
Gnumeric
Using GNOME to go up against MS Office

Jody Goldberg
jody@gnome.org

Abstract

MS Office is popular for a reason. Microsoft
and its massive user base have kicked it hard,
and polished the roughest edges along the way.
The hidden gotcha is that MS now holds your
data hostage. Their applications define if your
data can be read, and how you can manipu-
late it. The Gnumeric project began as a way
to ensure the GNOME platform could support
the requirements of a major application. It has
evolved into the core of a spreadsheet platform
that we hope will grow past the limitations of
MS Excel. Gnumeric has taught us a lot about
spreadsheets and, for the purpose of this talk,
about what types of capabilities MS has put
into its libraries and applications to provide the
UI that people are familiar with. I’d like to dis-
cuss the tools (available and unwritten) neces-
sary to produce a competitor and eventually a
replacement.

1 Introduction

History

• Aug 17 1997 GNOME Created

• July 2 1998 Gnumeric Created

• Dec 31 2001 version 1.0.0 released

• Aug ?? 2003 version 1.2.0 released

Miguel de Icaza began work on Gnumeric in
July 1998 with the stated purpose of building

a large, real world, application to validate the
GNOME libraries. Without much background
in spreadsheets he persevered, learning as he
went, writing maintainable code, and testing
such core libraries as gnome-canvas, gnome-
print, libgsf, and Bonobo.

Status

At this writing Gnumeric now has basic sup-
port for 100% of the spreadsheet functions
shipped with Excel and can write MS Office
95 through XP, and read all versions from Ex-
cel 2 upwards. It covers most major features,
but is still lacking pivot tables, and conditional
formats which are planned for the 1.3 release
cycle.

2 Container File Format

The first step in interoperability with MS Of-
fice is to read and write its files. MS Office 95
was an epochal event for the suite. Before then
each application had its own format. As of Of-
fice 95 it shares a single container format used
to wrap each application’s native representa-
tion. This is convenient for embedding because
it allows a user to transfer the entire content of
a document, including all of its components as
a single file.



Linux Symposium 214

2.1 OLE2, The MS solution

The wrapper format used throughout MS of-
fice is calledOLE2. That title actually en-
compasses the container and a sub-format used
to store metadata. GNOME had no support
for reading or writing either one. For Gnu-
meric Michael Meeks used earlier work in
laola by Arturo Tena and Caolan McNamara,
and scraps of documentation to create libole2.
In the last few years the set of available doc-
umentation has improved greatly. Apache’s
POIFS project has generated some nice co-
herent write-ups for their Java implementation.
Additionally, although the Chicago project has
not produced any code, they googled extremely
well, and collected enough documentation to
illuminate the remaining corners.

OLE2 is quite literally a filesystem in a file. It
has a directory tree for the offsets and file allo-
cation tables to store the layout of the blocks.
Unfortunately for libole2 it also has a meta
file allocation table, which libole2 could not
export correctly. As a result, after approxi-
mately 6.8 MB of data, the library and all of its
derivatives produced invalid results. Given the
new documentation, we’re written libgsf (the
GNOME Structured File library) to solve that.
The new code has been quite stable, and now
that libole2 has been deprecated it has made
its way into koffice, abiword, and several other
applications. Including potentially OOo via the
WordPerfect library.

2.2 The Future

• Format should be easy to create and ma-
nipulate without special tools.

• Existing filemagic type sniffing should be
able to ID the documents as documents,
not their container type

• Support for ‘filesystem in a file’ structured
files to facilitate embedding and split data

from metadata.

• Space & time efficient for reading and
generation

• Portable to as many platforms as feasible

• signing

• encryption

• embedded object handling

• possible dual/multiple version support

• meta data

Things we do not need

Transaction support is probably overkill.
Given the general size of documents, it seems
simpler to just generate the entire file each time
it is saved.

In-place update (rewrite one element without
touching the rest) is also probably unnecessary.
This is useful for things like presentation pro-
grams with large data blobs (images, sound)
and relatively little content, it is also conceiv-
ably useful in situations where an external app
is editing just metadata. However, the imple-
mentation costs for these are high in compari-
son to available manpower.

At the time of this writing, OOo’s container
format is the leading contender. There are dis-
cussions at this time to potentially adopt the
container format (not the underlying xml con-
tent).

3 File Format

3.1 XLS

Like a Russian doll, parsing the wrapper for-
mat is just the beginning. Within the OLE2



Linux Symposium 215

files are sub-files called Book or Workbook
(depending on version) that are in theBIFF
format with several different variants. There is
actually some reasonably good documentation
for this due to some MS greed (tm) and hard
work on the part of the OOo xls filter team.
BIFF is fairly similar in structure to earlier lo-
tus formats, and thanks to microsoft padding
one of its books (The Excel 97 Developers Kit)
with their internal file format docs we know
a fair amount about how things are structured.
Contrary to the common Slashdot wisdom the
hard part is not in knowing the broad details
of the records. The devil is in the details, im-
plementers need to understandwhatMicrosoft
means for each flag and have a strict superset
of the corresponding application to avoid infor-
mation being lost when round tripping data to
a proprietary format.

An odd truth of open-source spreadsheets is
that they generally interoperate better via xls
than their native formats. E.g., Gnumeric can
read OpenCalc, but not write it, and OpenCalc
has no support for Gnumeric at all. This speaks
volumes for the ubiquitous nature of the Mi-
crosoft formats. The resource expenditure to
support xls fully limits the amount of develop-
ment time for other formats.

Within the BIFF records is nested yet another
format to store the details of the expressions,
which is also reasonably documented.

3.2 Escher

A major change in Office97 was the addition
of a shared drawing layer for all of the ap-
plications. This allows you to draw an org
chart in Excel and paste it into Powerpoint.
Its high level format was reasonably docu-
mented on the web until that was pulled a
few years ago. This content is nested within
BIFF records within OLE2 records. Escher
is a format in the classic ‘specification by im-

plementation’ genre. Although both OOo and
Gnumeric have decent parsers for the records
themselves, parsing the content is tricky. One
rarely knows what attributes correspond to vis-
ible properties. Exporting escher is even more
complex. Both Gnumeric and OOo appear to
have adopted a monkey see, monkey do ap-
proach to work around Microsoft’s reluctance
to use ‘conventional’ values for flags requiring
things like 0xAAAAFFFF for true for some of
the boolean flags.

3.3 WMF/EMF

Users expect their word/clip art to appear faith-
fully. That content is usually stored using a set
of drawing primitives in a series of MetaFile
formats (Windows and Extended). The primi-
tives are slightly higher level than a serialized
set of X protocol requests. There in an existing
rasterizer for wmf in libwmf, but it can not cur-
rently handle emf. OOo has a parser for both
wmf and emf, but it is tightly coupled to the
OO platform and of marginal quality. Proper
handling of this is still an open question. There
have been discussions with the maintaers of
libwmf, and libEMF to combine efforts to fill
this niche, but nothing concrete has material-
ized as yet.

3.4 Security

Unfortunately each element of MS Office han-
dles this slightly differently, and approaches
vary from version to version. There is no se-
cure notion of authentication within OLE2, or
xls. Microsoft apparently assumes that is han-
dled at a higher level. Within xls there are 3
main forms of encryption. The first is sheet
level protection that is little more than an XOR
of the records with a 16-byte hash of the pass-
word. This is tissue-thin, and can be supported
trivially. Workbook level encryption is sig-
nificantly more secure and uses md5 hashed



Linux Symposium 216

passwords and rc4 to encrypt the BIFF record
content. Workbook level protection is rather
strange. It uses the secure workbook level en-
cryption, with a hard coded password. Gnu-
meric is the only open source application that
can handle all three.

3.5 VBA

This is still largely uncharted territory for open
source applications. MS Office appears to store
the VBA code in at least 3 formats.

1. Compressed source code. libgsf, libole2,
and openoffice can all decompress the
code with varying degrees of accuracy.
What none of us knows is how to lo-
cate the offset to the start of the com-
pressed stream. OO and libole2 both have
kludges in place to guess, but neither is
reliable. There is clearly documentation
on the subject available to the anti-virus
manufacturers, but its licensing precludes
its use in open source libraries. This
is the most likely route to support im-
porting VBA in the near term. It is not
immediately obvious that source code is
what we really want, because it requires a
lexer, parser, and libraries to back it up—a
rather significant amount of work. There
is some hope that the Mono project and
its emulation of the .Net API will provide
support for this.

2. P-Code. A preparsed set of tokens to be
interpreted by the VB engine. The for-
mat of this has no open documentation,
although it is fairly amenable to parsing.
On the positive side this is the holy grail
in many ways. Having pre-parsed code re-
moves the need for a lexer and parser, and
allows us to map the content to more mod-
ern languages such as python. The down
side is that the p-code comes in many vari-
ants, and depends on versioning.

3. S-Code. Like P-Code, but different in
some unspecified way. No known parsers
or documentation exists.

4 Expansion

In addition to their core functionality, office ap-
plications are expandable. Organizations have
some limited ability to customize their installa-
tions, and third party developers can use them
as a development platform for their niche ap-
plications. From tasks as simple as work-
flow macros, up to massive extensions such as
FEA’s @Risk, or DeltaGraph, people are ex-
tending MS Excel.

4.1 XLLs & XLMs

Early versions of Excel offered 2 forms of ex-
tension. The first was a kludge that grafted a
pseudo-procedural language into the functional
format of a spreadsheet, called XLM. This is
no longer widely used.

There is also the opportunity to load an XLL,
a DLL shared library with special entry points,
directly into the process’ address space. Al-
though its interface is only partially docu-
mented, somewhat byzantine, and deprecated,
this is the most popular form of extension. The
primary benefit is that a developer’s code can
be written in C/C++, and compiled to link the
external libraries fairly easily.

To the best of my knowledge there are no open
source or proprietary applications that support
XLMs or XLLs other than MS Excel. This
hinders transition. XLMs could potentially be
supported, but the limited remaining user base
does not warrant the expense. XLLs might be
feasible under win32, but due to the nature of
the interface, would probably require WINE
under *nix.



Linux Symposium 217

4.2 VBA & OLE

With Office97 came a unification of embed-
ding and scripting via VBA and the OLE com-
ponent model. VBA as a language was a sig-
nificant improvement over XLM and quickly
supplanted it. OLE was more of a mixed bless-
ing. The increased complexity of the interface
required Dev Studio wizards to generate the
wrapper code, which was fairly unmaintainble.
As a result most installations fell back on VBA
external declaration support to add new capa-
bilities. This worked well for tasks amenable
to scripting, but was painful when linking to
external analytics. Adding a new spreadsheet
function involved writing it in C, then creating
a dummy wrapper in VBA that links to it.

4.3 Gnumeric

Worksheet function management is an area
where Gnumeric is well ahead of MS Office.
Adding new functions to Gnumeric is triv-
ial. An abstract interface for loading modules
has been implemented for shared libraries (via
glib’s g_module utilities), and python. Cou-
pled with an xml-based configuration mecha-
nism and just-in-time loading, the vast major-
ity of the worksheet functions are in plugins.

Less well defined are the scripting interfaces.
Building on GNOME’s strong set of language
bindings there have also been experiments in
scripting in guile, perl, CORBA, VB, and
python. The only clear result thus far has been
that the scripting interface is fairly language-
agnostic. Defining a clear and coherent api is
on the short list of extensions to be made dur-
ing the 1.3–to–2.0 development cycle.

5 Preferences

Storing user preferences is another area where
GNOME technology has the advantage over

its Windows counterpart. GConf attempts to
learn the lessons of the Windows registry while
learning from its failures. By storing content in
several distinct user readable xml files, gconf
offers the convenience of a global structured
storage, while retaining the flexibility in the
face of file errors or corruption not found in the
more monolithic Windows registry. Work re-
mains though. There is still some thought nec-
essary to implement lockdown features, and to
address logical paths (HOME, PREFIX, etc.).

6 GUI Toolkit

Over time, the initial separation between
gnome libraries as extensions to gtk have been
largely removed. With the addition of pango to
handle advanced text, and extensions to Gtk’s
rendering model that produced the foocanvas,
gtk+ now supports the primary display needs
of Gnumeric. Coupled with libglade for easy
maintenance and configurability, it is relatively
painless to produce extremely usable dialogs.
There are, however, a few lingering issues to
address.

Configurable UI

The current gtk+ api for menus and toolbars
makes no distinction between the actions and
their layout. Applications are forced to hard-
code their menu/toolbar layouts in order to
modify them. This removes the ability of a
user to reorganize things. The limitations of
the gtk+ path-based API prompted the creation
of GNOME_UI app helpers, which simplified
creation and added stock items to improve con-
sistency between GNOME applications. How-
ever, it did nothing to solve the issue of hard-
coded layouts. In an effort to solve the prob-
lem of merging menus and toolbars for com-
ponents, Bonobo made an attempt to solve the
layout problems by separating the layout from
the actions. Unfortunately, the API was pro-



Linux Symposium 218

duced without enough review, and it was in-
sufficent for large applications. The hopefully
final rendition is now in its evaluation phase
in libegg menu/toolbar. This code allows ef-
fective management of different action groups,
and the creation of new action types such as
combos and accelerators. The main remaining
question is how to store a user’s edits. KDE has
long had support for this sort of editing, they
don’t appear to have a good solution to storing
the edits as yet.

File Selector

The gtk+ file selector has long been a source
of ridicule and disgust. It is functional, but too
barebones for a modern desktop. The fact that
it has no solid support for network addresses,
or histories has greatly hindered the adoption
of gnome-vfs. There have been several write-
ups and Owen Taylor has apparently completed
a replacement version that will be included in
gtk+-2.4.

7 Spreadsheet-specific Functional-
ity

Spreadsheets are an ideal testing ground for
all those obscure datastructures we all learned
back in school. In most instances there is not
enough data to make using something esoteric
worthwhile. With an apparent size of 256×
64k (Gnumeric can scale considerably larger),
it is very easy to quickly operate on significant
swaths of data.

As an example, Gnumeric uses an asymetric
quadtree to store style information. This allows
us to easily handle someone doing a “Select all,
Bold” (explode kspread). It also supports “Se-
lect all minus one row and one col” (explode
MS Excel, and OpenCalc).

8 Acknowledgements

The Gnumeric development team. You know
who you are, as do the CVS logs.

Ximian employees for their continuing per-
sonal contributions to Gnumeric.

9 References

http://www.gnome.org/projects/
gnumeric



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


