but had media errors).

ADD_TO_MLQUEUE: the IO completed
with a SCSI QUEUE FULL status. The
command is re-queued for a retry via
scsi_queue_insert() , effectively
resending the command.

NEEDS_RETRY: the IO had a temporary or
other condition such that it can be immediately



Linux Symposium 30

resent, resend the IO (without re-queuing it) by
callingscsi_retry_command() .

FAILURE or any other value: a de-
vice or transport error occurred. Call
scsi_eh_scmd_add() to queue the failed
command for error handling; when the host
adapter has no more IO outstanding (when the
active_count equals thehost_failed
count) the error handler wakes up and handles
all failed commands.

scsi_finish_command() is the
main path for IO completion, it calls
the scsi_cmnd done function, ei-
ther the upper level completion function
(for sd, sd_rw_intr ) or the func-
tion specified in scsi_wait_req() or
scsi_wait_done() .

3.5 Modifications for IO Path Selection and
Path Failures

The SCSI code is modified as follows for mid-
level multipath.

A path (including nexus) is selected via
a call to scsi_get_best_path() from
scsi_request_fn() .

Path selection is affected by the number of
paths, path state, path policy, and NUMA
topology.

A list of all available paths and all active paths
to a device are kept. In addition, for NUMA
systems, there is a list of paths local to a given
node.

If no active paths are available, the
scsi_request_fn() function fails
the IO request.

Currently, path selection policy is
controlled via the global variable
scsi_path_dflt_path_policy . This
is set via the kernel config and can be modified

at boot time, with future plans to allow setting
this both per device and via sysfs.

Settingscsi_path_dflt_path_policy
to SCSI_PATH_POLICY_LPU (1) sets the
path selection policy to last path used. This
means that another path will only be used on
failure.

Settingscsi_path_dflt_path_policy
to SCSI_PATH_POLICY_ROUND_ROBIN
(2) sets the path selection policy to round
robin. This means that paths will be rotated
across all available paths on every request sent
to the device.

A last-path used policy is safest for general
purpose use (for example with a device using
a transparent failover model). Future plans are
to add device specific attribute hooks and code
to fully support a transparent failover model,
so that round-robin path selection can be done
across a subset (lowest path weight) of all
paths, not just a single path.

NUMA path selection where possible picks a
path local to the node containing the memory
to be used for the IO operation. If no local
path is available, all paths are valid for selec-
tion. So, for round-robin path selection, path
selection is either round-robin with respect to
all paths local to a given node, or for all paths
to a device.

Current NUMA multipath support is limited to
a one-to-one mapping of path to node. Future
plans are to support multiple nodes connected
to the same path (the same bus). Changes are
required in the current kernel NUMA topology
in order to support topologies that have varied
or unequal distances (that is, where the inter-
node distances can vary), or for cases where a
node contains no CPU’s.

For multipath, thescsi_cmnd device is
changed from astruct scsi_device



Linux Symposium 31

pointer to astruct scsi_nexus pointer;
the scsi_nexus retains the same fields as
those used by the LLDD in order to deter-
mine the nexus (that is, thescsi_nexus con-
tains ascsi_host pointer, channel , id
andlun ).

Then as part of the path selection, the
scsi_cmnd device pointer is set to point
to the selected path’s nexus. (Renaming the
scsi_cmnd device tonexus would be ap-
propriate.)

The LLDD queuecommand function is called,
passing the scsi_cmnd that includes a
pointer to ascsi_nexus . Existing LLDD
code can then be used, with no changes re-
quired to the core of the LLDD.

Upon IO completion,scsi_path_decide
_disposition() categorizes failures as
transport (path failure) or device specific (de-
vice failure). Path specific failures cause a path
to fail, and the IO can be retried on any remain-
ing paths. Device specific failures generally of-
fline the device, and do not allow an IO to be
retried.

scsi_check_paths() is then called with
an indication as to whether a path failure has
occurred or not, it updates the path state, and
returns a result specifying the action to take:
the standardSUCCESS(meaning the IO has
completed, not that it has completed success-
fully), FAILURE, or a newREQUEUEvalue
signaling that the IO should be re-queued.
NEEDS_RETRYis no longer returned.

In scsi_softirq() , when a
REQUEUE result is returned from
scsi_decide_disposition() , the IO
is re-queued viascsi_queue_insert() .

So, on a path failure, the IO is re-queued, and
in scsi_request_fn() the IO can be re-
tried on any of the remaining paths.

3.6 User Space Interface

3.6.1 Procfs

The mid-level multipath code provides a procfs
interface for viewing and setting attributes re-
lated to paths. The path to the procfs file
is /proc/scsi/scsi_path/paths . The
file supports both read and write operations,
and displays attributes about the paths. The ta-
ble below provides a description of each of the
columns in the output.

Column Description
1 UUID
2 Host Number
3 Host Channel
4 Target ID
5 Lun
6 State
7 Failures
8 Weight

Table 1: Procfs Columns

An edited output to show only one device of a
read is shown as follows:

#cat /proc/scsi/scsi_path/paths
...
2000002037171f24 3 0 1 0 1 0 0
2000002037171f24 4 0 1 0 1 0 0
...

Writing to the file allows path attributes to be
modified. Currently the only meaningful write
operation is to modify path state. A path state
may be modified from dead to good or good to
dead. A good path state has a value of "1" and
a dead path has a value of "3".

An example of failing a path is shown as fol-
lows:

echo ‘2000002037171f24 3 0 1 0 3 0 0‘



Linux Symposium 32

> /proc/scsi/scsi_path/paths

In the near term the procfs interface will be re-
placed with a sysfs interface. At the time of this
writing, the interface was not complete and is
discussed in the Future Work section.

4 Future Work

4.1 Multipath Device Personality

The use of device-neutral information through
standard SCSI interfaces limits the set of mul-
tipath capabilities that can be supported on a
given device to a minimal set known to be safe
for all devices. To utilize the extended capa-
bilities of some storage device’s, the device at-
tributes or a device’s “personality” needs to be
exposed.

The interfaces provided for obtaining this per-
sonality knowledge will not be restricted to
kernel space. Some data can be set from user
space, but other operations will need to be ker-
nel resident to avoid deadlock. Further direc-
tion toward user level scanning will affect these
interfaces.

The single kernel config time path policy can
be enhanced with device attribute information
allowing support for device specific path poli-
cies.

Path weighting values related to a device’s at-
tributes would allow proper primary and sec-
ondary paths to be determined. The ability to
determine preferred paths to assist in the bal-
ancing of load across a storage device’s port
can also be determined.

4.2 SCSI Reservations

The support of SCSI Reserve/Release affects
the type of path selection policy that can be se-
lected for a storage device restricting it to the

last path used. Support of SCSI persistent re-
serve requires an interface to accept a reserva-
tion key and special IO operations before paths
can used for normal IO. Future work is trying
to meet the requirements of SCSI reservation
with a general purpose path preparation capa-
bility.

4.3 Sysfs Interface

As mentioned in a previous section, the procfs
interface to mid-level multipath is being mi-
grated to a sysfs-based interface. The migra-
tion to a sysfs interface allows for the linkage
to the device tree for increased path topology
information and the utilization of common ker-
nel code infrastructure, reducing code duplica-
tion.

5 Availability

The SCSI Mid-Level Multipath project page is
located at:

http://www-124.ibm.com/storageio/multipath/
scsi-multipath/

Legal Statement

This work represents the view of the author and
does not necessarily represent the view of IBM.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

References

[1] Douglas Gilbert, “The Linux 2.4 SCSI
subsystem HOWTO”
http://www.linuxdoc.org/HOWTO/

SCSI-2.4-HOWTO/index.html



Linux Symposium 33

[2] “LVM multipath support”,
http://oss.software.ibm.com/

linux390/useful_add-ons_lvm.shtml

[3] “MD Multiple Devices driver”,
drivers/md/*

[4] “SCSI mid_level - lower_level driver
interface”,
Documentation/scsi/

scsi_mid_low_api.txt

[5] “Linux T3 Driver”,
http://open-projects.linuxcare.com/t3/

[6] “SCSI Primary Commands - 3 (SPC-3)”,
ftp://ftp.t10.org/t10/drafts/

sam3/sam3r06.pdf

[7] “SCSI Architecture Model - 3 (SAM-3)”,
ftp://ftp.t10.org/t10/drafts/

sam3/sam3r06.pdf



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


