Kernel configuration and building in Linux 2.5

Kai Germaschewski Sam Ravnborg
University of lowa Ericsson Diax A/S
kai@germaschewski.name sam@ravnborg.org
Abstract cial solution?

As the Linux kernel evolved from a student’s
The development phase of Linux 2.5 broughtierminal emulation program towards a full-
substantial changes to the kernel configuratiofeatured UNIX-like kernel, changes to the way
process, the actual kernel build and, in particit was built became necessary and were inte-
ular, implementation and building of loadable grated, so the kernel build system basically fol-
modules. lowed the evolutionary development of the ker-

The first part of this paper will give an nel itself.

overview of the user-visible changes which oc-|n the science world, in particular people run-

cured in Linux 2.5, on the one hand for usersning numerical simulations, many people con-
which build kernels themselves, on the othersider a build system completely unnecessary,
hand for developers which maintain drivers orthey just run

other parts of the kernel, in order to help port-

ing to Linux 2.5/2.6. f77 code.f

Ja.out
The second part of the paper deals with the ac-

tual design and implementation of the curren
kbuild, showing howGNU makeis actually
flexible enough to allow for nice condensed
Makefile fragments which per subdirectory de-
scribe which objects to build into the kernel or
as loadable modules. The paper ends with a
outlook showing possible approaches for im-
plementing additional features.

tI—|owever, this approach obviously doesn'’t
scale to large projects. To keep projects main-
tainable, some kind of modularization occurs
the code is divided into a number of source files
and as the project is growing further, a direc-
ory hierarchy is introduced which helps orga-
nizing the code even further.

During development, normally only one or a

The Paper also explains the improve_:ment_s ir}ew files are edited and then the developer
handling loadable kernel modules, including ants to rebuild the program, in this case the

symbol versioning, and the necessary buih{v) o L
ernel vmlinux be it just for compile-time
system changes.

checks or testing.

First of all, one does not want to enter all the
commands manually for each build, so some
type of script is necessary to record those com-
Why is a kernel build system necessary at allmands. Next, it is actually a waste to recom-
and why does the Linux kernel use its own spe-pile every file if only few have changed. Smart

1 Introduction and history

Linux Symposium 186

programmers recognized this a long time ago support in configuration and building of

and invented a tool callechakewhich is still those objects.

the most popular build tool used today. We as-

sume in this paper that the audience is familiar

with the basics omake In particular the high configurability and sup-
port for loadable modules distinguish the

So even Linux 0.01 came already with a Make-| jnux kernel from most other projects, and it

file which took care of building the kernel. thys comes as no surprise that its build system

As time passed and Linux matured, new fea_also evolved away from a standard Makefile.

. : . However,makeis still the underlying tool used
tures were incorporated into the build system o o
such as for building the kernel. In fact, the extensibility

of the GNU version ofmake[1] in conjunction
with some support scripts / C code renders it

. Automatic generation of dependency possible to meet the goals listed above.
information. makeonly handles simple
de_pend_encies like the depe_zndency of an A dummy’s guide to kbuild
object file on the corresponding source au-
tomatically, other prerequisites as for ex-
ample included header files need to beThis section is addressed to users and will ex-
added to the Makefile explicitly, a task plain how to use the kernel build system in
which can be (and was) automated. Linux-2.5/2.6. “Users” (as opposed to “devel-

opers”) here mean people who download the

 Configurability. As the code base for linux kerneltree source, possibly apply patches
the Linux kernel expanded, a need for aand then build and install their own kernels. Of
user selectable configuration became apeourse, since kernel developers need to build
parent and was introduced before releasand run kernels, too, this section is of relevance
of Linux 1.0. This system allows the user for them as well.

to answer questions with respect to WhIChThe build system is based @NU make i.e.

components are desired, and then only,| commands are given takeby invoking it
builds those components into the kernel. gg

o Different architectures and cross—
compilation. Linux introduced support
for different architectures, which means

the kernel is build from a large arch- contrary to many userspace packages which
independent code base as well as somgre ysing autoconf/automake, there is no pre-
machine-specific low-level code. It is ceding ./configure necessary, the neces-

also often necessary to cross—compilesary configuration process is embedded into
the kernel, i.e. do the compilation on ane puild process.

different platform than it is actually run
on. The actual targets are in part platform-specific,
for example on i386 one typical wants to build
» Loadable modules. Within Linux 1.3, the boot imagdzimage and modules. A list
support for loadable kernel modules wasof supported targets for the platform can be ob-
introduced, which again needed speciakained frommake help .

make <target>

Linux Symposium 187

Arch maintainers should setup their arch-tween those two steps if a change of configura-

specific Makefile in a way that invokingnake tion options is desired.

without parameters will build the commonly

used boot target for the architecture, for examThe last remaining step is the installation of

ple on i386 just typing the newly built kernel. The procedure to in-
stall the boot image depends of course on the

make bootloader used.

Forlilo, the kernel boot imagezimageshould
will build bzlmage and modules (the latter be copied to a certain location (typicallyoo),
only when CONFIG_MODULE® selected, of then/etc/lilo.confmay need an appropriate en-
course) which is what is typically needed. try and finally/sbin/lilo must be run.

If one just runsmakeafter unpacking the ker- For grub, copying the kernel image ttoot
nel source tarbalinakewill actually just error and possibly editindetc/grub.conshould suf-
out, asking you to configure your kernel first fice.

by runningmake *config . (In Linux-2.4 _ _ _

and before, it would invokenake config An important change is that on i386zIm-
for you, but this is the wrong choice in 99% agdzimagecan not be directly booted from
of the cases, since nobody likes answering & floppy disk anymore. Instead the targets

straight sequence of a couple of hundred quedisk ~and fdimage create a boot floppy
tions. . .) disk and a boot disk image, respectively. Those

targets now require mtools and syslinux to be
To generate a new kernel configuration, it isinstalled.

recommended to usenake menuconfig _ _ _
make xconfig (which uses Qt now) or Since the actual installation of the boot

make gconfig (uses gtk). image varies as described above, one can
give the install target to make, which
However in most cases, it is easier to adapt awill invoke a user— or distro—provided
existing kernel configuration to the current ker-script, “Ibin/installkernel or
nel than to create a new one from scratch. Thigsbin/installkernel which can be
is done by copying theconfigfile into the top- customized for the local setup.
level directory of the source tree. kbuild will _ o _ _
recognize that the .config file may need adaplnstalling modules is simpler, just invok-
tion for the current kernel source and automating make modules_install will do the
ically runmake oldconfig for you, which ~necessary work. By default this will in-
makes sure thatonfigis consistent with the Stall into /lib/modules/'uname -r/ '

current rules and asks the user about the valu§ough this can be customized by setting
of previously not existing options. INSTALL_MOD_PATHe.g. if one wants to col-

o _lect the modules for transfer onto a different
So the normal sequence for building a kernel isnachine.

just
This is basically all knowledge which is needed
cp /my/old/.config .config to build a Linux kernel—everything else is
make handled automatically by the build system.

Applying patches, editing files, changing con-
where one could insertmake *config be- figuration options or adding compiler flags—

Linux Symposium 188

the build system will notice the change and re4o override theSUBDIRSvariable on the com-

build whatever is needed. The one exceptiormand line, which will forcemaketo only de-

to this rule is changing the architecture (by setscend into the given subtree. This can be very

ting the ARCHvariable), which needs an ex- useful for faster build times, but it bypasses

plicit make distclean to work correctly. some dependencies and thus does not guaran-
tee to result in a consistent state.

3 kbuild for kernel developers So while e.g. working on théisax ISDN
driver, it's useful to callmakeas

3.1 kbuild in the daily work
make SUBDIRS=drivers/isdn/hisax \

. . modules
Since developers tend to build kernels and

modules a lot, the previous section of course

also applies to them, in particular the fact thatfor compile checks etc. However, before
just runningmake will recognize all changes installing a new kernel and modules, the
and rebuild whatever is necessary to generateguthors advise to always run a futhake
consistenvmlinuxand modules. bzlmage/vmlinux/modules (or other-

wise, do not complain
Some additional features exist to support the P)

development / debugging process: _ _
3.2 Integrating a driver

-« make some/path/file.o will re- Basically each subdirectory in the Linux ker-
build the single file given, using compiler ne tree contains a file calledakefile which
flags (e.9.-DMODULE according to the g included bymakeduring the kernel build
current.config process. However, these Makefiles are differ-

ent from regular Makefiles in that they nor-
: ally don't have any targets or rules, but only
generate a preprocessed version nget variables which tell the build process what

fsome/pathifile.c , again using should be built and the latter takes control of
compiler flags for the current configura- the actual compiling and linking

* make some/path/file.i will

tion.
. . In conjunction with the Makefile there nor-
* make some/path/file.s will gen- mally exists aKconfig file, these files were
erate a file containing the raw assemblefiniroduced with the configurator rewrite by
code forsome/path/file.[cS] - Roman Zippel and replace the ol@on-
fig.in/Config.heldiles used during the config-
* make some/pathf/file.Ist (little g g-held g J

. : uration phase of the kernel build.
known but very useful) gives interspersed

assembler code with the C source, relo-This paper does not intend to elaborate on the

cated to the correct virtual address when anew kernel configuration system, however the

currentSystem.mapxists. following examples will provide some basic
usage guidance.

Another useful feature for the daily work, The most common case is adding a new driver
which has existed for a long time, is the ability which is built from a single source file.

Linux Symposium 189

config TIGON3
tristate "Broadcom Tigon3 support"
depends on PCI
help
This driver supports Broadcom Tigon3 based gigabit Ethernet cards.

If you want to compile this driver as a module (= code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. This is
recommended. The module will be called tg3.

Figure 1:Kconfigfragment for the Tigon3 driver.

Figure 1 shows th&config fragment for the be compiled as built-in objects, and will
Tigon3 driver, which defines a config option finally be linked intovmlinux

TIGON3 (the corresponding variable will be

given the nameCONFIG_TIGON3, which is

a tristate, i.e. can have the valugs m or

n with the obvious meanings (a config option
which has been turned off, actually has the

» obj-m . All objects listed inobj-m and
not not listed inobj-y will be compiled
as modules (so they actually end up being
called e.gtg3.ko in 2.5/2.6).

value™ , to be correct here). The fragment . obj- . All objects listed inobj- and not
depends on PCI states that this option is in obj-y or obj-m will be ignored by
only selectable when the opti®Cl is also set kbuild.

(that is, if the kernel supports the PCI bus).

The Makefile fragment for the Tigon3 driver ~ Since the build system does not have any fur-
ther information ortg3.0 , it will try to build

it from a source file calledg3.c (or an as-
sembler sourcgy3.S , which only happens in

the architecture dependent part of the kernel,
is very short and though a little awkward atthough).

first, a very elegant way to quickly express

what files are supposed to be built. TheThis is all what is needed to integrate a simple
idea dates back to Micheal Elizabeth Castain’glriver into the kernel build, other than of course
dancing Makefile§2] and was globally intro- Wwriting the driver {g3.c) itself.

duced into the kernel by Linus shortly beforelt is also possible to list more than one object to

the release of kernel 2.4. be built in the Makefile statement. The Make-

, . file line dealing with theeepro10Qdriver looks
What happens is that depending on the conlike the following:

fig option CONFIG_TIGONS the valuetg3.0

is appended to either of the variablelg-y |, 0bj-$(CONFIG_EEPRO100) += \
obj-m orobj- . eeprol00.0 mii.o

0bj-$(CONFIG_TIGONS3) += tg3.0

The meaning of those special variables is a

T this driver is selected, themii.o support
follows:

module also needs to be compiled, which is
achieved by simply appending it to the state-
* obj-y . All objects listen inobj-y will ment.

Linux Symposium 190

Other network drivers will, if selected, also 4 What is new in Linux-2.5/2.6’s

add mii.o to the list of objects to be built— kbuild?

this is fine, the build system handles this case.

It IS even possible that a suppor.t r.“"d“'.e IlkeIn this section, we describe some of the steps

mii.o got added to the list of built-in objects . : .
: . : . in the evolution of the kernel build system

obj-y and obj-m —again, the build system . .

: ;)) . during the development phase of Linux 2.5.
recognizes this fact and just compiles the built- . . .
: : :) One purpose is to show how this evolution
in version, which will also be usable for the

: : could actually be divided into small, Linus-
drivers compiled modular.) W . :
compatible “piece-meal” patches without the
The newe100driver examplifies two more fea- famous “flag-day” patches and with only little
i[_ures. drivers/net/Makefileonly contains the preakage along the way.
ine
We will also show how using the extensions
provided by GNU makewere actually ex-
ploited to provide a better build system while
still using a standard tool instead of creating a
obj-$(CONFIG_E100) += €100/ specialized build solution for the kernel from
scratch.

We start by comparinglrivers/isdn/Makefile

in 2.4 and 2.5 (Figure 4), where many of the
which tells kbuild that it should descend into improvements are easily seen. (a) shows the
the e100/subdirectory if the optiolCONFIG_ Makefileas it is present in Linux 2.4.20, and
E100 is set. What to do there will then be (b) shows the simpler variant present in 2.5.
determined bydrivers/net/e100/Makefilérig- Kbuild has been adapted incrementally to allow
ure 2): the more concise syntax. The following sec-

o _ tions will describe the internals that eventually
The first line after the comment looks famil- 5jj0wed for the layout seen in (b).

iar, it advises the build system to buiéd00.0
built-in/modular depending on the value of4.1 O TARGET linking objects in subdirecto-

CONFIG_E100. When CONFIG_E100 equals ries
“m” the €100 driver is built as a module and
will be named em e100.ko. First of all, we start with a short descrip-

tion of what the kbuild interal implementa-
The next line then states that00.0is a com- tion, which is hidden in the top-levéWlake-

: L : : : . Subdirectory: From the kbuildviakefile lo-
listed individual object files—these ObJeth'leScated in the subdirectory we obtain a list

will automatically compiled with the appropri- of \what to build from the variablesbj-y
ate flags. (built-in) and obj-m (modular) as explained
in the previous section. The default target
As a last point, instead of using the vari-in scripts/Makefile.builds __ build and the
able<modname>-objs to declare the compo- cc;qrr?sporlLding IjUIet’ SQOV(\;n in Fi(i;ure 5t d?fri]nes
- what work needs to be done. Important here
nens of thi_mOdwemedn"’:jme??re janar s that we buildo_TARGETor L_TARGET re-
modname>-y can D Used, Which allows 101 gnectively, when buildingmlinuxand obj-m
easy definition of optional parts to a compositeyhen compiling modules. As opposed to 2.4,
modules, as seen in the example in Figure 3. in 2.5 0_TARGETis a kbuild internal variable

Linux Symposium 191

#
Makefile for the Intels E100 ethernet driver

0bj-$(CONFIG_E100) += e100.0

€100-objs := €100 _main.o €100 config.o €100 phy.o \
€100_eeprom.o el00_test.o

Figure 2:/drivers/net/e100/Makefile

#
Makefile for the Linux X.25 Packet layer.
#

0bj-$(CONFIG_X25) += x25.0

x25-y = af_x25.0 x25_dev.o x25_facilities.o x25_in.o \
x25_link.o x25_out.0 x25_route.o x25_subr.o \
x25_timer.o x25_proc.o

x25-$(CONFIG_SYSCTL) += sysctl_net_x25.0

Figure 3:net/x25/Makefile

and needs no longer be defined in the kbuild
makefiles. Except for the rare case of build-
ing an actual libraryD_TARGETs used in the

built-in case and we find the rule how to make

|

|

|

|-- hisax/built-in.o
| [-- hisax.o
|

|

|

|

it vmlinux
itas |-- drivers/built-in.o

| ‘-~ isdn/built-in.o

| [-- isdn.o
$(O_TARGET): $(obj-y) FORCE | |-- isdn_common.o

$(call if_changed,link_o_target) | ‘-- isdn_net.o

I

I
SoO_TARGETis linked from the objects listed I | |- config.o
in obj-y , which contains files locally com- | | ‘- isdnl*.0

piled in the current directory as well as objects| -- hisax_fcpcipnp.o
which are built in subdirectories by descend- b
ing. In Figure 6, we see how going from theI - 'Cr,]_/_blf'cltn"g'o

leaves to the root, the_ TARGETNn each subdi- |

rectory (here always calldalilt-in.0) accumu- ‘- fs/built-in.o

lates the objects built below that directory until _ o _

we finally end up withvmlinuxat the rootofthe ~ Figure 6: The hierarchy for linkingmlinux
hierarchy containing all built-in objects gen-

erated throughout the tree (this example only

shows a small fraction of the objects linked in

a normal build).

Linux Symposium 192

(a)

O_TARGET := vmlinux-obj.o

export-objs := isdn_common.o

list-multi = isdn.o

isdn-objs = isdn_net.0 isdn_tty.0o isdn_v110.0 isdn_common.o
isdn-objs-$(CONFIG_ISDN_PPP) += isdn_ppp.o
isdn-objs += $(isdn-objs-y)
0bj-$(CONFIG_ISDN) += isdn.o
0bj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o
mod-subdirs := hisax
subdir-$(CONFIG_ISDN_HISAX) += hisax
subdir-$(CONFIG_ISDN_DRV_ICN) += icn

obj-y += $(addsuffix /vmlinux-obj.0, $(subdir-y))
include $(TOPDIR)/Rules.make

isdn.o: $(isdn-objs)
$(LD) -r -0 $@ $(isdn-objs)

(b)

obj-$(CONFIG_ISDN) += isdn.o

0bj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

isdn-y = isdn_net_lib.o isdn_fsm.o isdn_tty.o \
isdn_v110.0 isdn_common.o

isdn-$(CONFIG_ISDN_PPP) += isdn_ppp.o

0bj-$(CONFIG_ISDN_DRV_HISAX) += hisax/
0bj-$(CONFIG_ISDN_DRV_ICN) += icn/

Figure 4.drivers/isdn/Makefilen (a) 2.4.20 and (b) adapted for the build system in 2.5

In Linux 2.4, the name for the object which In kbuild-2.4, we need to explicitly add the
accumulates all built-in objects in and belowsubdirectories to descend into to the variables

the current subdirectory was chosen by settin%“bdir'y/m , and then also add the subdir-

. . . enerated built-in objects thj-y so that they
the variableO_TARGETIn the local Makefile. et jinked. This is redundant and error-prone,

In Linux-2.5, it is instead just set touilt-in.o |n 2.5 it is sufficient to just add the objects gen-
by the build system. This allows to get rid of erated in the subdirectories to the list of ob-
the assignment od TARGETIN every subdir jectS to be linked, and the build system will de-
. o duce from there that it needs to descend into
Makefile and,-more importantly, allows for fur- the named subdirectories. To simplify things
ther clean-up: further, the name of th® TARGET(now al-

ways beindpuilt-in.o) itself is left out and only
the trailing slash is kept:

Linux Symposium 193

__build: $(if $(KBUILD_BUILTIN),$(O_TARGET) $(L_TARGET) $(extra-y)) \
$(if $(KBUILD_MODULES),$(obj-m)) \
$(subdir-ym) $(always)

@:

Figure 5: The default_build rule fromscripts/Makefile.build
0bj-$(CONFIG_...HISAX) += hisax/ each multi-part module in the directory depend
obj-$(CONFIG_...ICN) += icn/ on the set of all components for all multi-part

_ modules in that directory, which is actually
4.2 Multi-part modules too large, as it of course only is dependend

its own components; however the latter is not
As can be seen from Figure 4, a number ofmplementable within the restrictions GNU
statements were necessary for generating @ake When doing the link, the variabliak_
multi-part moduleisdn.oin that example. First multi_deps recovers the right list of compo-
of all, the parts constituting the module need tonents from the targe@ so that linker is in-
be declared by assigning them to the variablejoked correctly.

isdn-objs . This step is of course essential _ _ .
and was kept in 2.5. Another interesting detail is that we here as

well as in other places need to uniquify the
However, it was also necessary to declare thasrerequisites, so that listing a component mul-
isdn.ois a multi-part module by listing it in tiple times doesn't lead to a link erroGNU
the variablelist-multi . This information makeoffers thesort function, which throws
is redundant as it can be deduced by checkingway duplicates, however it is unfortunately
for the existence ofmodule>-objs , whichis not usable for this purpose since it sorts, i.e.
now done in 2.5. reorders its arguments and thus changes the
Furthermore, in 2.4 a link rule has to be ex_link/init_order. The_ workaround hgre_ i_s to use
plicitly given for each multi-part object, which the variable$”" which actually uniquifies the
was annoying and error-prone. In the new buildist of prerequisites exactly as needed. Finally,
system, this link rule is generated bmake hit- since$” lists all prerequisites which as men-

ting just about the limits of whaBNU make tjoned above exceeds the list of components for

is capable of. We use a feature called “stati) L
pattern rules.” and the code looks like the fol_cthe current module, we filter the uniquified list

lowing: with that list of components to get the informa-
tion we need.
cmd_link_multi-m = $(LD) ... \
-0 $@ $(link_multi_deps) 4.3 Including Rules.make
?}ngf'té'(ﬁﬁﬁ{fgg,jg_%) FORCE Each subdirectory Makefile in kbuild-2.4
$(call if_changed,link_multi-m) needed to includ&(TOPDIR)/Rules.makex-

plicitly. In 2.5, when descending into subdirec-

tories, the build system now always catiske
multi-used-m contains all multi-part mod- with the same Makefilescripts/Makefile.build
ules we want to be built in the current directorywhich then again includes the local subdi-
and multi-objs-m contains all of the indi- rectory Makefile so the statement to include
vidual objects those are built of. This makesRules.makeould be dropped.

Linux Symposium 194

Furthermore, in 2.5. the build is still organized 4.5 Compiling built-in objects and modules in

in a recursive way, i.emakeis only invoked a single pass, recognizing changed com-

to build the objects in the local subdirectory mand line arguments

and other instances ohakeare spawned for

the underlying directories. However, it doesThe major performance issue for the kernel
not actually descend into the subdirectoriesbuild are the invocations ahake(most of the

it always does its work from the top-level time is of course normally spent compiling /
directory and prepends the path as necessaﬂ,ﬂking, but this cost is independent of the build
One of the advantages is that the outpusystem used)makehas to read the local Make-

includes the correct paths, so a compileffile, the general rules and all the dependencies
warning will not show fnode.c Warning @and figure out the work to be done from there.

.., but “fs/ext2/inodec ..., which makes it An obvious way to optimize the performance
easier to recognize where the problem occur<f the build system is thus to avoid unneces-
More importantly, it allows to use relative sary invocations. In 2.4nakeneeds to do sep-

paths throughout the build, so that pathsarate passes for modules and built-in objects
like “BUG in /homelkai/src/kernel/ and within each directory, it will even call it-

v2.5/linux-2.5.isdn/include/linux/ self again, so an about four-times performance

fs.h " are history. Renaming/moving a kernel increase is possible by just combining those in-
tree will not cause spurious rebuilds due tovocations into a single pass.
changing paths as seen above anymore, a

tools like “ccache” can work more effectively. nﬂm primary reason why kbuild-2.4 needs two

passes for built-in and modules lies in its flags
handling. This means that it tries to check not
4.4 Objects exporting symbols only whether prerequisites have changed (e.g.
the C source for an object), but also if the com-
piler flags have changed.

The 0|C.| mo_dule symbol versioning Sc_hemeThis objective was achieved by generating a
used with Linux 2.4 needed the Makefiles 10 <target>.flagsfile like the following (simpli-

declare which objects export symbols to mod-ied) for each target built:
ules, which was done by listing them in the

variableexport-objs . In 2.5, module ver- jfeq (-D_ KERNEL _ -DMODULE
sioning was completely redesigned, removing -DEXPORT_SYMTAB,
the need for this explicit declaration. The $(CFLAGS) -DEXPORT_SYMTAB)))

changes are so complex that they are rewardeeolm';'f"ES—':"AGS—UF’—TO—DATE += config.0
their own section in this paper.

Here we conclude the comparison between ®n a rebuild, the Makefile would read all those
2.4 and 2.5 subdirectory Makefile, where we.*.flagsfragments and forces all files which are
have shown that all the redundant and denot listed inFILES FLAGS _UP_TO_DATEt0
ducible information has been removed and thée rebuild.

necessary information is revealed to the build _ _ _
system in a very compact form. The flaw of this method is that it cannot handle

differing flags for different groups of files, so
Two additional important internal changes,makeneeds to invoked twice, once for the tar-
which did not affect the subdirectory Makefile gets to be built-in with the norma@rFLAGS and
layout will be described in the following: again for the modular targets witbMODULE

Linux Symposium 195

added toCFLAGS In the example above it is easier use in a rule as shown above, is that all
also visible that the handling feDEXPORT_ the checking is done within the context of the

SYMTABIs broken. this method can not de- actual rule and not in a unrelated place later in
) ' the Makefile. This allows for the use and cor-
tect when a file was added / removed from

, , , / rect checking olGNU makés per target vari-
the list of files exporting symbols, since the gples, e.g.

-DEXPORT_SYMTAR/as hardcoded on both
sides of the compa nsc_)n_an_d thus useless—thrgodkem_cﬂags := $(CFLAGS_KERNEL)
only way to fix this within in the old frame- $(real-objs-m) : \

work would have been to invokenake four modkern_cflags := $(CFLAGS_MODULE)
times, for all combinations of built-in/module

and export/no-export. .
which sets modkern_cflags to

A more flexible scheme to handle changing$(CFLAGS_KERNEL) by default, but to
command lines withitNU makewas created: $(CFLAGS_MODULE) for objects listed in

~ $(real-objs-m) , i.e. for objects compiled
As an example, we present the rule which isgs modules. The compilation rule can then
responsible for linking built-in objects into a jyst use $(modkern_cflags) to get the

library in Figure 7. The actual use is pretty right flags for the current object, where the
simple, instead of writing the command di- mechanism described above will take care of

rectly into the command part of the rule, it is recognizing changes and acting accordingly.
instead assigned to the variabiend_link_

|_target and the build system takes care of4 6 Dependencies
executing the command as necessary, keeping

track of changes to the command line itself. _] o
Between configuration and building of a ker-

The implementation works as follows: Af- nel, the old kernel build needed the user to
ter executing the command, the madfo run “make dep”, which served to purposes:
changed , records the command line into the It generated dependency information for the C
file .<target>.cmd As makeis invoked again source files on headers and other included files,
during a rebuild, it will include thoset*.cmd and it generated the version checksums for ex-
files. As it tries to decide whether to rebuild ported symbols.

L_TARGET it will find FORCEHRN the prerequi-
sites, which actually forces it to always rerun
the command part of the rule.

Both of these task have become unnecessary in
2.5, so the reliance on the user to rerameke
dep” as needed is gone (additionally, the sys-
However, the command part of the rule nowtem in 2.4 is broken that in some modversions
does the actual work: It checks whether anycases it's not even sufficient to rerumake

of the prerequisites changed, i.8? is non- dep”, the only solution then is to dorfiake
empty or if the command line changed, whichdistclean " and start over).

is achieved by the twdilter-out state-

o . " 2.4 used a small tool calleadkdepto generate
ments. Only if either of those two conditions gependencies for C sources. This tools basi-
is met, if_changed expands to a command cally extracted the names of the included files
rebuilding the target, otherwise it is empty andout Iof the s?]urce, btjtddid ﬂOt actga!{l)y recur-
he taraet will n rebuilt. sively scan those includes then. Sdoib.cin-
the target will not be rebuilt cludesfoo.h which itself includesar.h, mkdep
The advantage of this method, apart from thevould only pick up the dependency falo.con

foo.h butfoo.calso needs recompiling when

Linux Symposium 196

cmd_link_|_target = rm -f $@; $(AR) $(EXTRA_ARFLAGS) rcs $@ $(obj-y)

$(L_TARGET): $(obj-y) FORCE
$(call if_changed,link_|_target)

targets += $(L_TARGET)

[..]

if_changed = $(if $(strip $? \
$(filter-out $(cmd_$(1)),$(cmd_$@))\
$(filter-out $(cmd_$@),$(cmd_$(1)))),\
@set -e; \
$(cmd_$(1)); \
echo 'cmd_$@ := $(cmd_$(1)) > $(@D)/.$(@F).cmd)

Figure 7: Checking for a changed command line

foo.h changes. This problem was solved in to be created (for all files, even for en-

2.4 by assuming thdbo.hwould reside inin- tire subsystem which may not be selected

clude/* (which is mostly, but not always, true). in the configuration at all), even though
For those files it would generate another set of - o ’
this information is totally useless for a

dependencies, basically:
P Y first build—it’s only useful for deciding

whether a file needs to be rebuilt.
foo.h: bar.h

@touch $@

The build system in Linux 2.5 instead uses
So asbar.h changes, this rule will update the gcc’s -MD flag to generate the dependency in-
timestamp orioo.h which will then be seen by formation during the build. This flag generates
the rule forfoo.cand causéoo.cto be rebuild. the full list of all files included during the com-
pile, so in the example above it would generate
“foo.a foo.c foo.h bar.h(and “baz.li as that
gets added). This procedure is much simpler,

This method has several disadvantages:

» Changing the timestamp on files whichand it gets around all the disadvantages listed

have not actually been modified confusesabove.

a number of source management systems. _ o] o _
The only quirk which is applied similarly in 2.4

* It only works for header files in then- and 2.5 is related to the high configurability of
clude/* subdirectories. the linux kernel.

» Asfoo.his changed to also includez.h Using the gcc generated list of dependencies

the dependency information does not getas-is has the drawback that virtually every file
updated, so a subsequent changban.h in the kernel includeslinux/config.h>which
will erroneously not causto.cto be re- then again includeslinux/autoconf.h>

compiled. _
If a user rerunsnake *config to change a

» Starting from a clean tree, the user hasconfiguration option)inux/autoconf.hwill be
to wait for the dependency information regeneratedmakewill notice this and rebuild

Linux Symposium 197

every file which includes autconf.h, i.e. basi-in-kernel loader in 2.5. A common problem
cally all files. This is correct, but extremely is that Linux does not guarantee a stable
annoying if the user just changed some optiorbinary interface to modules, in fact the binary
CONFIG_THIS_DRIVERfrom n to m. interface often changes between releases in

_ a stable kernel series and even depending on
So we use the same trick thamkdep ap- he configuration of the kernel. One simple

plied before. We replace the dependency ORyample is the struct net_device ’
linux/autoconf.hby a dependency on every \yhich embeds apinlock t . If the kernel
config option which is mentioned in any of the s configured for uni-processor operation, this

listed prerexquisites. lock expands to nothing, so the layout of the

The effect is that if a user changes theStrlllj_Ct net_dew_ce chan%es . When
CONFIG_THIS_DRIVER option, only the ob- Callng register_netdev(struct
jects which (themselves, or in any of net_device *) where the in-kernel func-

the included files) referenceONFIG_THIS_ toN rleg'Ster—r;]etde;]’Oh dasl’sumes th‘;
DRIVER will be rebuilt, which most likely is SMP layout, though the module set up the
only this one driver. argument in the UP layout, we have an obvious

mismatch which often leads to hard to explain
kernel crashes.

5 Modules and the kernel build

process Other operating systems solve this problem by

prescribing a stable ABI between kernel and
modules, however in Linux it is preferred to not
The implementation of loadable kernel mod-carry around binary compatibility layers and
ules has been substantially rewritten by Rustgope with unflexible interfaces, instead since
Russell in the development cycle 2.5. Thesdhe source is openly accessible, one just needs
changes are so complex that this paper will noto recompile the modules so that they match
attempt to describe them in detail. Instead, wdhe kernel.

concentrate on the changes which were done i
g Rlow, it is easily possible for users to get this

the build system to accomodate the new con-
cepts wrong and we thus want a way to detect ver-

sion mismatches and refuse to load the mod-
ules or at least warn. This is what “module
symbol versioning” accomplishes. The basic
ideais to analyze the exported symbols, includ-
Loadable modules need to interface with theng the types of the arguments for function calls
kernel. They do this by accessing certainand generate a checksum for a specific layout.
data structures and functions which have beeif anything changes in the ABI, the versioning
marked as exported symbols in the sourceprocess will generate a different checksum and
That means not all global symbols in the kernethus detect the mismatch. The main work in
are accessible to modules, but only an explicthis scheme is done by the progrgenksyms
itly exported API. which is basically a C parser that reads a pre-

processed source file and finds the definitions

These symbols remain unresolved in the,, ihe exported symbols from there.
loadable module objects at build time and

are then resolved at load time, either by arThis procedure has caused trouble in the
external programmodutils in 2.4, or by an

5.1 Module symbol versions

Linux Symposium 198

build system for a long time. In Linux 2.4, but it has no way to make sure that it is up-
the “make dep” stage, apart from build- to-date since it is located in a different subdi-
ing dependency information, preprocessesectory.

all source files which export symbols (that S)
is why they need to be specifically de- Module versioning is instead implemented as

clared in the Makefiles) and then gener-2 two stage process, the first stage is the nor-

atesinclude/linux/modversions.tvhich man-

gles the exported symbols with the gen-

erated checksum,

sor. The kernel will then not export the
symbol register_netdev , but instead
register_netdev_R43d2381 A mod-
ule referencingegister_netdev will end

up with an unresolved symbakgister
netdev_R43d2381 , so loading it into the
kernel will work fine. Has the module how-
ever built against a different kernel or a differ-

ent configuration, the checksum has changeﬂ1 more detall

and any attempt to load it will result in an error

using the C preproces*

mal build, which also generates all the check-
sums. After this stage is completed, we can
be sure that all checksums are up-to-date now,
and then just record this up-to-date information
into the modules. This is one of the reasons
why modules have been renamed with a “.ko”
extension: The first stage just builds the nor-
mal “.0” objects, and afterwards a postprocess-
ing step follows, which builds “.ko” modules
adding version checksums for unresolved sym-
bols and other information.

the following steps are exe-
cuted:

about unresolved symbols.

This implementation was rather fragile, as
it relies on the user to rerunnfake dep”
whenever the version information has possibly
changed, and even if only one symbol changed,
that basically forces a recompilation of every
file. In addition, some of the optimizations
made in 2.4’s build system were actually bro-
ken, leading to the well-known fact that it can
get into a state where not even runningake
dep” will recover from generating inconsis-
tent version information, and starting over
from “make mrproper/distclean " s
needed.

Module versioning is still a challenge to the
build system in 2.5, the underlying reason
for that is that it introduces cross-directory
dependencies, which a recursive build sys-
tem cannot easily handle. For example,
the ISDN moduledrivers/isdn/hisax/hisax.ko
usesregister_isdn() , Which is exported
by drivers/isdn/isdn_common.oSo building
hisax.ko needs knowledge of the checksum
generated fromdrivers/isdn/isdn_common.o

» Compiling

Knowledge of which source files export
symbols is not required up front. As
an EXPORT_SYMBOL(foo) is encoun-
tered, the definition dEXPORT_SYMBOL
from include/linux/module.kill generate
special sections with tables containg the
name of the symbol, its address and its
checksum. Actually, since the checksum
is not known at this time, the value of
the checksum is set to a symbol called
__crc_foo . Thisis atrick which allows
to use the linker to record the checksum
even after the object file is already com-
piled.

As the object file has been generated, we
check it for the existance of the special
section mentioned above. If it exists,
the source file did export symbols and
genksymss run to obtain the checksums
for those symbols. Finally, these check-
sums are entered into the object using the
linker in conjunction with a small linker
script.

Linux Symposium 199

$ nm drivers/isdn/idl/isdn.ko | grep _ crc
86849dd0 A _ crc_isdn_ppp_register_compressor
843d2381 A __crc_isdn_ppp_unregister_compressor
66d136e2 A __ crc_register_isdn

Figure 8: Examining the checksums for exported symbols

The checksums can easily examined aview, is that the actual symbols are not man-

running the command shown in Figure 8. gled, so it became possible to force a module

. load even if the checksums do not match—

* Postprocessing though the kernel will set the taint flag in these
After stage one, we have the check-case.

sums for the exported symbols embedde

within vmlinux and the modules. What

is yet to be done is recording the check-

dI'he module postprocessing step, introduced
mainly for the module symbol versioning, al-
sums into the consumers, that is addin owgdl forl"?‘ num?ear OT ad?'g?nil fe;t_ures, (Ijs
the checksums for unresolved symbolst. 0 lfe allasesh Ewce a”e an |ng',t'a 'f'
into the modules. ional version checks as well as recognition o

unresolved symbols during the build stage.
This step was initially handled by a small

shell script but is now done by a C pro-
gram for performance reasons, which also

handles other postprocessing needs like)
generating aliases. 6 Conclusion and Outlook

This program basically reads all the ex-
ported symbols and their checksums from

all modules, and then scans the modules)])
for unresolved symbols. For each unre_Thls paper presented an introduction to using

solved symbol, an entry in a table associ-the kernel build system for the Linux kernel

ating the symbol string with the checksum 2.5 and 2.6 for users who want to compile their

is made, this table is output as C sourcé®¥N kernels and developers working on ker-
module.mod.cand compiled and linked nel code. We also showed how in the transi-

into the final.ko module object. tion from kbuild-2._4 to 2.5, features dENU _
) makecould be applied to remove redundant in-
Figure 9 shows an excerpt from formation and allow for simpler Makefile frag-

drivers/isd_n/hisz_ix/hisax.mod.c which ments as well as a more consistent and fool-
calls reglster_ls_dn() . The proof build system.
checksum obviously matches the

checksum for the exported symbol Additionally, parts of the internal implementa-

in drivers/isdn/i4l/isdn.kp so that the tion have been described and an overview over

module will load without complaint. changes related to the new module loader and
new module versioning system has been given.

An additional advantage of the new way of The kernel build system in 2.5 has been im-
handling module version symbols, apart fromproved significantly, but some features remain
being cleaner from a build system point ofto be implemented.

Linux Symposium 200

static const struct modversion_info
__attribute__ ((section("__versions"))) = {
{ Oxfa7bbba7, "struct_module" },
{ 0x66d136e2, "register_isdn" },
{ Oxlala4f09, " _request_region" },

versions]

[.]

Figure 9: Excerpt frondrivers/isdn/hisax/hisax.mod.generated by the postprocessing stage

Separate source and object directories module post-processing. On the other hand, a
global Makefile which contains also needs to

As opposed to kernel 2.4, source files are not"corporate dependencies for all files will use
altered or touched during the build in 2.5 any-& Significant amount of memory and may turn
more, enhancing interoperability with sourceCUt to be problematic on low—end systems.
management systems. The next step is to aIT.here are two ways to implement a global
!OW fqr completely separate source and Ob'Makefile: One possibility is usinGNU make
ject directory trees, so that the source can b

. . ﬁself, replacing the rules to actually compile /
completely read-only and multiple builds at theIink objects by dummy routines recording the

_srz;me time tfrorr(; th.e Szaénﬁ soturi:e are poss;bl%'ecessary actions into a global Makefile. The
€ current code In 2.5 has taken preparatonyg ., g possibility is, as the subdir Makefiles
steps for this feature but work is not completedhave a very consistent form by now, to write a

yet. specialized parser for those files and have that

generate a global Makefile.
Non-recursive build

Whether switching to a non-recursive build

It is an open question whether it is actually ad-SyStem is worth the tradeoffs will be investi-
visable to switch to a non-recursive build sys-gated in the Linux 2.7 development cycle.
tem. Obviously, distributing build information
Wlt_h the_ source files is _deswable, this trend ISReferences
visible in e.g. the split of the global Con-
figure.help file into per-directory fragments

. " . [1]
which eventually were unified with the new
Kconfigconfiguration info. Of course it is es-
sential to keep the build information in the per-[2] Michael Elizabeth Castain:

GNU makehttp://www.gnu.org/
software/make/make.html

subdirectory Makefiles distributed as it is cur- dancing-makefiles
rently, it would be a step back to collapse it into http://www.kernel.org/pub/
one big file. linux/kernel/projects/

kbuild/dancing-makefiles-2.

However this does not preclude collecting the 4.0-test10.gz

distributed information when starting a build
and generating a global Makefile, which is then
used as a main stage. The advantage of this
method is that it can handle cross-directory de-
pendencies more easily, whereas the current
system has to resort to a two-stage process for

Proceedings of the
Linux Symposium

July 23th—-26th, 2003
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. HuttonSteamballoon, Inc.
Stephanie Donovar,inux Symposium
C. Craig Rossl.inux Symposium

Review Committee

Alan Cox,Red Hat, Inc.

Andi Kleen,SuSE, GmbH

Matthew Wilcox,Hewlett-Packard

Gerrit HuizengalBM

Andrew J. HuttonSteamballoon, Inc.

C. Craig Rossl.inux Symposium

Martin K. Petersenyild Open Source, Inc.

Proceedings Formatting Team

John W. LockhartRed Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

