
Kernel configuration and building in Linux 2.5

Kai Germaschewski
University of Iowa

kai@germaschewski.name

Sam Ravnborg
Ericsson Diax A/S

sam@ravnborg.org

Abstract

The development phase of Linux 2.5 brought
substantial changes to the kernel configuration
process, the actual kernel build and, in partic-
ular, implementation and building of loadable
modules.

The first part of this paper will give an
overview of the user-visible changes which oc-
cured in Linux 2.5, on the one hand for users
which build kernels themselves, on the other
hand for developers which maintain drivers or
other parts of the kernel, in order to help port-
ing to Linux 2.5/2.6.

The second part of the paper deals with the ac-
tual design and implementation of the current
kbuild, showing howGNU makeis actually
flexible enough to allow for nice condensed
Makefile fragments which per subdirectory de-
scribe which objects to build into the kernel or
as loadable modules. The paper ends with an
outlook showing possible approaches for im-
plementing additional features.

The paper also explains the improvements in
handling loadable kernel modules, including
symbol versioning, and the necessary build
system changes.

1 Introduction and history

Why is a kernel build system necessary at all,
and why does the Linux kernel use its own spe-

cial solution?

As the Linux kernel evolved from a student’s
terminal emulation program towards a full-
featured UNIX-like kernel, changes to the way
it was built became necessary and were inte-
grated, so the kernel build system basically fol-
lowed the evolutionary development of the ker-
nel itself.

In the science world, in particular people run-
ning numerical simulations, many people con-
sider a build system completely unnecessary,
they just run

f77 code.f
./a.out

However, this approach obviously doesn’t
scale to large projects. To keep projects main-
tainable, some kind of modularization occurs
the code is divided into a number of source files
and as the project is growing further, a direc-
tory hierarchy is introduced which helps orga-
nizing the code even further.

During development, normally only one or a
few files are edited and then the developer
wants to rebuild the program, in this case the
kernel vmlinux, be it just for compile-time
checks or testing.

First of all, one does not want to enter all the
commands manually for each build, so some
type of script is necessary to record those com-
mands. Next, it is actually a waste to recom-
pile every file if only few have changed. Smart

Linux Symposium 186

programmers recognized this a long time ago
and invented a tool calledmakewhich is still
the most popular build tool used today. We as-
sume in this paper that the audience is familiar
with the basics ofmake.

So even Linux 0.01 came already with a Make-
file which took care of building the kernel.

As time passed and Linux matured, new fea-
tures were incorporated into the build system,
such as

• Automatic generation of dependency
information. makeonly handles simple
dependencies like the dependency of an
object file on the corresponding source au-
tomatically, other prerequisites as for ex-
ample included header files need to be
added to the Makefile explicitly, a task
which can be (and was) automated.

• Configurability. As the code base for
the Linux kernel expanded, a need for a
user selectable configuration became ap-
parent and was introduced before release
of Linux 1.0. This system allows the user
to answer questions with respect to which
components are desired, and then only
builds those components into the kernel.

• Different architectures and cross–
compilation. Linux introduced support
for different architectures, which means
the kernel is build from a large arch-
independent code base as well as some
machine-specific low-level code. It is
also often necessary to cross–compile
the kernel, i.e. do the compilation on a
different platform than it is actually run
on.

• Loadable modules. Within Linux 1.3,
support for loadable kernel modules was
introduced, which again needed special

support in configuration and building of
those objects.

In particular the high configurability and sup-
port for loadable modules distinguish the
Linux kernel from most other projects, and it
thus comes as no surprise that its build system
also evolved away from a standard Makefile.
However,makeis still the underlying tool used
for building the kernel. In fact, the extensibility
of theGNUversion ofmake[1] in conjunction
with some support scripts / C code renders it
possible to meet the goals listed above.

2 A dummy’s guide to kbuild

This section is addressed to users and will ex-
plain how to use the kernel build system in
Linux-2.5/2.6. “Users” (as opposed to “devel-
opers”) here mean people who download the
linux kernel tree source, possibly apply patches
and then build and install their own kernels. Of
course, since kernel developers need to build
and run kernels, too, this section is of relevance
for them as well.

The build system is based onGNU make, i.e.
all commands are given tomakeby invoking it
as

make <target>

Contrary to many userspace packages which
are using autoconf/automake, there is no pre-
ceding ./configure necessary, the neces-
sary configuration process is embedded into
the build process.

The actual targets are in part platform-specific,
for example on i386 one typical wants to build
the boot imagebzImage and modules. A list
of supported targets for the platform can be ob-
tained frommake help .

Linux Symposium 187

Arch maintainers should setup their arch-
specific Makefile in a way that invokingmake
without parameters will build the commonly
used boot target for the architecture, for exam-
ple on i386 just typing

make

will build bzImage and modules (the latter
only whenCONFIG_MODULESis selected, of
course) which is what is typically needed.

If one just runsmakeafter unpacking the ker-
nel source tarball,makewill actually just error
out, asking you to configure your kernel first
by runningmake *config . (In Linux-2.4
and before, it would invokemake config
for you, but this is the wrong choice in 99%
of the cases, since nobody likes answering a
straight sequence of a couple of hundred ques-
tions. . .)

To generate a new kernel configuration, it is
recommended to usemake menuconfig ,
make xconfig (which uses Qt now) or
make gconfig (uses gtk).

However in most cases, it is easier to adapt an
existing kernel configuration to the current ker-
nel than to create a new one from scratch. This
is done by copying the.configfile into the top-
level directory of the source tree. kbuild will
recognize that the .config file may need adap-
tion for the current kernel source and automat-
ically run make oldconfig for you, which
makes sure that.config is consistent with the
current rules and asks the user about the value
of previously not existing options.

So the normal sequence for building a kernel is
just

cp /my/old/.config .config
make

where one could insert amake *config be-

tween those two steps if a change of configura-
tion options is desired.

The last remaining step is the installation of
the newly built kernel. The procedure to in-
stall the boot image depends of course on the
bootloader used.

For lilo , the kernel boot imagebzImageshould
be copied to a certain location (typically/boot),
then/etc/lilo.confmay need an appropriate en-
try and finally/sbin/lilo must be run.

For grub, copying the kernel image to/boot
and possibly editing/etc/grub.confshould suf-
fice.

An important change is that on i386bzIm-
age/zImagecan not be directly booted from
a floppy disk anymore. Instead the targets
zdisk and fdimage create a boot floppy
disk and a boot disk image, respectively. Those
targets now require mtools and syslinux to be
installed.

Since the actual installation of the boot
image varies as described above, one can
give the install target to make, which
will invoke a user– or distro–provided
script, ˜/bin/installkernel or
/sbin/installkernel which can be
customized for the local setup.

Installing modules is simpler, just invok-
ing make modules_install will do the
necessary work. By default this will in-
stall into /lib/modules/‘uname -r‘/ ,
though this can be customized by setting
INSTALL_MOD_PATH, e.g. if one wants to col-
lect the modules for transfer onto a different
machine.

This is basically all knowledge which is needed
to build a Linux kernel—everything else is
handled automatically by the build system.
Applying patches, editing files, changing con-
figuration options or adding compiler flags—

Linux Symposium 188

the build system will notice the change and re-
build whatever is needed. The one exception
to this rule is changing the architecture (by set-
ting the ARCHvariable), which needs an ex-
plicit make distclean to work correctly.

3 kbuild for kernel developers

3.1 kbuild in the daily work

Since developers tend to build kernels and
modules a lot, the previous section of course
also applies to them, in particular the fact that
just runningmake will recognize all changes
and rebuild whatever is necessary to generate a
consistentvmlinuxand modules.

Some additional features exist to support the
development / debugging process:

• make some/path/file.o will re-
build the single file given, using compiler
flags (e.g. -DMODULE) according to the
current.config.

• make some/path/file.i will
generate a preprocessed version of
/some/path/file.c , again using
compiler flags for the current configura-
tion.

• make some/path/file.s will gen-
erate a file containing the raw assembler
code forsome/path/file.[cS] .

• make some/path/file.lst (little
known but very useful) gives interspersed
assembler code with the C source, relo-
cated to the correct virtual address when a
currentSystem.mapexists.

Another useful feature for the daily work,
which has existed for a long time, is the ability

to override theSUBDIRSvariable on the com-
mand line, which will forcemaketo only de-
scend into the given subtree. This can be very
useful for faster build times, but it bypasses
some dependencies and thus does not guaran-
tee to result in a consistent state.

So while e.g. working on thehisax ISDN
driver, it’s useful to callmakeas

make SUBDIRS=drivers/isdn/hisax \
modules

for compile checks etc. However, before
installing a new kernel and modules, the
authors advise to always run a fullmake
bzImage/vmlinux/modules (or other-
wise, do not complain ;).

3.2 Integrating a driver

Basically each subdirectory in the Linux ker-
nel tree contains a file calledMakefile, which
is included bymakeduring the kernel build
process. However, these Makefiles are differ-
ent from regular Makefiles in that they nor-
mally don’t have any targets or rules, but only
set variables which tell the build process what
should be built and the latter takes control of
the actual compiling and linking.

In conjunction with the Makefile there nor-
mally exists aKconfig file, these files were
introduced with the configurator rewrite by
Roman Zippel and replace the oldCon-
fig.in/Config.helpfiles used during the config-
uration phase of the kernel build.

This paper does not intend to elaborate on the
new kernel configuration system, however the
following examples will provide some basic
usage guidance.

The most common case is adding a new driver
which is built from a single source file.

Linux Symposium 189

config TIGON3
tristate "Broadcom Tigon3 support"
depends on PCI
help

This driver supports Broadcom Tigon3 based gigabit Ethernet cards.

If you want to compile this driver as a module (= code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. This is
recommended. The module will be called tg3.

Figure 1:Kconfigfragment for the Tigon3 driver.

Figure 1 shows theKconfig fragment for the
Tigon3 driver, which defines a config option
TIGON3 (the corresponding variable will be
given the nameCONFIG_TIGON3), which is
a tristate, i.e. can have the valuesy , m, or
n with the obvious meanings (a config option
which has been turned off, actually has the
value "" , to be correct here). The fragment
depends on PCI states that this option is
only selectable when the optionPCI is also set
(that is, if the kernel supports the PCI bus).

The Makefile fragment for the Tigon3 driver

obj-$(CONFIG_TIGON3) += tg3.o

is very short and though a little awkward at
first, a very elegant way to quickly express
what files are supposed to be built. The
idea dates back to Micheal Elizabeth Castain’s
dancing Makefiles[2] and was globally intro-
duced into the kernel by Linus shortly before
the release of kernel 2.4.

What happens is that depending on the con-
fig optionCONFIG_TIGON3, the valuetg3.o
is appended to either of the variablesobj-y ,
obj-m or obj- .

The meaning of those special variables is as
follows:

• obj-y . All objects listen inobj-y will

be compiled as built-in objects, and will
finally be linked intovmlinux.

• obj-m . All objects listed inobj-m and
not not listed inobj-y will be compiled
as modules (so they actually end up being
called e.g.tg3.ko in 2.5/2.6).

• obj- . All objects listed inobj- and not
in obj-y or obj-m will be ignored by
kbuild.

Since the build system does not have any fur-
ther information ontg3.o , it will try to build
it from a source file calledtg3.c (or an as-
sembler sourcetg3.S , which only happens in
the architecture dependent part of the kernel,
though).

This is all what is needed to integrate a simple
driver into the kernel build, other than of course
writing the driver (tg3.c) itself.

It is also possible to list more than one object to
be built in the Makefile statement. The Make-
file line dealing with theeepro100driver looks
like the following:

obj-$(CONFIG_EEPRO100) += \
eepro100.o mii.o

If this driver is selected, themii.o support
module also needs to be compiled, which is
achieved by simply appending it to the state-
ment.

Linux Symposium 190

Other network drivers will, if selected, also
add mii.o to the list of objects to be built—
this is fine, the build system handles this case.
It is even possible that a support module like
mii.o got added to the list of built-in objects
obj-y and obj-m —again, the build system
recognizes this fact and just compiles the built-
in version, which will also be usable for the
drivers compiled modular.

The newe100driver examplifies two more fea-
tures. drivers/net/Makefileonly contains the
line

obj-$(CONFIG_E100) += e100/

which tells kbuild that it should descend into
the e100/subdirectory if the optionCONFIG_

E100 is set. What to do there will then be
determined bydrivers/net/e100/Makefile(Fig-
ure 2):

The first line after the comment looks famil-
iar, it advises the build system to builde100.o
built-in/modular depending on the value of
CONFIG_E100. WhenCONFIG_E100 equals
“m” the e100 driver is built as a module and
will be named em e100.ko.

The next line then states thate100.ois a com-
posite object which should be linked from the
listed individual object files—these object files
will automatically compiled with the appropri-
ate flags.

As a last point, instead of using the vari-
able<modname>-objs to declare the compo-
nents of the module<modname>.o, the variant
<modname>-y can be used, which allows for
easy definition of optional parts to a composite
modules, as seen in the example in Figure 3.

4 What is new in Linux-2.5/2.6’s
kbuild?

In this section, we describe some of the steps
in the evolution of the kernel build system
during the development phase of Linux 2.5.
One purpose is to show how this evolution
could actually be divided into small, Linus-
compatible “piece-meal” patches without the
famous “flag-day” patches and with only little
breakage along the way.

We will also show how using the extensions
provided by GNU make were actually ex-
ploited to provide a better build system while
still using a standard tool instead of creating a
specialized build solution for the kernel from
scratch.

We start by comparingdrivers/isdn/Makefile
in 2.4 and 2.5 (Figure 4), where many of the
improvements are easily seen. (a) shows the
Makefileas it is present in Linux 2.4.20, and
(b) shows the simpler variant present in 2.5.
kbuild has been adapted incrementally to allow
the more concise syntax. The following sec-
tions will describe the internals that eventually
allowed for the layout seen in (b).

4.1 O_TARGET/ linking objects in subdirecto-
ries

First of all, we start with a short descrip-
tion of what the kbuild interal implementa-
tion, which is hidden in the top-levelMake-
file and scripts/Makefile.*typically does in a
subdirectory: From the kbuildMakefile lo-
cated in the subdirectory we obtain a list
of what to build from the variablesobj-y
(built-in) and obj-m (modular) as explained
in the previous section. The default target
in scripts/Makefile.buildis __build and the
corresponding rule, shown in Figure 5, defines
what work needs to be done. Important here
is that we buildO_TARGETor L_TARGET, re-
spectively, when buildingvmlinuxandobj-m
when compiling modules. As opposed to 2.4,
in 2.5 O_TARGETis a kbuild internal variable

Linux Symposium 191

#
Makefile for the Intels E100 ethernet driver

obj-$(CONFIG_E100) += e100.o

e100-objs := e100_main.o e100_config.o e100_phy.o \
e100_eeprom.o e100_test.o

Figure 2:/drivers/net/e100/Makefile

#
Makefile for the Linux X.25 Packet layer.
#

obj-$(CONFIG_X25) += x25.o

x25-y := af_x25.o x25_dev.o x25_facilities.o x25_in.o \
x25_link.o x25_out.o x25_route.o x25_subr.o \
x25_timer.o x25_proc.o

x25-$(CONFIG_SYSCTL) += sysctl_net_x25.o

Figure 3:net/x25/Makefile

and needs no longer be defined in the kbuild
makefiles. Except for the rare case of build-
ing an actual library,O_TARGETis used in the
built-in case and we find the rule how to make
it as

$(O_TARGET): $(obj-y) FORCE
$(call if_changed,link_o_target)

SoO_TARGETis linked from the objects listed
in obj-y , which contains files locally com-
piled in the current directory as well as objects
which are built in subdirectories by descend-
ing. In Figure 6, we see how going from the
leaves to the root, theO_TARGETin each subdi-
rectory (here always calledbuilt-in.o) accumu-
lates the objects built below that directory until
we finally end up withvmlinuxat the root of the
hierarchy containing all built-in objects gen-
erated throughout the tree (this example only
shows a small fraction of the objects linked in
a normal build).

vmlinux
|-- drivers/built-in.o
| ‘-- isdn/built-in.o
| |-- isdn.o
| | |-- isdn_common.o
| | ‘-- isdn_net.o
| |
| |-- hisax/built-in.o
| | |-- hisax.o
| | | |-- config.o
| | | ‘-- isdnl*.o
| | ‘-- hisax_fcpcipnp.o
| |
| ‘-- icn/built-in.o
| ‘-- icn.o
|
‘-- fs/built-in.o

Figure 6: The hierarchy for linkingvmlinux

Linux Symposium 192

(a)

O_TARGET := vmlinux-obj.o
export-objs := isdn_common.o

list-multi := isdn.o
isdn-objs := isdn_net.o isdn_tty.o isdn_v110.o isdn_common.o
isdn-objs-$(CONFIG_ISDN_PPP) += isdn_ppp.o
isdn-objs += $(isdn-objs-y)

obj-$(CONFIG_ISDN) += isdn.o
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

mod-subdirs := hisax
subdir-$(CONFIG_ISDN_HISAX) += hisax
subdir-$(CONFIG_ISDN_DRV_ICN) += icn

obj-y += $(addsuffix /vmlinux-obj.o, $(subdir-y))

include $(TOPDIR)/Rules.make

isdn.o: $(isdn-objs)
$(LD) -r -o $@ $(isdn-objs)

(b)

obj-$(CONFIG_ISDN) += isdn.o
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

isdn-y := isdn_net_lib.o isdn_fsm.o isdn_tty.o \
isdn_v110.o isdn_common.o

isdn-$(CONFIG_ISDN_PPP) += isdn_ppp.o

obj-$(CONFIG_ISDN_DRV_HISAX) += hisax/
obj-$(CONFIG_ISDN_DRV_ICN) += icn/

Figure 4:drivers/isdn/Makefilein (a) 2.4.20 and (b) adapted for the build system in 2.5

In Linux 2.4, the name for the object which
accumulates all built-in objects in and below
the current subdirectory was chosen by setting
the variableO_TARGETin the local Makefile.
In Linux-2.5, it is instead just set tobuilt-in.o
by the build system. This allows to get rid of
the assignment ofO_TARGETin every subdir
Makefile and, more importantly, allows for fur-
ther clean-up:

In kbuild-2.4, we need to explicitly add the
subdirectories to descend into to the variables
subdir-y/m , and then also add the subdir-
generated built-in objects toobj-y so that they
get linked. This is redundant and error-prone,
in 2.5 it is sufficient to just add the objects gen-
erated in the subdirectories to the list of ob-
jects to be linked, and the build system will de-
duce from there that it needs to descend into
the named subdirectories. To simplify things
further, the name of theO_TARGET(now al-
ways beingbuilt-in.o) itself is left out and only
the trailing slash is kept:

Linux Symposium 193

__build: $(if $(KBUILD_BUILTIN),$(O_TARGET) $(L_TARGET) $(extra-y)) \
$(if $(KBUILD_MODULES),$(obj-m)) \
$(subdir-ym) $(always)

@:

Figure 5: The default__build rule fromscripts/Makefile.build

obj-$(CONFIG_...HISAX) += hisax/
obj-$(CONFIG_...ICN) += icn/

4.2 Multi-part modules

As can be seen from Figure 4, a number of
statements were necessary for generating a
multi-part module,isdn.oin that example. First
of all, the parts constituting the module need to
be declared by assigning them to the variable
isdn-objs . This step is of course essential
and was kept in 2.5.

However, it was also necessary to declare that
isdn.o is a multi-part module by listing it in
the variablelist-multi . This information
is redundant as it can be deduced by checking
for the existence of<module>-objs , which is
now done in 2.5.

Furthermore, in 2.4 a link rule has to be ex-
plicitly given for each multi-part object, which
was annoying and error-prone. In the new build
system, this link rule is generated bymake, hit-
ting just about the limits of whatGNU make
is capable of. We use a feature called “static
pattern rules,” and the code looks like the fol-
lowing:

cmd_link_multi-m = $(LD) ... \
-o $@ $(link_multi_deps)

$(multi-used-m) : \
%.o: $(multi-objs-m) FORCE

$(call if_changed,link_multi-m)

multi-used-m contains all multi-part mod-
ules we want to be built in the current directory
and multi-objs-m contains all of the indi-
vidual objects those are built of. This makes

each multi-part module in the directory depend
on the set of all components for all multi-part
modules in that directory, which is actually
too large, as it of course only is dependend
its own components; however the latter is not
implementable within the restrictions ofGNU
make. When doing the link, the variablelink_

multi_deps recovers the right list of compo-
nents from the target$@, so that linker is in-
voked correctly.

Another interesting detail is that we here as
well as in other places need to uniquify the
prerequisites, so that listing a component mul-
tiple times doesn’t lead to a link error.GNU
makeoffers thesort function, which throws
away duplicates, however it is unfortunately
not usable for this purpose since it sorts, i.e.
reorders its arguments and thus changes the
link/init order. The workaround here is to use
the variable$^ which actually uniquifies the
list of prerequisites exactly as needed. Finally,
since$^ lists all prerequisites which as men-
tioned above exceeds the list of components for
the current module, we filter the uniquified list
with that list of components to get the informa-
tion we need.

4.3 Including Rules.make

Each subdirectory Makefile in kbuild-2.4
needed to include$(TOPDIR)/Rules.makeex-
plicitly. In 2.5, when descending into subdirec-
tories, the build system now always callsmake
with the same Makefile,scripts/Makefile.build,
which then again includes the local subdi-
rectory Makefile, so the statement to include
Rules.makecould be dropped.

Linux Symposium 194

Furthermore, in 2.5. the build is still organized
in a recursive way, i.e.makeis only invoked
to build the objects in the local subdirectory
and other instances ofmakeare spawned for
the underlying directories. However, it does
not actually descend into the subdirectories,
it always does its work from the top-level
directory and prepends the path as necessary.
One of the advantages is that the output
includes the correct paths, so a compiler
warning will not show “inode.c: Warning
...”, but “fs/ext2/inode.c: ...”, which makes it
easier to recognize where the problem occurs.
More importantly, it allows to use relative
paths throughout the build, so that paths
like “BUG in /home/kai/src/kernel/

v2.5/linux-2.5.isdn/include/linux/

fs.h ” are history. Renaming/moving a kernel
tree will not cause spurious rebuilds due to
changing paths as seen above anymore, and
tools like “ccache” can work more effectively.

4.4 Objects exporting symbols

The old module symbol versioning scheme
used with Linux 2.4 needed the Makefiles to
declare which objects export symbols to mod-
ules, which was done by listing them in the
variableexport-objs . In 2.5, module ver-
sioning was completely redesigned, removing
the need for this explicit declaration. The
changes are so complex that they are rewarded
their own section in this paper.

Here we conclude the comparison between a
2.4 and 2.5 subdirectory Makefile, where we
have shown that all the redundant and de-
ducible information has been removed and the
necessary information is revealed to the build
system in a very compact form.

Two additional important internal changes,
which did not affect the subdirectory Makefile
layout will be described in the following:

4.5 Compiling built-in objects and modules in
a single pass, recognizing changed com-
mand line arguments

The major performance issue for the kernel
build are the invocations ofmake(most of the
time is of course normally spent compiling /
linking, but this cost is independent of the build
system used).makehas to read the local Make-
file, the general rules and all the dependencies
and figure out the work to be done from there.
An obvious way to optimize the performance
of the build system is thus to avoid unneces-
sary invocations. In 2.4,makeneeds to do sep-
arate passes for modules and built-in objects
and within each directory, it will even call it-
self again, so an about four-times performance
increase is possible by just combining those in-
vocations into a single pass.

The primary reason why kbuild-2.4 needs two
passes for built-in and modules lies in its flags
handling. This means that it tries to check not
only whether prerequisites have changed (e.g.
the C source for an object), but also if the com-
piler flags have changed.

This objective was achieved by generating a
.<target>.flagsfile like the following (simpli-
fied) for each target built:

ifeq (-D__KERNEL__ -DMODULE
-DEXPORT_SYMTAB,
$(CFLAGS) -DEXPORT_SYMTAB)))

FILES_FLAGS_UP_TO_DATE += config.o
endif

On a rebuild, the Makefile would read all those
.*.flagsfragments and forces all files which are
not listed inFILES_FLAGS_UP_TO_DATEto
be rebuild.

The flaw of this method is that it cannot handle
differing flags for different groups of files, so
makeneeds to invoked twice, once for the tar-
gets to be built-in with the normalCFLAGS, and
again for the modular targets with-DMODULE

Linux Symposium 195

added toCFLAGS. In the example above it is
also visible that the handling for-DEXPORT_
SYMTABis broken, this method can not de-
tect when a file was added / removed from
the list of files exporting symbols, since the
-DEXPORT_SYMTABwas hardcoded on both
sides of the comparison and thus useless—the
only way to fix this within in the old frame-
work would have been to invokemake four
times, for all combinations of built-in/module
and export/no-export.

A more flexible scheme to handle changing
command lines withinGNU makewas created:

As an example, we present the rule which is
responsible for linking built-in objects into a
library in Figure 7. The actual use is pretty
simple, instead of writing the command di-
rectly into the command part of the rule, it is
instead assigned to the variablecmd_link_

l_target and the build system takes care of
executing the command as necessary, keeping
track of changes to the command line itself.

The implementation works as follows: Af-
ter executing the command, the macroif_

changed , records the command line into the
file .<target>.cmd. As makeis invoked again
during a rebuild, it will include those.*.cmd
files. As it tries to decide whether to rebuild
L_TARGET, it will find FORCEin the prerequi-
sites, which actually forces it to always rerun
the command part of the rule.

However, the command part of the rule now
does the actual work: It checks whether any
of the prerequisites changed, i.e.$? is non-
empty or if the command line changed, which
is achieved by the twofilter-out state-
ments. Only if either of those two conditions
is met, if_changed expands to a command
rebuilding the target, otherwise it is empty and
the target will not be rebuilt.

The advantage of this method, apart from the

easier use in a rule as shown above, is that all
the checking is done within the context of the
actual rule and not in a unrelated place later in
the Makefile. This allows for the use and cor-
rect checking ofGNU make’s per target vari-
ables, e.g.

modkern_cflags := $(CFLAGS_KERNEL)
$(real-objs-m) : \

modkern_cflags := $(CFLAGS_MODULE)

which sets modkern_cflags to
$(CFLAGS_KERNEL) by default, but to
$(CFLAGS_MODULE) for objects listed in
$(real-objs-m) , i.e. for objects compiled
as modules. The compilation rule can then
just use $(modkern_cflags) to get the
right flags for the current object, where the
mechanism described above will take care of
recognizing changes and acting accordingly.

4.6 Dependencies

Between configuration and building of a ker-
nel, the old kernel build needed the user to
run “make dep”, which served to purposes:
It generated dependency information for the C
source files on headers and other included files,
and it generated the version checksums for ex-
ported symbols.

Both of these task have become unnecessary in
2.5, so the reliance on the user to rerun “make
dep ” as needed is gone (additionally, the sys-
tem in 2.4 is broken that in some modversions
cases it’s not even sufficient to rerun “make
dep ”, the only solution then is to do “make
distclean ” and start over).

2.4 used a small tool calledmkdepto generate
dependencies for C sources. This tools basi-
cally extracted the names of the included files
out of the source, but did not actually recur-
sively scan those includes then. So, iffoo.cin-
cludesfoo.h, which itself includesbar.h, mkdep
would only pick up the dependency offoo.con
foo.h, but foo.c also needs recompiling when

Linux Symposium 196

cmd_link_l_target = rm -f $@; $(AR) $(EXTRA_ARFLAGS) rcs $@ $(obj-y)

$(L_TARGET): $(obj-y) FORCE
$(call if_changed,link_l_target)

targets += $(L_TARGET)

[...]

if_changed = $(if $(strip $? \
$(filter-out $(cmd_$(1)),$(cmd_$@))\
$(filter-out $(cmd_$@),$(cmd_$(1)))),\

@set -e; \
$(cmd_$(1)); \
echo ’cmd_$@ := $(cmd_$(1))’ > $(@D)/.$(@F).cmd)

Figure 7: Checking for a changed command line

foo.h changes. This problem was solved in
2.4 by assuming thatfoo.hwould reside inin-
clude/* (which is mostly, but not always, true).
For those files it would generate another set of
dependencies, basically:

foo.h: bar.h
@touch $@

So asbar.h changes, this rule will update the
timestamp onfoo.h, which will then be seen by
the rule forfoo.cand causefoo.cto be rebuild.

This method has several disadvantages:

• Changing the timestamp on files which
have not actually been modified confuses
a number of source management systems.

• It only works for header files in thein-
clude/*subdirectories.

• As foo.h is changed to also includebaz.h,
the dependency information does not get
updated, so a subsequent change tobaz.h
will erroneously not causefoo.c to be re-
compiled.

• Starting from a clean tree, the user has
to wait for the dependency information

to be created (for all files, even for en-
tire subsystem which may not be selected
in the configuration at all), even though
this information is totally useless for a
first build—it’s only useful for deciding
whether a file needs to be rebuilt.

The build system in Linux 2.5 instead uses
gcc’s -MD flag to generate the dependency in-
formation during the build. This flag generates
the full list of all files included during the com-
pile, so in the example above it would generate
“ foo.o: foo.c foo.h bar.h” (and “baz.h” as that
gets added). This procedure is much simpler,
and it gets around all the disadvantages listed
above.

The only quirk which is applied similarly in 2.4
and 2.5 is related to the high configurability of
the linux kernel.

Using the gcc generated list of dependencies
as-is has the drawback that virtually every file
in the kernel includes<linux/config.h>which
then again includes<linux/autoconf.h>

If a user rerunsmake *config to change a
configuration option,linux/autoconf.hwill be
regenerated.makewill notice this and rebuild

Linux Symposium 197

every file which includes autconf.h, i.e. basi-
cally all files. This is correct, but extremely
annoying if the user just changed some option
CONFIG_THIS_DRIVERfrom n to m.

So we use the same trick that “mkdep” ap-
plied before. We replace the dependency on
linux/autoconf.hby a dependency on every
config option which is mentioned in any of the
listed prerexquisites.

The effect is that if a user changes the
CONFIG_THIS_DRIVER option, only the ob-
jects which (themselves, or in any of
the included files) referenceCONFIG_THIS_

DRIVER will be rebuilt, which most likely is
only this one driver.

5 Modules and the kernel build
process

The implementation of loadable kernel mod-
ules has been substantially rewritten by Rusty
Russell in the development cycle 2.5. These
changes are so complex that this paper will not
attempt to describe them in detail. Instead, we
concentrate on the changes which were done in
the build system to accomodate the new con-
cepts.

5.1 Module symbol versions

Loadable modules need to interface with the
kernel. They do this by accessing certain
data structures and functions which have been
marked as exported symbols in the source.
That means not all global symbols in the kernel
are accessible to modules, but only an explic-
itly exported API.

These symbols remain unresolved in the
loadable module objects at build time and
are then resolved at load time, either by an
external program,modutils, in 2.4, or by an

in-kernel loader in 2.5. A common problem
is that Linux does not guarantee a stable
binary interface to modules, in fact the binary
interface often changes between releases in
a stable kernel series and even depending on
the configuration of the kernel. One simple
example is the struct net_device ,
which embeds aspinlock_t . If the kernel
is configured for uni-processor operation, this
lock expands to nothing, so the layout of the
struct net_device changes . When
calling register_netdev(struct
net_device *) where the in-kernel func-
tion register_netdev() assumes the
SMP layout, though the module set up the
argument in the UP layout, we have an obvious
mismatch which often leads to hard to explain
kernel crashes.

Other operating systems solve this problem by
prescribing a stable ABI between kernel and
modules, however in Linux it is preferred to not
carry around binary compatibility layers and
cope with unflexible interfaces, instead since
the source is openly accessible, one just needs
to recompile the modules so that they match
the kernel.

Now, it is easily possible for users to get this
wrong and we thus want a way to detect ver-
sion mismatches and refuse to load the mod-
ules or at least warn. This is what “module
symbol versioning” accomplishes. The basic
idea is to analyze the exported symbols, includ-
ing the types of the arguments for function calls
and generate a checksum for a specific layout.
If anything changes in the ABI, the versioning
process will generate a different checksum and
thus detect the mismatch. The main work in
this scheme is done by the programgenksyms,
which is basically a C parser that reads a pre-
processed source file and finds the definitions
for the exported symbols from there.

This procedure has caused trouble in the

Linux Symposium 198

build system for a long time. In Linux 2.4,
the “make dep” stage, apart from build-
ing dependency information, preprocesses
all source files which export symbols (that
is why they need to be specifically de-
clared in the Makefiles) and then gener-
ates include/linux/modversions.hwhich man-
gles the exported symbols with the gen-
erated checksum, using the C preproces-
sor. The kernel will then not export the
symbol register_netdev , but instead
register_netdev_R43d2381 . A mod-
ule referencingregister_netdev will end
up with an unresolved symbolregister_
netdev_R43d2381 , so loading it into the
kernel will work fine. Has the module how-
ever built against a different kernel or a differ-
ent configuration, the checksum has changed
and any attempt to load it will result in an error
about unresolved symbols.

This implementation was rather fragile, as
it relies on the user to rerun “make dep”
whenever the version information has possibly
changed, and even if only one symbol changed,
that basically forces a recompilation of every
file. In addition, some of the optimizations
made in 2.4’s build system were actually bro-
ken, leading to the well-known fact that it can
get into a state where not even running “make
dep ” will recover from generating inconsis-
tent version information, and starting over
from “make mrproper/distclean ” is
needed.

Module versioning is still a challenge to the
build system in 2.5, the underlying reason
for that is that it introduces cross-directory
dependencies, which a recursive build sys-
tem cannot easily handle. For example,
the ISDN moduledrivers/isdn/hisax/hisax.ko
usesregister_isdn() , which is exported
by drivers/isdn/isdn_common.o. So building
hisax.ko needs knowledge of the checksum
generated fromdrivers/isdn/isdn_common.o,

but it has no way to make sure that it is up-
to-date since it is located in a different subdi-
rectory.

Module versioning is instead implemented as
a two stage process, the first stage is the nor-
mal build, which also generates all the check-
sums. After this stage is completed, we can
be sure that all checksums are up-to-date now,
and then just record this up-to-date information
into the modules. This is one of the reasons
why modules have been renamed with a “.ko”
extension: The first stage just builds the nor-
mal “.o” objects, and afterwards a postprocess-
ing step follows, which builds “.ko” modules
adding version checksums for unresolved sym-
bols and other information.

In more detail, the following steps are exe-
cuted:

• Compiling

Knowledge of which source files export
symbols is not required up front. As
an EXPORT_SYMBOL(foo) is encoun-
tered, the definition ofEXPORT_SYMBOL
from include/linux/module.hwill generate
special sections with tables containg the
name of the symbol, its address and its
checksum. Actually, since the checksum
is not known at this time, the value of
the checksum is set to a symbol called
__crc_foo . This is a trick which allows
to use the linker to record the checksum
even after the object file is already com-
piled.

As the object file has been generated, we
check it for the existance of the special
section mentioned above. If it exists,
the source file did export symbols and
genksymsis run to obtain the checksums
for those symbols. Finally, these check-
sums are entered into the object using the
linker in conjunction with a small linker
script.

Linux Symposium 199

$ nm drivers/isdn/i4l/isdn.ko | grep __crc
86849dd0 A __crc_isdn_ppp_register_compressor
843d2381 A __crc_isdn_ppp_unregister_compressor
66d136e2 A __crc_register_isdn

Figure 8: Examining the checksums for exported symbols

The checksums can easily examined at
running the command shown in Figure 8.

• Postprocessing

After stage one, we have the check-
sums for the exported symbols embedded
within vmlinux and the modules. What
is yet to be done is recording the check-
sums into the consumers, that is adding
the checksums for unresolved symbols
into the modules.

This step was initially handled by a small
shell script but is now done by a C pro-
gram for performance reasons, which also
handles other postprocessing needs like
generating aliases.

This program basically reads all the ex-
ported symbols and their checksums from
all modules, and then scans the modules
for unresolved symbols. For each unre-
solved symbol, an entry in a table associ-
ating the symbol string with the checksum
is made, this table is output as C source
module.mod.cand compiled and linked
into the final.ko module object.

Figure 9 shows an excerpt from
drivers/isdn/hisax/hisax.mod.c which
calls register_isdn() . The
checksum obviously matches the
checksum for the exported symbol
in drivers/isdn/i4l/isdn.ko, so that the
module will load without complaint.

An additional advantage of the new way of
handling module version symbols, apart from
being cleaner from a build system point of

view, is that the actual symbols are not man-
gled, so it became possible to force a module
load even if the checksums do not match—
though the kernel will set the taint flag in these
case.

The module postprocessing step, introduced
mainly for the module symbol versioning, al-
lowed for a number of additional features, i.e.
module aliases / device table handling, addi-
tional version checks as well as recognition of
unresolved symbols during the build stage.

6 Conclusion and Outlook

This paper presented an introduction to using
the kernel build system for the Linux kernel
2.5 and 2.6 for users who want to compile their
own kernels and developers working on ker-
nel code. We also showed how in the transi-
tion from kbuild-2.4 to 2.5, features ofGNU
makecould be applied to remove redundant in-
formation and allow for simpler Makefile frag-
ments as well as a more consistent and fool-
proof build system.

Additionally, parts of the internal implementa-
tion have been described and an overview over
changes related to the new module loader and
new module versioning system has been given.

The kernel build system in 2.5 has been im-
proved significantly, but some features remain
to be implemented.

Linux Symposium 200

static const struct modversion_info ____versions[]
__attribute__((section("__versions"))) = {

{ 0xfa7bbba7, "struct_module" },
{ 0x66d136e2, "register_isdn" },
{ 0x1a1a4f09, "__request_region" },

[...]

Figure 9: Excerpt fromdrivers/isdn/hisax/hisax.mod.c, generated by the postprocessing stage

Separate source and object directories

As opposed to kernel 2.4, source files are not
altered or touched during the build in 2.5 any-
more, enhancing interoperability with source
management systems. The next step is to al-
low for completely separate source and ob-
ject directory trees, so that the source can be
completely read-only and multiple builds at the
same time from the same source are possible.
The current code in 2.5 has taken preparatory
steps for this feature but work is not completed
yet.

Non-recursive build

It is an open question whether it is actually ad-
visable to switch to a non-recursive build sys-
tem. Obviously, distributing build information
with the source files is desirable, this trend is
visible in e.g. the split of the global Con-
figure.help file into per-directory fragments
which eventually were unified with the new
Kconfigconfiguration info. Of course it is es-
sential to keep the build information in the per-
subdirectory Makefiles distributed as it is cur-
rently, it would be a step back to collapse it into
one big file.

However this does not preclude collecting the
distributed information when starting a build
and generating a global Makefile, which is then
used as a main stage. The advantage of this
method is that it can handle cross-directory de-
pendencies more easily, whereas the current
system has to resort to a two-stage process for

module post-processing. On the other hand, a
global Makefile which contains also needs to
incorporate dependencies for all files will use
a significant amount of memory and may turn
out to be problematic on low–end systems.

There are two ways to implement a global
Makefile: One possibility is usingGNU make
itself, replacing the rules to actually compile /
link objects by dummy routines recording the
necessary actions into a global Makefile. The
second possibility is, as the subdir Makefiles
have a very consistent form by now, to write a
specialized parser for those files and have that
generate a global Makefile.

Whether switching to a non-recursive build
system is worth the tradeoffs will be investi-
gated in the Linux 2.7 development cycle.

References

[1] GNU makehttp://www.gnu.org/
software/make/make.html

[2] Michael Elizabeth Castain:
dancing-makefiles
http://www.kernel.org/pub/
linux/kernel/projects/
kbuild/dancing-makefiles-2.
4.0-test10.gz

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

