
DMA Hints on IA64/PARISC
Optimizing DMA performance for HP Chip sets

Grant Grundler
Hewlett Packard

grundler@cup.hp.com

Abstract

Modern IO subsystems implement complex
DMA transaction parameters, called DMA
hints, which are not explicitly supported by
the Linux DMA API. This paper investigates
benefits of using non-default DMA hints and
thus whether such hints should be abstracted
into the DMA API. My conclusion is the im-
plementation (ZX1) investigated does not war-
rant changing the DMA API. Other implemen-
tations need to be compared before proposing
any changes.

HP PA-RISC (Astro[1]/Elroy[2]) and IA64 IO
Controllers (ZX1) both support several types of
DMA hints and both are commercially avail-
able. My primary interest was the ability to
prefetch cache lines for PCI devices. The ben-
efit is same as for CPU: bring the data closer
to the consumer. But to my surprise, cache line
prefetching is not the most important hint since
default prefetching works well for all devices.
Relaxing the PCI ordering rules turns out to
be more important since firmware can’t know
when it’s safe to do so.

Updated versions of this paper will be avail-
able from http://iou.parisc-linux.

org/ols2003/

1 Introduction

DMA performance seems like such an obvious
thing. Drivers just need to tell the device where
to fetch something from memory, poke it, and
life is good. Unfortunately, those days are over.

Modern SMP servers require multiple levels of
bridges in order to support PCI-X Bandwidth
(peak burst rate 133MHz/64-bits). In order to
work well with CPUs and memory controllers,
IO Devices participate in the CPU Cache Co-
herency protocols. They also need to minimize
the number transactions used and use the ap-
propriate type of transaction in order to opti-
mally utilize available bandwidth.

Throughout this paper (and even in the title!)
I use the wordHint which implies an “infor-
mational only” parameter. This isn’t strictly
accurate. Some platforms depend on certain
parameters for correct operation. I.e. incor-
rect results may occur for some combinations
of DMA hints. The DMA hints discussed in
this paper should always provide correct re-
sults though I’ve crashed the ZX1 with some
hints as noted.

And I recycled the ZX1 block diagram used
in my 2002 OLS talk, “Porting Drivers to
ZX1.”[3] The diagram is useful to understand
the routing of data between PCI devices, Mem-
ory, and CPU. [4]

Linux Symposium 220

LBA LBA LBA LBA

Memory

USB
SCSI
LAN

IO MMU

SBAMckinley Bus

CPU CPU

Figure 1: HP ZX1 Block Diagram

2 Overview of DMA

The following sections introduce some of the
key concepts relating to Direct Memory Ac-
cess.

2.1 Consistent vs. Streaming DMA Mappings

The Linux DMA mapping interface differen-
tiates between two memory access patterns.
A short summary ofDMA-mapping.txt [5]
follows.

Consistent DMA mappings are intended for
data which is concurrently accessed by both
CPU and PCI device(s) (i.e. Host RAM base
device control structures like mailbox rings).
Key feature is updates (writes) from either
must be visible to the other based on PCI order-
ing rules. In short, fairly strict R/W ordering
rules and transactions are typically less than a
cache line in length.

Streaming DMA mappings are intended for
memory regions exclusively accessed by the
PCI device(s). This “exclusive” access begins
when a host memory region is mapped and
ends when the same region is unmapped.

The Streaming DMA interface provides two

explicit hints: DMA direction and DMA
length. From the length, we know the block
size on which the DMA will terminate. But
as noted in the introduction, DMA direc-
tion is required for correct operation on some
platforms—but not ZX1 or PARISC IOM-
MUs.1 The ZX1 System Bus Adapter(aka
SBA; Seesba_iommu.c) code does option-
ally use direction to optimize VM bits. Other
hints regarding PCI Ordering compliance and
DMA Read data consumption rate are not spec-
ified.

2.2 PCI DMA

A single DMA operation is fairly straight for-
ward at the PCI bus level. The PCI Device
asks the PCI arbiter for bus ownership. The
Arbiter eventually grants the PCI device own-
ership of the bus. PCI device accepts owner-
ship and sends the target address (possible two
cycles worth for 64-bit addressing) followed by
data. The transaction ends when either the PCI
Controller asks the device or the PCI device
volunteers to give ownership.

PCI supports several different types of Com-
mands. Here are the ones relating to DMA
along with summaries of their PCI Local bus
definition:

• Memory Read command is used to read
data from an agent mapped in the Mem-
ory Address Space. The target is free to
do an anticipatory read for this command
only if it can guarantee that such a read
will have no side effects. Furthermore, the
target must ensure the coherency (which
includes ordering) of any data retained in
temporary buffers after this PCI transac-
tion is completed.

• Memory Read Line command is seman-

1PARISC platforms without IOMMU do require
R/W direction hint.

Linux Symposium 221

tically identical to the Memory Read com-
mand. Use of MRL indicates the intention
to read a full cache line of data.

• Memory Read Multiple command is se-
mantically identical to the Memory Read
command. Use of MRM indicates the in-
tention to read more than one cache line
of data before disconnecting. MRM is
intended to be used with bulk sequential
data transfers where the memory system
(and the requesting master) might gain
some performance advantage by sequen-
tially reading ahead one or more addi-
tional cache line(s) when a software trans-
parent buffer is available for temporary
storage.

• Memory Write command is used to write
data to an agent mapped in the Memory
Address Space. When the target returns
“ready,” it has assumed responsibility for
the coherency (which includes ordering)
of the subject data.

• Memory Write and Invalidate com-
mand is semantically identical to the
Memory Write command. The differ-
ence is MWI requires the device to write
at least one complete cache line and the
Host Cache controller can invalidate ex-
isting contents without having to send the
contents (just reassign ownership) to the
IO or Memory Controller. This avoids
unnecessary cycles on the Front Side
Bus for DMA writes. MWI requires
CACHELINE_SIZE register in the de-
vice configuration space to (a) be imple-
mented and (b) programmed by BIOS or
PCI Initialization code to a suitable value.

The number of bytes transferred is constrained
by the transfer type (MR, MRL, MRM, MW,
MWI) and LATENCY_TIMERvalue. The
LATENCY_TIMERis described briefly later in

this paper and by the PCI Local Bus Specifica-
tion.

Memory Writes are typically the simpler
case from a software performance perspective.
DMA Writes are buffered by the chip set and
routed to the memory controller[6] at whatever
rate the internal interconnect supports. Data
throughput is typically limited by the PCI bus
controller[7] or memory controller.

Reads are more complicated because the mem-
ory controller latency is harder to hide. All data
handling systems (like disk IO) deal with this
problem by “Read Ahead” (a.k.a. prefetching)
or caching. However, large caches like those
implemented in a CPU are expensive in many
ways. And large caches don’t help much since
the read and write access patterns for IO de-
vices typically aren’t for the same cache lines
repeatedly. Or in the case of shared data, the
IO device competes at times with the CPU for
the cache line.

Successive requests for bulk data can be
prefetched by the I/O Controller. I was ex-
pecting prefetching to make a big difference
for PCI devices. But the individual devices I
tested (except 53c1010 Consistent DMA) did
not perform better or worse for different levels
of prefetching. Like disk IO, the effectiveness
of the prefetching really depends on the data
access pattern. I suspect this is because the PCI
devices are designed to work well with out any
prefetching and buffer enough data to keep the
IO device from stalling.

2.3 DMA on PCI-X

PCI-X obsoletes much of what I was trying to
accomplish in this paper. Cache line prefetch-
ing hint only applies to PCI. But three new
PCI-X-only features are of interest:

• Attributesare part of the PCI-X command.

Linux Symposium 222

• Split Transactionsreplace the goofy “retry
forever” schemes used when read data is
not available.

• Burst Transactionsreplace MRM, MRL,
and MWI.

2.3.1 Command Attributes

The PCI-X Specification[8] (drafts are avail-
able for free) has more details about command
attributes in section2.3 PCI-X Command En-
coding. I’ll try to summarize below. Two at-
tributes are currently defined for PCI-X com-
mands.

Relaxed Ordering is also described in Sec-
tion 4.1. In a nutshell, ignoring the PCI or-
dering rules regarding Programmed I/O (CPU
R/W) and DMA (PCI R/W) yields measurable
performance gains without sacrificing correct
operation. The handful of drivers I’ve used
under PARISC-Linux and IA64-Linux run just
fine with outbound data2 ordering rules re-
laxed.

Note the PCI-X spec doesn’t require the PCI-X
device to use Relaxed Ordering attribute when
the Relaxed Ordering bit is set in the command
register. ZX1 chip can override the Command
Attribute for Relaxed Ordering behavior. And
ZX1 chip set only implements this optimiza-
tion for outbound data flow (PIO Write/DMA
Read return). The PCI-X spec defines opti-
mizations in both directions of data flow.

No Snoopattribute isn’t relevant for most IO
devices. Most Linux drivers expect DMA
transactions under control of DMA mapping
services to be coherent. “No Snoop” means the
host driver guarantees the latest copy of a cache
line is in the memory controller. And it implies

2Inbound data reordering causes Bad Things™ to
happen. Discussed on ia64-linux mailing list.

the chip set can perform better if it doesn’t have
to Snoop. My understanding is non-coherent
transaction are interesting for graphics devices,
not the LAN/Storage devices I work with.

2.3.2 Split Transactions

Split Transactions just means the request for
information and the completion (reply) of that
request are separate transactions on the bus.
This is a good thing for several reasons:

• Up to 32 transactions can be pending at
the same time. Only 5 bits are defined in
theTagfield of the PCI-X command. But
the exact number of outstanding transac-
tions supported depends on chip set im-
plementation. This is identical in concept
to Tagged Queuesdefined for SCSI proto-
col.

• More efficient: eliminates the need to poll
(aka “retry forever”) when the PCI Con-
troller disconnects in the middle of a (e.g.)
read transaction.

• Acts more like a Memory bus rather than
an IO bus. Thus, it’s easier for HW
designers to route transactions across a
larger fabric.

2.3.3 Burst Transactions

Memory Read Block (MRB) and Memory
Write Block (MWB) are replacements for
MRL/MRM and MWI respectively. The key
difference between the above PCI and PCI-X
commands is addition of aByte Countfield. By
making the transfer length visible to the PCI-X
controller, the chipset can prefetch cache lines
appropriately. This is significant since not in-
volving driver writers for 4 or 5 different OSs
to program DMA hint bits is a good thing.

Linux Symposium 223

3 DMA Parameters

Two additional parameters defined by PCI
Local Bus specification affect DMA behav-
ior. Both reside in the PCI device configu-
ration space header:LATENCY_TIMERand
CACHELINE_SIZE.

3.1 LATENCY_TIMER

LATENCY_TIMERconstrains how long the
PCI device will burst DMA before volunteer-
ing to give up the PCI bus. It should be
long enough to transfer several cache lines
of data if the device is capable. While this
is a “tunable” parameter, I didn’t feel it was
necessary to experiment with this value since
LATENCY_TIMERis a pretty well understood
and described else where.

3.2 CACHELINE_SIZE

CACHELINE_SIZE is only required by PCI
MWI command. CACHELINE_SIZE has to
be the IO cache line size and not the CPU size.
Typically this is either the line size of the mem-
ory controller or the line size of outer most
CPU cache (e.g. L2 or L3 Cache). The CPU
can use smaller lines for first and/or second
level caches.

Since firmware is expected to program
CACHELINE_SIZE with the appropriate
value, it’s a not really either a parameter nor
tunable.

4 HP ZX1 DMA Hint bits

The HP ZX1 chip set implements several bits
for DMA Hints. None of these are supported
by the current Linux DMA mapping API. My
original goal was to propose extensions to the
Linux DMA mapping API. But I’ve concluded

it’s not absolutely necessary and I don’t know
which hints are of interest to other chip sets.
Hopefully this paper will precipitate more dis-
cussion and comparison of chips and capabili-
ties.

The primary reason it’s not absolutely neces-
sary is IA64 firmware is compensating for an
ignorant OS. Firmware errs on the overly ag-
gressive side in setting the cache line prefetch-
ing (for simple, single unit tests) and errs con-
servatively on the correctness case (Relaxed
Ordering is disabled). Though it’s not optimal,
ZX1 IOMMU code could blindly set Relaxed
Ordering hint bit (i.e. not enforce ordering) and
some hacks can take care of the others.

And because PCI-X obsoletes the key PCI-
only hint, I can’t argue HP needs them. My
pet architecture (PA-RISC) would benefit since
HW shipped to date only supports PCI—but
that’s not of commercial interest. And PA-
RISC alone is not a justification for extensions
to the interface.

Even if I had HW descriptions for other IOM-
MUs, it would be a lot of work to indepen-
dently abstract the DMA hints. Understand-
ing platform IOMMU support well enough to
abstract what’s important is non-trivial. And
since I’m fundamentally lazy (or “good at op-
timizing” as Bdale Garbee puts it), I’ll pass for
now.

Lastly, assuming hints are chip set specific
(since no one has abstracted them), introduc-
ing hints for each chip set is the path to hell
for driver writers. A relatively small number of
people (per OS) understand how one IOMMU
on one platform works. Trying to get a broader
audience to understand several platform chip
sets is unrealistic. Been there, done that.

Linux Symposium 224

4.1 Relaxed Ordering

Relaxed Ordering tells the HW it can ignore
one PCI ordering rule. PCI-X specification of-
fers this optimization in each direction (not just
outbound) with its definition of Relaxed Order-
ing. HP’s chip set is sufficiently well imple-
mented in the inbound (DMA writes) path that
the inbound optimization isn’t helpful and thus
not implemented.

HP also calls this optimization “PIOW/DMAR
Ordering.” The cryptic acronym means “Pro-
grammed IO Writes/DMA Reads” Ordering.
Setting this hint indicates the driver and de-
vice don’t depend on ordering of DMA Read
returns and PIO Writes for correct operation.
This hint allows DMA read returns to bypass
PIO Writes in order to prevent an in-progress
DMA burst from disconnecting on the PCI bus
and force retries.

I didn’t have any expectations for this hint.
Mostly because of my ignorance when I started
this investigation.

4.2 Read Current

Read Current transactions gets the most re-
cent copy of cache line datawithout changing
the cache line state. The key thing is the CPU
can keep cache line ownership. By not giving
up ownership, the CPU can continue to modify
cache line contents without having to fight with
the IO Controller (ping pong) for the cache
line. However, the copy of the cache line is not
maintained and can become stale. It should be
consumed immediately (for some finite defini-
tion of NOW; parents will understand). Thus
it’s most useful when data is leaving the cache
coherency domain (i.e. DMA reads).

Most driver writers will not need (or want) to
worry about Read Current hint. First, differ-
ent chip-sets have minor variations in imple-

mentation which may in fact still ping-pong the
cache line. Secondly, Read Current hint has no
effect on chip sets which already implement
DMA reads by issuing Read Current transac-
tions. And third, to date, none of the PCI de-
vices that interest me obviously benefited by
explicitly setting or clearing this hint bit on the
platforms I’ve tested.

Read Currentis implemented on both PARISC
Runway[9] and McKinley bus.

4.3 Cache line Prefetching (PCI Only)

Cache line Prefetchingfor IO devices serves
the same purpose as prefetching does for
CPUs: avoid stalling by bringing data closer
before it’s needed. The amount of prefetch
needed is a function of the device’sdata con-
sumption rateand the actual memory con-
troller latency.

For example, if the memory controller can de-
liver a cache line in 120ns and the device can
consume a cache line in 120ns (8 * 15ns), we
need to prefetch 1 cache line at any given mo-
ment in time. In other words, 2 cache lines
of data will be in flight at any given moment
in time. But as system workload increases,
the average memory controller latency usually
goes up too. It might really take 200 or 300ns
to deliver a cache line. We need to compro-
mise and pick the number of cache lines to
prefetch so things work OK under worst case
but perform optimally in the “expected work
load” range.

ZX1 chip set can deliver a 128 byte cache line
in about 110 ns[10] PCI devices can only con-
sume 128 bytes every 240 ns (16 * 15ns) at
best. The PCI device probably stalls less than
1/3 of the time waiting for data. This is sub-
stantially different than for the PARISC chip
set which can only deliver a 64 byte cache line
in about 180 ns.[11]

Linux Symposium 225

PCI-X mode of operation does NOT support
cache line prefetching hints. It’s not necessary
because with split transactions, the device can
have much more IO outstanding and in effect,
perform its own prefetching.

4.4 DMA Block Size (PCI Only)

DMA Block Size tells the chip set when to stop
prefetching. Prefetching will continue up to the
block size boundary and resume when the first
cache line of the next block is requested.

This hint also does not apply to PCI-X busses.
It’s not necessary because the PCI-XBurst
Transactionsspecify the number of bytes be-
ing transferred and the chip set (or OS code)
doesn’t have to guess when to stop prefetching.

I didn’t expect block size to matter much in
single unit testing. It would be interesting to
know how much it matters when testing a fully
loaded system.

5 Case Study: BCM5701 (PCI)

In 2002, around the same time HP ZX1 prod-
ucts became available, HP started shipping
Tigon3 NICs (designed and tested by HP).
The BCM5701 NIC supported by HP-UX is
shipped operating in PCI mode.

Test used is:
/opt/netperf/netperf -l 60 \
-H 10.0.30.0 -t UDP_STREAM -- \
-m 1024 -s 131072 -S 131072

UDP_STREAM is useful for testing output if
the host networking stack only sends what the
NIC can consume. I’m told this is the case for
Linux. And while some applications really do
run on top of UDP, I also ran TCP_STREAM
test to get an idea of the workloads I’m familiar
with.

Client (HP RX2600, 1GHz) was running
2.4.20-em19 + tg3 v1.5 over the built-in
BCM5701.
Server (HP RX2600, 900MHz) was running
the same kernel, same built-in BCM5701.

NICs were connected via cross-over cable and
set to either 1500 or 9000 bytes MTU.

Firmware sets the default PCI Command Hint
to 3 cache lines prefetch, Relaxed Ordering
disabled, 4k block size, Read Current enabled.

I then varied the DMA Hints on theClient
who was sending packets. While this sounds
backwards, it’s the netperf point of view. We
want to observe the netperf “client” send per-
formance.

5.1 Relaxed Ordering

Relaxed Ordering Hint is (on) enforced by de-
fault. I’ve turned it off selectively for MR,
MRL and MRM PCI transactions in Table 1.
Runs with 2.4.20+tg3 v1.5 only showed about
4% improvement with 1k messages.

Previous experience with UDP_STREAM test-
ing on RHAS 2.1 (IA64, e.25?, using tg3
v0.99) demonstrated nearly 10% performance
improvement with 1080 byte messages. With-
out ordering enforced, netperf reported 862
Mb/s3 vs. around 775 Mb/s when ordering was
enforced (default behavior).

TCP Stream test showed a smaller, but similar,
sensitivity to this parameter. Clearing Relaxed
Ordering hint in the MRM hint for Streaming
DMA resulted in 778 Mb/s (vs. ~758 nor-
mally) using 1024 byte message and 1500 byte
MTU.

3Or 848 Mb/s when the netperf client ran on the same
CPU as the one interrupts were directed at.

Linux Symposium 226

PCI Cmd Consistent Streaming
NONE 759.61 758.74

MR 759.09 760.67
MRL 759.99 759.70
MRM 759.68 797.19
ALL 758.99 800.65

Table 1: BCM5701 UDP_STREAM Relaxed
Ordering, 1k Msg

5.2 Cache line Prefetching

Neither TCP nor UDP showed any statistically
significant differences as I varied the cache
line prefetching for MR, MRL, or MRM com-
mands. This was true for both 1k (1500 byte
MTU) and 8k (9000 byte MTU) message sizes.

I suspect this is primarily because I’m measur-
ing what the card is buffering, not PCI bus uti-
lization. The card’s ability to buffer is not af-
fected by how inefficient the PCI bus is used.
Unfortunately, I don’t have the tools to mea-
sure PCI Bus utilization on the RX2600.

Again, like learning PCI-X obsoletes cache
line prefetching, this is a disappointing but use-
ful result.

5.3 DMA Block Size

Unlike cache line prefetching, I didn’t expect
much difference between the various block
sizes. Once I knew prefetching makes no dif-
ference for the BCM5701, the fact that varying
Block size hint also makes no difference was
no surprise.

5.4 Read Current

Disabling Read Current Hint for Consistent
mappings will crash the system. It’s not clear
to me why. I talked with the HW designers and
it is clearly not an expected result due to how

the read/write paths are implemented.

I wasn’t expecting any measurable perfor-
mance difference with (vs. without) Read Cur-
rent for Streaming DMA. And in fact, I didn’t
see any.

6 Case Study: BCM5704S (PCI-X)

Since I only have one BCM5704S,4 I ended up
connecting both ports of the BCM5704S (tg3
v1.5) to the 82546EB (e1000 4.4.12-k1) in the
other machine.

It’s worth mentioning the BCM5704S sits
behind an IBM PCI-X to PCI-X bridge:

...
+-[80]-+-01.0-[81]--+-04.0 QLA2312
| | +-04.1 QLA2312
| | +-06.0 BCM5704S
| | \-06.1 BCM5704S
| \-1e.0 PCI Bus Controller
...

The bridge plays a bigger role in performance
than people expect. For grins, I sent 4k mes-
sages out the client through both BCM5704S
ports at the same time using default hints.
Throughput was 990± 0.1 Mb/s for each
port (total 1980 Mb/s). vmstat reports ~25%
CPU (dual CPU systems) on the server (e1000
driver) and about 33% on the client (tg3
driver). Why was throughput so good? The
IBM PCI-X bridge is prefetching data for
the chip and also supports split transactions.
The prefetching caused some heartburn for the
IOMMU code since the IBM bridge ended up
prefetching past page boundaries on early pro-
totypes. Changes were made to the ZX1 PCI

4HP has no plans for productizing anything with
BCM5704 on IA64 at this time. It happens to work and
provides a nice comparison to the BCM5701 case study
(PCI-X vs. PCI).

Linux Symposium 227

PCI Cmd Consistent Streaming
ALL 949.35 950.93
MR 952.97 951.79

MRL 952.64 952.66
MRM 953.97 952.58
NONE 951.19 945.10

Table 2: BCM5704 TCP_STREAM 8k Msg

Bus Controller (aka LBA) to stop the prefetch-
ing behavior.

6.1 Relaxed Ordering

With 4k messages, running TCP_STREAM
gave consistent results around 990± 0.1 Mb/s.
This wasn’t the case for 8k messages. I’m not
sure why since the MTU should have been 9k
when running the tests. Table 2 is included for
your amusement only.

It’s irritating I don’t know why the results are
lower than with 4k messages or what’s causing
the variability. For the record, UDP_STREAM
test was able to send 984.18± 0.01 Mb/s using
4k messages and 992.04± 0.01 Mb/s for 8k
messages.

7 Case Study: 82546EB (PCI-X)

This is Intel’s “4th Generation Gigabit MAC
design with fully integrated, physical-layer cir-
cuitry to provide two standard IEEE 802.3 Eth-
ernet interfaces. . . .”5 Same setup as with the
BCM5701 except an Intel add-on NIC is in
both netperf client and server. Both NICs are
configured to use 9000 byte MTU.

Table 3 shows results for the driver Intel of-
5HP has no plans for productizing 82546EB on IA64

at this time. 82546EB only happens to work under Linux
because e1000 driver uses I/O Port space. This chip has
serious bugs when using MMIO space to access regis-
ters.

Msg Size UDP TX UDP RX
1024 937.77 492.27
1024 937.76 477.22
4096 983.70 959.55
4096 983.70 959.59
8192 991.80 991.80
8192 991.80 991.80

Table 3: e1000 v4.3.15 UDP (Mb/s)

Msg Size TCP UDP TX UDP RX
1024 976.75 937.76 501.25
4096 978.16 983.72 983.70
8192 907.69 991.80 991.80

Table 4: e1000 v4.4.12 TCP/UDP (Mb/s)

fered on their web site download area: e1000
v4.3.15 driver. But as Table 3 shows, TCP re-
sults varied from 639 to 660 Mb/s (1k mes-
sages) and got worse (540-565 Mb/s) for 8k
messages. UDP results for smaller messages
were very poor as well. Something is clearly
wrong.

In contrast, TCP Streaming performance for
v4.4.12-k1 e1000 driver was quite good. With
default hints, both ports combined could send
about 1770 Mb/s using 8k message.

7.1 Relaxed Ordering

Disabling ordering enforcement did not change
performance in any statistically significant
way. In fact, UDP results were identical to Ta-
ble 4 except for slightly higher UDP RX result.
TCP results also showed the same 70 Mb/s
drop for 8192 byte messages. And combined
port throughput stayed around 1770 Mb/s for
8k message size.

For grins, combined throughput with 4k mes-
sage size achieved 1936± 1 Mb/s. Definitely
an impressive result given both ports are shar-

Linux Symposium 228

Consistent Streaming
PCI Cmd Order Current Order Current

MR 223 NA 221 220
MRL 220 NA 221 214
MRM 220 NA 221 208

NONE6 222 NA 219 217

Table 5: 53c1010 Ordering/Current Hints
(MB/s)

ing the PCI-X bus.

7.2 Read Current

Clearing Read Current bit for either Consistent
or Streaming DMA resulted in a slight drop
(890 Mb/s) for TCP Streaming test compared
to Table 4. I’m suspicious of this result be-
cause afterwards, I could consistently only get
960 Mb/s (8 Mb/s less) for TCP Streaming us-
ing 4K messages.

I didn’t run UDP tests for Read Current Hint.

8 Case Study: LSI 53c1010 (PCI)

LSI’s 53c1010 (Ultra3 LVD) is pretty widely
used along with 53c896 (Ultra2 LVD). Both
are driven by the sym53c8xx_2 SCSI driver.

Since parallel SCSI busses are not duplex, test-
ing this was fairly straightforward. I setup a
MD RAID0 across both channels (alternating
disks) with 10 odd-ball Ultra3 disks (9, 18,
36GB, mix of vendors). Then ran:
dd if=/dev/zero of=/dev/md4 \

bs=64k count=200000

I learned later that running RAID0 was not
such a good idea. More on this in the u320
(53c1030) case study.

Consistent DMA
Prefetch Depth 0 1 2 3
MR 223 219 219 224
MRL 224 223 221 224
MRM 104 168 220 223
Block Size 512 1024 2048 4096
MR 223 223 222 223
MRL 220 218 218 221
MRM 220 221 219 220

Streaming DMA
Prefetch Depth 0 1 2 3
MR 218 214 223 219
MRL 221 223 216 219
MRM 216 221 214 220
Block Size 512 1024 2048 4096
MR 216 220 208 219
MRL 215 221 221 222
MRM 218 210 224 223

Table 6: 53c1010 Cache line Prefetching,
MB/s

8.1 Relaxed Ordering and Read Current

I’ve globbed both Relaxed Ordering & Read
Current into Table 5 only because they are
both boolean values. Differences of less than
3 MB/s are probably not significant.

Disabling Read Current for Streaming DMA
clearly reduces performance for MRL and
MRM transactions. I thought the “NONE”
(217 MB/s) result is a weighted average of all
three types of transactions but that is a logi-
cal fallacy. This result can’t be better than the
worst case unless some other interaction is tak-
ing place.

8.2 Cache line Prefetching

Of particular interest in Table 6 is the extent
Consistent MRM prefetching affects through-
put. I guessed this is because the 53c1010

6Well, this should really be “ALL” for Relaxed Or-
dering hint since all the bits are set.

Linux Symposium 229

“scripts” are kept in host memory (but cached
locally) and all IO grinds to a halt when an un-
cached portion of script is not available. James
Bottomley suggested the entire script fit in on-
board RAM and was loaded under Host CPU
control at init time. If true, then the scripts
themselves are sequentially fetching control
data and getting hurt badly by not having the
control data available immediately.

9 Case Study: LSI 53c1030 (PCI-
X)

Using the same methods (and the same u160
disk drives) as for 53c1010 didn’t work. The
results varied from 160 MB/s to 185 MB/s re-
gardless of hint settings. I expected at least
equivalent performance to the 53c1010 and
suspect whatever is causing the variability is
also limiting performance.

Trying a different method suggested by James
Bottomley led to an interesting result. He was
appalled I was using RAID0 because of is-
sues with MD layer not coalescing IO requests
again at the disk level. But using a 64k chunk,
aka stride, I thought would provide big enough
blocks.

To avoid RAID0, James suggested checking
if multiple copies ofsg_dd would (one per
disk) would work. Well, I’d like to see multiple
IOs outstanding per spindle. And fortunately
sgp_dd man page suggests exactly that. Nice.

While the advantage of this method is it by-
passes lots of kernel code related to buffer
cache, the drawback is it also bypasses all the
statistics gathering in the kernel. Neither vm-
stat nor iostat sees any of this disk activity.
The solution is to measure the throughput of
each disk individually (23 to 48MB/s) and then
adjust the number of blocks transfered such
that all 10 disks finished their sgp_dd process

PCI Cmd Consistent Streaming
ALL 268421 266666
MR 266666 266666

MRL 266666 264935
MRM 268421 266666
NONE 264935 266666

Table 7: 53c1030 Relaxed Ordering, KB/s

within about 1 second of each other. Then
date +%s could time the cumulative I/O.
Add up how much data each sgp_dd copied and
divide by total time. This worked better than
I expected and Table 7 shows how consistent
that data was. The accuracy of the data is± 1
second of 153 second (average, 266666 KB/s)
run times. In retrospect, clearly a better method
than using RAID0 and suggests roughly the
performance RAID0 should be getting.

The bad news is that despite contortions to col-
lect reliable data, neither Read Current nor Re-
laxed Ordering hints made a statistical differ-
ence for the configuration I had. I still won-
der if I misunderstand what the hint bits mean
in the context of PCI-X. But I couldn’t find
anything in the chip set documentation to indi-
cate otherwise. I worry the ZX1 chip set might
“allow” (logical And) the ZX1 DMA Hint and
PCI-X command attribute bits vs. “forcing on”
(logical Or). My expectation was the latter
based on documentation.

10 Case Study: qla2312 (PCI-X)

The qla2312 is a Qlogic PCI-X, dual port,
2Gb/s FC chip. Qlogic sells this chip for both
dual port and single port FC HBAs. A single
port is theoretically capable of 2 Gb/s (about
200MB/s) output and input (full duplex). The
dual port HBA is theoretical capable 800 MB/s
throughput. I tested the qla2312 in two con-
figurations: with IBM PCI-X bridge and again

Linux Symposium 230

without (thinking the PCI-X bridge was sub-
stantially impacting results).

I used the same methodology as for the
53c1030 Case Study with one of the two ports.
Unfortunately, I didn’t get a second DS2405
enclosure until much too late. And then I found
out the second FC port on the card with the
PCI-X Board was disfunctional. I was only
able to run a few tests through both ports on
a QLA2342 FC HBA (uses qla2312 chip).

The qla2312 HBA was running in PCI-X mode
with Firmware version 3.01.18. Same 2.4.20-
em19 kernel as before with qla2300 v6.04.00
driver.

10.1 Outbound vs. Inbound IO

To cut to the chase, setting Relaxed Ordering
or disabling Read Current hints did not affect
performance. With 8 disks,sgp_dd was con-
sistently writing 190± 1 MB/s. Two things
might have contributed to this result: No in-
bound load was saturating IO path or PCI-X to
PCI-X bridge was “hiding” the effect.

Alone, sgp_dd inbound (IO reads) workload
would get 198 MB/s consistently. Combined
with the same outbound (IO writes) work-
load as above, the inbound rate drops to about
145 MB/s and the outbound workload hovers
around 51 MB/s± 1 MB/s.7 Again, Relaxed
Ordering and Read Current Hints made no dif-
ference.

Switching to the other RX2600 (900MHz)
which had a qla2312 connected to the same set
of disks, I reproduced the 198412 KB/s on the
inbound-only workload as well. Bidirectional
throughput was about the same: 143 MB/s in
and 53 MB/s out (9% CPU utilization).

7Given the 3:1 bias of inbound:outbound throughput,
I tried 6:7 (inbound:outbound) and 5:8 disks—yielded
basically the same results.

Having spent several days on this, I started to
doubt this HBA was operating in full duplex
mode despite all the marketing literature mak-
ing such a claim. Scrounging through the 300
line qla2x00_nvram_config() function
suggests full duplex mode is intentionally dis-
abled:

...

/*

* Setup driver firmware options.

*/

icb->firmware_options.enable_full_duplex = 0;

icb->firmware_options.enable_target_mode = 0;

...

Settingenable_full_duplex to 1 did not
help.

10.2 Dual Port

I tried the samesgp_dd workload on both
ports. Unfortunately, the 7 disks in the DS2405
I was loaned were ST336605FC (10k RPM)
and not ST336753FC (15K RPM). This meant
I had to compensate by adjusting the amount of
data written to various disks again.

The bottom line is varying Read Current and
Relaxed Ordering hints didn’t matter for this
workload. The outboundsgp_dd tasks man-
aged 370 MB/s consistently.8

10.3 Summary of Lessons learned

The quote about the journey being more impor-
tant than the destination comes to mind. Sev-
eral things learned on this journey:

1. Firmware teams will compensate for
stupid OSs. In this case performance

8I can’t help but wonder if I’ve got some piece of
the puzzle wrong. But I’ve reviewed everything several
times and if something is wrong, it’s not obvious to me.
I’ll update the paper if I learn otherwise.

Linux Symposium 231

gains aren’t what I expected because
firmware was already setting aggressive
cache line prefetching. On fully loaded
systems performance could be worse
. . . but haven’t measured that yet. How-
ever, Firmware couldn’t useunsafe hints
(e.g. Relaxed Ordering).

2. IO Card Vendors will compensate for
stupid chip sets. It didn’t initially occur
to me high performance IO cards would
buffer IO in order to compensate. But the
tradeoff is latency.

3. PCI-X is a different bus protocol com-
pared to PCI, not just a speedup. The dif-
ferences in bus protocol obsoleted the key
thing I was hoping to measure (cache line
prefetching for DMA Reads).

4. Don’t start by testing an adaptive driver.
An adaptive driver will adjust its operat-
ing parameters after a period of time to
optimize for the given workload. I wasted
time trying to figure out why my tg3 per-
formance measurements varied in unpre-
dictable ways. Adding “sleep 30” be-
tween scripted test runs helped solve that
problem.

5. The major weakness of this paper is
methodology. I didn’t know what I
was measuring until I started investigat-
ing why I didn’t get expected results. I
need a PCI/PCI-X logic analyzer which
can accurately measure the bus utilization.
I believe HP has several such analyzers on
site; they just won’t fit in the RX2600. I
would have to chop open the sheet metal
so IO cards could stick out. I’m not will-
ing to do that because airflow would be,
uhm, dramatically altered.

10.4 Future Work

Several things come to mind that are still out-
standing:

1. Test fully loaded systemsThe busier the
memory controller is, the higher the la-
tency memory fetches will be (2x-4x). We
don’t want to waste memory bandwidth
(prefetching too much) or IO bandwidth
(prefetch too little). Just enough to com-
pensate for average latency.

2. PARISC implementation only supports
PCI. Memory controller latencies are
slower as is the IO MMU. It should bene-
fit more from DMA Hints than IA64 does.
I will update this paper (and remove this
“Future work” item) with PARISC results
when I have them.

3. PCI-X DMA Hints Not as much to do
here but still worth exploring. Understand
how different chip sets implement PCI-X
DMA support.

4. PCI/PCI-X Logic Analyzer Perhaps in
the future I can get access to an RX5670
with logic analyzer card installed and re-
run the tests. Logistically it’s non-trivial
since RX5670 is not a machine I can walk
around with under my arm.

5. More 2Gb/s FC disks would be useful.
Need to figure out how to stress input and
output at the same time. Maybe stripe
across both controllers, two RAID0 md
devices; one for reading and the other for
writing.

10.5 And thanks to. . .

A fair number of people contributed to this pa-
per. They provided support, ideas, or reviewed
content. In no particular order:

Linux Symposium 232

Alan C. Meyer, James Bottomley, Erin Hand-
gen, Thomas Bogendörfer, Kevin Carson,
Stephane Eranian, David Mosberger, Alex
Williamson, Dave Miller, Joe Cowan, Fred
Worley, Mike Krause, Matthew Wilcox.

My apologies if I omitted other contributors.

References

[1] http://ftp.parisc-linux.org/docs
/astro_intro.ps

[2] http://ftp.parisc-linux.org/docs
/elroy_ers.ps

[3] http://iou.parisc-
linux.org/ols2002/

[4] http://www.hp.com/products1
/itanium/chipset/index.html

[5] http://cvs.parisc-
linux.org/*checkout*/linux
/Documentation
/DMA-mapping.txt?rev=HEAD
&content-type=text/plain

[6] http://h21007.www2.hp.com
/dspp/files/unprotected/linux
/zx1-mio.pdf

[7] http://h21007.www2.hp.com
/dspp/files/unprotected/linux
/zx1-ioa-mercury_ers.pdf

[8] http://www.pcisig.com/

[9] http://ftp.parisc-linux.org/docs
/astro_runway.ps

[10] http://www.hp.com/products1
/itanium/performance/architecture
/lmbench.html

[11] http://lists.parisc-
linux.org/pipermail/parisc-linux
/2002-March/015966.html

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

