
Class-based Prioritized Resource Control in Linux

Shailabh Nagar, Hubertus Franke, Jonghyuk Choi, Chandra Seetharaman
Scott Kaplan,∗ Nivedita Singhvi, Vivek Kashyap, Mike Kravetz

IBM Corp.
{nagar,frankeh,jongchoi,chandra.sekharan}@us.ibm.com

{nivedita,vivk,kravetz}@us.ibm.com

sfkaplan@cs.amherst.edu

Abstract

In Linux, control of key resources such as
memory, CPU time, disk I/O bandwidth and
network bandwidth is strongly tied to ker-
nel tasks and address spaces. The kernel of-
fers very limited support for enforcing user-
specified priorities during the allocation of
these resources.

In this paper, we argue that Linux kernel re-
source management should be based on classes
rather than tasks alone and be guided by class
shares rather than system utilization alone.
Such class-based kernel resource management
(CKRM) allows system administrators to pro-
vide differentiated service at a user or job level
and prevent denial of service attacks. It also en-
ables accurate metering of resource consump-
tion in user and kernel mode. The paper pro-
poses a framework for CKRM and discusses
incremental modifications to kernel schedulers
to implement the framework.

1 Introduction

With Linux having made rapid advances in
scalability, making it the operating system of
choice for enterprise servers, it is useful and

∗on sabbatical from Amherst College, MA

timely to examine its support for resource man-
agement. Enterprise workloads typically run
on two types of servers: clusters of 1-4 way
SMPs and large (8-way and upward) SMPs and
mainframes. In both cases, system adminis-
trators must balance the needs of the work-
load with the often conflicting goal of main-
taining high system utilization. The balancing
becomes particularly important for large SMPs
as they often run multiple workloads to amor-
tize the higher cost of the hardware.

A key aspect of multiple workloads is that
they vary in thebusiness importanceto the
server owner. To maximize the server’s utility,
the system administrator needs to ensure that
workloads with higher business importance get
a larger share of server resources. The ker-
nel’s resource schedulers need to allow some
form of differentiated service to meet this goal.
It is also important that the resource usage by
different workloads be accounted accurately
so that the customers can be billed accord-
ing to their true usage rather than an average
cost. Kernel support for accurate accounting
of resource usage is required, especially for re-
source consumption in kernel mode.

Differentiated service is also useful to the desk-
top user. It would allow large file transfers to
get reduced priority to the disk compared to
disk accesses resulting from interactive com-



Linux Symposium 151

mands. A kernel compile could be configured
to run in the background with respect to the
CPU, memory and disk, allowing a more im-
portant activity such as browsing to continue
unimpeded.

The current Linux kernel (version 2.5.69 at the
time of writing) lacks support for the above-
mentioned needs. There is limited and varying
support for any kind of performance isolation
in each of the major resource schedulers (CPU,
network, disk I/O and memory). CPU and in-
bound network scheduling offer the greatest
support by allowing specification of priorities.
The deadline I/O scheduler [3] offers some iso-
lation between disk reads and writes but not
between users or applications and the VM sub-
system has support for limiting address space
size of a user. More importantly, the granular-
ity of kernel supported service differentiation is
a task (process), or infrequently the userid. It
does not allow the user to define the granular-
ity at which resources get apportioned. Finally,
there is no common framework for a system
administrator to specify priorities for usage of
different physical resources.

The work described in this paper addresses
these shortcomings. It proposes a class-based
framework for prioritized resource manage-
ment of all the major physical resources man-
aged by the kernel. A class is a user-defined,
dynamic grouping of tasks that have associated
priorities for each physical resource. The pro-
posed framework permits a better separation
of user-specified policies from the enforcement
mechanisms implemented by the kernel. Most
importantly, it attempts to achieve these goals
using incremental modifications of the existing
mechanisms.

The paper is organized as follows. Section 2 in-
troduces the proposed framework and the cen-
tral concepts of classification, monitoring and
control. Sections 3,4,5,6 explore the frame-

work for the CPU, disk I/O, network and mem-
ory subsystems and propose the extensions
necessary to implement it. Section 7 concludes
with directions for future work.

2 Framework

Before describing the proposed framework, we
define a few terms.

Tasks are the Linux kernel’s common represen-
tation for both processes and threads. Aclass
is a group of tasks. The grouping of tasks into
classes is decided by the user using rules and
policies.

A classification rule, henceforth simply called
a rule, is a method by which a task can be clas-
sified into a class. Rules are defined by the sys-
tem administrator, generally as part of a policy
(defined later) but also individually, typically
as modifications or increments to an existing
policy. Attributes of a task, such as real uid,
real gid, effective uid, effective gid, path name,
command name and task or application tag (de-
fined later) can be used to define rules. A rule
consists of two parts: a set of attribute-value
tuples (A,V) and a class C. If the rule’s tuple
values match the corresponding attributes of a
task , then it is considered to belong to the class
C1.

A policy is a collection of class definitions and
classification rules. Only one policy is active in
a system at any point of time. Policies are con-
structed by the system administrator and sub-
mitted to a CKRM kernel. The kernel option-
ally verifies the policy for consistency and ac-
tivates it. The order of rules in a policy is im-
portant. Rules are applied in the order they are
defined (one exception is the application tags
as described in the notes below).

An Application/Task Tagis a user-defined at-
tribute associated with a task. Such an attribute



Linux Symposium 152

is useful when tasks need to be classified and
managed based on application-specific crite-
ria. In such scenarios, an applications tasks can
specify its tag to the kernel using a system call,
ioctl, /proc entry etc. and trigger its classifica-
tion using a rule that uses the task tag attribute.
Since the task tag is opaque to the kernel, it
allows applications and system administrators
additional flexibility in grouping tasks.

A Resource Manageris the entity which de-
termines the proportions in which resources
should be allocated to classes. This could be
either a human system administrator or a re-
source management application middleware.

With all the new terms of the framework de-
fined, we can now describe how the framework
operates to provide class-based resource man-
agement. Figure 1 illustrates the lifecycle of
tasks in the proposed framework with an em-
phasis on the three central aspects of classifi-
cation, monitoring and control.

2.1 Initialization

Sometime after system boot up, the Resource
Manager commits a policy to the kernel. The
policy defines the classes and it is used to clas-
sify all tasks (pre-existing and new) created
and all incoming network packets. A CKRM-
enabled Linux kernel also contains a default
policy with a single default class to which all
tasks belong. The default policy determines
classification and control behaviour until the
Resource Manager’s policy gets loaded. New
policies can be loaded at any point and override
the existing policy. Such policy loads trigger
reclassification and reinitialization of monitor-
ing data and are expected to be very infrequent.

2.2 Classification

Classification refers to the association of tasks
to classes and the association of resource re-

quests to a class. The distinction is mostly
irrelevant as most resource requests are initi-
ated by a task except for incoming network
packets which need to be classified before it is
known which task will consume them. Classi-
fication is a continuous operation. It happens
on a large scale each time a new policy is com-
mitted and all existing tasks get reclassified. At
later points, classification occurs whenever (1)
a new task is created e.g. fork(), exec(); (2)
the attributes of a task change e.g setuid(), set-
gid(), application tag change (initiated by the
application) and (3) explicit reclassification of
a specific task by the Resource Manager. Sce-
narios (1) and (2) are illustrated in Figure 1.

Classification of tasks potentially allows all
work initiated by the task to be associated
with the class. Thus the CPU, memory and
I/O requests generated by this task, or by the
kernel on behalf of this task, can be moni-
tored and regulated by the class-aware resource
schedulers. Kernel-initiated resource requests
which are on behalf of multiple classes e.g.
a shared memory page writeout need special
treatment as do application initiated requests
which are processed asynchronously. Classifi-
cation of incoming network connections and/or
data (which are seen by the kernel before the
task to which they are destined) is discussed
separately in Section 5.

2.3 Monitoring

Resource usage is maintained at the class level
in addition to the regular system accounting by
task, user etc. The system administrator or an
external control program with root privileges
can obtain that information from the kernel at
any time. The information can be used to as-
sess machine utilization for billing purposes or
as an input to a future decision on changing the
share allotted to a class. The CKRM API pro-
vides functions to query the current usage data
as shown in Figure 1.



Linux Symposium 153

Figure 1: CKRM lifecycle

2.4 Control

The system administrator, as part of the ini-
tial policy or at a later point in time, assigns a
per-resource share to each class in the system.
Each class gets a separate share for CPU time,
Memory pages, I/O bandwidth and incoming
network I/O bandwidth. The resource sched-
ulers try their best to respect these shares while
allocating resources to a class. e.g. the CPU
scheduler tries to ensure that tasks belonging
to Class A with a 50% CPU share collectively
get 50% of the CPU time. At the next level
of the control hierarchy, the system administra-
tor or a control program can change the shares
assigned to a class based on their assessment
of application progress, system utilization etc.
Collectively, the setting of shares and share-
based resource allocation constitute the control
part of the resource management lifecycle and
are shown in Figure 1. This paper concentrates
on the lower level share-based resource alloca-
tion since that is done by the kernel.

The next four sections go into the details of
classification, monitoring and control aspects
of managing each of the four major physical

resources.

3 CPU scheduling

The CPU scheduler is central to the operation
of the computing platform. It decides which
task to run when and how long. In general re-
altime and timeshared jobs are distinguished,
each with different objectives. Both are re-
alized through different scheduling disciplines
implemented by the scheduler. Before address-
ing the share based scheduling schemes, we de-
scribe the current Linux scheduler.

3.1 Linux 2.5 Scheduler

To achieve its objectives, Linux assigns a static
priority to each task that can be modified by
the user through thenice() interface. Linux
has a range of[0 . . . MAX_PRIO] priority classes,
of which the firstMAX_RT_PRIO(=100) are
set aside for realtime jobs and the remaining
40 priority classes are set aside for timesharing
(i.e. normal) jobs, representing the[−20 . . . 19]
nice value of UNIX processes. The lower the
priority value, the higher the “logical” priority



Linux Symposium 154

of a task, i.e. its general importance. In this
context we always assume the logical priority
when we are talking about priority increases
and decreases. Realtime tasks always have a
higher priority then normal tasks.

The Linux scheduler in 2.5, a.k.a the O(1)
scheduler, is a multi queue scheduler that as-
signs to each cpu a run queue, wherein local
scheduling takes place. A per-cpu runqueue
consists of two arrays of task lists, the active
array and the expired array. Each array index
represents a list of runnable task at their respec-
tive priority level. After executing for a period
task move from the active list to the expired
list to guarantee that all tasks get a chance to
execute. When the active array is empty, ex-
pired and active arrays are swapped. More de-
tail is provided further on. The scheduler sim-
ply picks the first task of the highest priority
queue of the active queue for execution.

Occasionally a load balancing algorithm rebal-
ances the runqueues to ensure that a similar
level of progress is made on each cpu. Real-
time issues and load balancing issues are be-
yond this description here, hence we concen-
trate on the single cpu issue for now. For more
details we refer to [12]. It might also be of
interest to abstract this against the Linux 2.4
based scheduler, which is described in [10].

As stated earlier, the scheduler needs to decide
which task to run next and for how long. Time
quantums in the kernel are defined as multiples
of a systemtick. A tick is defined by the fixed
delta(1/HZ) of two consecutive timer inter-
rupts. In Linux 2.5:HZ=1000, i.e. the inter-
rupt routinescheduler_tick() is called
once every msec at which time the currently
executing task is charged a tick.

Besides thestatic priority (static_prio ),
each task maintains aneffective priority
(prio ). The distinction is made in or-
der to account for certain temporary prior-

ity bonuses or penalties based on the recent
sleep averagesleep_avg of a given task.
The sleep average, a number in the range of
[0 . . . MAX_SLEEP_AVG ∗ HZ], accounts for the
number of ticks a task was recently desched-
uled. The time (in ticks) since a task went to
sleep (maintained insleep_timestamp ) is
added on task wakeup and for every time tick
consumed running, the sleep average is decre-
mented.

The current design provisions a
range of PRIO_BONUS_RATIO=25%
[−12.5%..12.5%] of the priority range for the
sleep average. For instance a “nice=0” task has
a static priority of 120. With a sleep average
of 0 this task is penalized by 5 resulting in an
effective priority of 125. On the other hand,
if the sleep average isMAX_SLEEP_AVG=
10 secs, a bonus of 5 is granted leading to an
effective priority of 115. The effective priority
determines the priority list in the active and
expired array of the run queue. A task is
declaredinteractivewhen its effective priority
exceeds its static priority by a certain level
(which can only be due to its accumulating
sleep average). High priority tasks reach
interactivity with a much smaller sleep average
than lower priority tasks.

The timeslice, defined as the maximum time a
task can run without yielding to another task,
is simply a linear function of the static pri-
ority of normal tasks projected into the range
of [MIN_TIMESLICE . . . MAX_TIMESLICE]. The
defaults are set to[10 . . . 200] msecs. The
higher the priority of a task the longer its
timeslice . A task’s initial timeslice is de-
ducted from parents’ remaining timeslice. For
every timer tick the running task’s timeslice is
decremented. If decremented to “0”, the sched-
uler replenishes the timeslice, recomputes the
effective priority and either reenqueues the task
into the active array if it is interactive or into
the expired array if it is non-interactive. It then



Linux Symposium 155

picks the next best task from the active array.
This guarantees that all others tasks will exe-
cute first before any expired task will run again.
If a task is descheduled, its timeslice will not
be replenished at wakeup time, however its ef-
fective priority might have changed due to any
sleep time.

If all runnable tasks have expired their times-
lices and have been moved to the expired
list, the expired array and the active array
are swapped. This makes the scheduler O(1)
as it does not have to traverse a potentially
large list of tasks as was needed in the 2.4
scheduler. Due to interactivity the situation
can arise that the active queue continues to
have runnable tasks. As a result tasks in the
expired queue might get starved. To avoid
this, if the longest expired task is older than
STARVATION_LIMIT=10secs, the arrays are
switched again.

3.2 CPU Share Extensions to the Linux Sched-
uler

We now examine the problem of extending the
O(1) scheduler to allocate CPU time to classes
in proportion of their CPU shares. Propor-
tional share scheduling of CPUs has been stud-
ied in depth [7, 21, 13] but not in the context
of making minimal modifications to an exist-
ing scheduler such as O(1).

Let Ci, i=[1 . . . N ] be the set ofN dis-
tinct classes with corresponding cpu shares
Scpu

i such that
∑N

i=1 Scpu
i = 1. Let

SHARE_TIME_EPOCH(STE) be the time in-
terval, measured in ticks, over which the modi-
fied scheduler attempts to maintain the propor-
tions of allocated CPU time. Further, we use
Φ(a) andΦ(a, b) to denote a functions of pa-
rameters a and b.

Weighted Fair Share (WFS): In the first ap-
proach considered, henceforth called weighted
fair share (WFS), a per class scheduling re-

source container is introduced that accounts
for timeslices consumed by the tasks currently
assigned to the class. Initially, the timeslice
TSi, i=[1 . . . N ] of each classCi is determined
by TSi = Scpu

i × STE. The timeslice allo-
cated to a taskts(p) remains the same as in
O(1). Everytime a task consumes one of its
own timeslice ticks, it also consumes one from
the class’ timeslice. When a class’ ticks are
exhausted, the task consuming the last tick is
put into the expired array. When the sched-
uler picks other tasks from the same class to
run, they immediately move to the expired ar-
ray as well. Eventually the expired and active
arrays are switched at which time all resource
containers are refilled toTSi = Scpu

i × STE.
Since the array switch occurs as soon as the ac-
tive list becomes empty, this approach is work
conserving (the CPU is never idle if there are
runnable tasks). A variant of this approach was
initially implemented by [17] based on a patch
from Rik van Riel for allocatingequalshares
to all usersin the system.

However, WFS has some problems. If the tasks
of a class are CPU bound and

∑
p∈Ci

ts(p) >
TSi then a class could exhaust its timeslice be-
fore all its tasks have had a chance to run atleast
once. Therefore the lower priority tasks of the
class could perpetually move from the active
to expired lists without ever being granted exe-
cution time. Starvation occurs because neither
the static priority (sp) nor the sleep average (sa)
of the tasks is changed at any time. Hence each
task’s timeslicets(p) = Φ(sp) and effective
priority ep(p) = Φ(sp, sa) remain unchanged.
Hence the relative priority of tasks of a class
never changes (in a CPU bound situation) nor
does the amount of CPU time consumed by the
higher priority tasks.

To ensure a fair share for individual tasks
within classes, we need to ensure that the rate
of progress of a task depends on the share as-
signed to its class. Three approaches to achieve



Linux Symposium 156

this are discussed next.

Priority modifications (WFS+P): Let a
switching intervalbe defined as the time in-
terval between consecutive array switches of
the modified scheduler,∆j be its duration and
tj andtj+1 be the timestamps of the switches.
In the priority modifications approach to al-
leviating starvation in WFS, henceforth called
WFS+P, we track the number of array switches
se at which a task got starved due to its class’
timeslice exhaustion and increase the task’s ef-
fective priority based onse, i.e. ep(p) =
Φ(sp, sa, se). This ensures that starving tasks
eventually get theirep high enough to get a
chance to run at which pointse is reset. The
drawback of this approach is that the increased
scheduler overhead of tasks being selected for
execution and moving directly to the expired
list due to class timeslice exhaustion, remains
unchanged.

Timeslice modifications (WFS+T1,
WFS+T2): Recognizing that starvation
can occur in WFS for classCi only if∑

p∈Ci
ts(p) > TSi, the timeslice modification

approaches attempt to change one or the
other side of the inequality to convert it to an
equality. In WFS+T1, the left hand side of the
inequality is changed by reducing the times-
lices of each task of a starved class as follows.
Let exhi =

∑
p∈Ci

ts(p) − TSi when class
timeslice exhaustion occurs. At array switch
time, eachts(p) is multiplied byλi = TSi

TSi+exhi

which results in the desired equality. WFS+T1
is slow to respond to starvation because task
timeslices are recomputed in O(1)beforethey
move into the expired array and not at array
switch time. Hence any task timeslice changes
take effect only one switching interval later
i.e. two intervals beyond the one in which
starvation occurred. One way to address this
problem is to treat a task as having exhausted
its timeslice whents(p) gets decremented to
(1−λi× ts(p)) instead of 0. A bigger problem

with WFS+T1 is that smaller timeslices for
tasks could lead to increased context switches
with potentially negative cache effects.

To avoid reducingts(p)’s, WFS+T2 increases
TSi of a starving class to make

∑
p∈Ci

ts(p) =
TSi i.e. the class does not exhaust its times-
lice until each of its tasks have exhausted their
individual timeslices. To preserve the relative
proportions between class timeslices, all other
class timeslices also need to be changed ap-
propriately. Doing so would disturb the same
equality for those classes and hence WFS+T2
is not a workable approach.

Two-level scheduler: Another way to regu-
late CPU shares in WFS is to take tasks out
of the runqueue upon timeslice exhaustion and
return them to the runqueue at a rate commen-
surate with the share of the class. A prototype
implementation of this approach was described
in [17] in the context of user-based fair sharing.
This approach effectively implements a two-
level scheduler and is illustrated in Figure 2. A
modified O(1) scheduler forms the lower level
and a coarse-grain scheduler operates at the
upper level, replenishing class timeslice ticks.
In the modified O(1), when a task expires, it
is moved into a FIFO list associated with its
class instead of moving to the expired array.
At a coarse-granularity determined by the up-
per level scheduler, the class receives new time
ticks and reinserts tasks from the FIFO back
into O(1)’s runqueue. Class time tick replen-
ishment can be done for all classes at every ar-
ray switch point but that violates the O(1) be-
haviour of the scheduler as a whole. To address
this problem, [17] uses a kernel thread to re-
plenish 8 ms worth of ticks to one class (user)
every 8 ms and round robin through the classes
(users). A variant of this idea is currently being
explored.



Linux Symposium 157

Figure 2: Proposed two-level CPU scheduler

4 Disk scheduling

The I/O scheduler in Linux forms the interface
between the generic block layer and the low
level device drivers. The block layer provides
functions which are used by filesystems and the
virtual memory manager to submit I/O requests
to block devices. These requests are trans-
formed by the I/O scheduler and made avail-
able to the low-level device drivers (henceforth
only called device drivers). Device drivers
consume the transformed requests and forward
them, using device specific protocols, to the de-
vice controllers which perform the I/O. Since
prioritized resource management seeks to reg-
ulate the use of a disk by an application, the
I/O scheduler is an important kernel compo-
nent that is sought to be changed. It is also pos-
sible to regulate disk usage in the kernel layers
above and below the I/O scheduler. Changing
the pattern of I/O load generated by filesytems
or the virtual memory manager (VMM) is an
important option. A less explored option is
to change the way specific device drivers or
even device controllers consume the I/O re-
quests submitted to them. The latter approach

is outside the scope of general kernel develop-
ment and this paper.

Class-based resource management requires
two fundamental changes to the traditional ap-
proach to I/O scheduling. First, I/O requests
should be managed based on the priority or
weight of the request submitter with disk uti-
lization being a secondary, albeit important ob-
jective. Second, I/O requests should be associ-
ated with the class of the request submitter and
not a process or task. Hence the weight associ-
ated with an I/O request should be derived from
the weight of the class generating the request.

The first change is already occurring in the de-
velopment of the 2.5 Linux kernel with the de-
velopment of different I/O schedulers such as
deadline, anticipatory, stochastic fair queueing
and complete fair queueing. Consequently, the
additional requirements imposed by the sec-
ond change (scheduling by class) are relatively
minor. This fits in well with our project goal
of minimal changes to existing resource sched-
ulers.

We now describe the existing Linux I/O sched-
ulers followed by an overview of the changes
being proposed.

4.1 Existing Linux I/O schedulers

The various Linux I/O schedulers can be ab-
stracted into a generic model shown in Fig-
ure 3. I/O requests are generated by the
block layer on behalf of processes access-
ing filesystems, processes performing raw I/O
and from the virtual memory management
(VMM) components of the kernel such as
kswapd, pdflush etc. These producers of I/O
requests call __make_request() which invokes
various I/O scheduler functions such as eleva-
tor_merge_fn. The enqueuing functions’ gen-
erally try to merge the newly submitted block
I/O unit (bio in 2.5 kernels, buffer_head in



Linux Symposium 158

2.4 kernels) with previously submitted requests
and sort it into one or more internal queues. To-
gether, the internal queues form a single log-
ical queue that is associated with each block
device. At a later point, the low-level de-
vice driver calls the generic kernel function
elv_next_request() to get the next request from
the logical queue. elv_next_request interacts
with the I/O scheduler’s dequeue function ele-
vator_next_req_fn and the latter has an oppor-
tunity to pick the appropriate request from one
of the internal queues. The device driver then
processes the request, converting it to scatter-
gather lists and protocol-specific commands
that are then sent to the device controller. As
far as the I/O scheduler is concerned, the block
layer is the producer of I/O requests and the de-
vice drivers are the consumers. Strictly speak-
ing, the block layer includes the I/O scheduler
but we distinguish the two for the purposes of
our discussion.

Figure 3: Abstraction of Linux I/O scheduler

Default 2.4 Linux I/O scheduler: The 2.4
Linux kernel’s default I/O scheduler (eleva-
tor_linus) primarily manages disk utilization.
It has a single internal queue. For each new
bio, the I/O scheduler checks to see if it can be
merged with an existing request. If not, a new

request is placed in the internal queue sorted
by the starting device block number of the re-
quest. This minimizes disk seek times if the
disk processes requests in FIFO order from the
queue. An aging mechanism limits the num-
ber of times an existing request can get by-
passed by a newer request, preventing starva-
tion. The dequeue function is simply a removal
of requests from the head of the internal queue.
Elevator_linus also has the welcome property
of improving request response timesaveraged
over all processes.

Deadline I/O scheduler: The 2.5 kernel’s
default I/O scheduler (deadline_iosched) in-
troduces the notion of a per-request deadline
which is currently used to give a higher pref-
erence to read requests. Internally, it main-
tains five queues. During enqueing, each re-
quest is assigned a deadline and inserted into
queues sorted by starting sector (sort_list)and
by deadline (fifo_list). Separate sort and fifo
lists are maintained for read and write requests.
The fifth internal queue contains requests to be
handed off to the driver. During a dequeue
operation, if the dispatch queue is empty, re-
quests are moved from one of the four sort
or fifo lists in batches. Thereafter, or if the
dispatch queue was not empty, the head re-
quest on the dispatch queue is passed on to the
driver. The logic for moving requests from the
sort or fifo lists ensures that each read request
is processed by its deadline without starving
write requests. Disk seek times are amortized
by moving a large batch of requests from the
sort_list (which are likely to have few seeks as
they are already sector sorted) and balancing it
with a controlled number of requests from the
fifo list (each of which could cause a seek since
they are ordered by deadline and not sector).
Thus, deadline_iosched effectively emphasizes
average read request response times over disk
utilization and total average request response
time.



Linux Symposium 159

Anticipatory I/O scheduler: The anticipatory
I/O scheduler [9, 4] attempts to reduceper-
processread response times. It introduces a
controlled delay in dispatchingany new re-
quests to the device driver, thereby allowing
a process whose request just got serviced to
submit a new request, potentially requiring a
smaller seek. The tradeoff between reduced
seeks and decreased disk utilization (due to the
additional delays in dispatch) are managed us-
ing a cost-benefit calculation. anticipatory I/O
scheduling method is an additional optimiza-
tion that can potentially be added to any of the
I/O scheduler mentioned in this paper

Complete Fair Queueing I/O scheduler:
Two new I/O schedulers recently proposed
in the Linux kernel community, introduce
the concept of fair allocation of I/O band-
width amongst producers of I/O requests. The
Stochastic Fair Queueing (SFQ) scheduler [5]
is based on an algorithm originally proposed
for network scheduling [11]. It tries to appor-
tion I/O bandwidth equally amongst allpro-
cessesin a system using 64 internal queues
and one output (dispatch) queue. During an
enqueue, the process ID of the currently run-
ning process (very likely to be the I/O request
producer) is used to select one of the inter-
nal queues and the request inserted in FIFO
order within it. During dequeue, SFQ round-
robins through the non-empty internal queues,
picking requests from the head. To avoid too
many seeks, one full round of requests are
collected, sorted and merged into the dispatch
queue. The head request of the dispatch queue
is then passed to the device driver. Complete
Fair Queuing is an extension of the same ap-
proach where no hash function is used. Hence
each process in the system has a correspond-
ing internal queue and can get an fair share
of the I/O bandwidth (equal share if all pro-
cesses generate I/O requests at the same rate).
Both CFQ and SFQ manage per-process I/O
bandwidth and can provide fairness at a pro-

cess granularity.

Cello disk scheduler: Cello is a two-level
I/O scheduler [16] that distinguishes between
classes of I/O requests and allows each class
to be serviced by a different policy. A coarse
grain class-independent scheduler decides how
many requests to service from each class. The
second level class-dependent scheduler then
decides which of the requests from its class
should be serviced next. Each class has its own
internal queue which is manipulated by the
class-specific scheduler. There is one output
queue common to all classes. Enqueuing into
the output queue is done by the class-specific
schedulers in a way that ensures individual re-
quest deadlines are met as far as possible while
reducing overall seek time. Dequeuing from
the output queue occurs in FIFO order as in
most of the previous I/O schedulers. Cello has
been shown to provide good isolation between
classes as well as the ability to meet the needs
of streaming media applications that have soft
realtime requirements for I/O requests.

4.2 Costa: Proposed I/O scheduler

This paper proposes that a modified version of
the class-independent scheduler of the Cello
I/O scheduling framework can provide a low-
overhead class-based I/O scheduler suitable for
CKRM’s goals.

The key difference between the proposed
scheduler called Costa and Cello is the elimina-
tion of the class-specific I/O schedulers which
may be add unnecessary overhead for CKRM’s
goal of I/O bandwidth regulation. Fig 4 illus-
trates the Costa design. When the kernel is
configured for CKRM support, a new internal
queue is created for each class that gets added
to the kernel. Since each process is always
associated with a class, I/O requests that they
generate can also be tagged with the class id
and used to enqueue the request in the class-



Linux Symposium 160

Figure 4: Proposed Costa I/O scheduler

specific internal queue. The request->class as-
sociation cannot be done through a lookup of
the current process’ class alone. During de-
queue, the Costa I/O scheduler picks up re-
quests from several internal queues and sorts
them into the common dispatch queue. The
head request of the dispatch queue is then
handed to the device driver.

The mechanism also allows internal queues to
be associated withsystemclasses that group
I/O requests coming from important produc-
ers such as the VMM. By separating these out,
Costa can give them preferential treatment for
urgent VM writeout or swaps.

In addition to a weight value (which deter-
mines the fraction of I/O bandwidth that a class
will receive), the internal queues could also
have an associatedpriority value which deter-
mines their relative importance. At a given pri-
ority level, all queues could receive I/O band-

width in proportion of their weights with the
set of queues at a higher level always getting
serviced first. Some check for preventing star-
vation of lower priority queues could be used
similar to the ones used in deadline_iosched.

5 QoS Networking in Linux

Many research efforts have been made in net-
working QoS (Quality of Service) to provide
quality assurance of latency, bandwidth, jitter,
and loss rate. With the proliferation of mul-
timedia and quality-sensitive business traffic,
it becomes essential to provide reserved qual-
ity services (IntServ [23]) or differentiated ser-
vices (DiffServ [2]) for important client traffic.

The Linux kernel has been offering a well es-
tablished QoS network infrastructure for out-
bound bandwidth management, policy-based
routing, and DiffServ. Hence, Linux is being
widely used for routers, gateways, and edge
servers, where network bandwidth is the pri-
mary resource to differentiate among classes.

When it comes to Linux as an end server OS,
on the other hand, networking QoS has not
been given as much attention because QoS is
primarily governed by the system resources
such as CPU, memory, and I/O and less by
the network bandwidth. However, when we
consider the end-to-end service quality, we
also should require networking QoS in the end
servers as exemplified by the fair share admis-
sion control mechanism proposed in this sec-
tion.

In the rest of the section, we first briefly intro-
duce the existing network QoS infrastructure
of Linux. Then, we describe the design of the
fair share admission control in Linux and pre-
liminary performance results.



Linux Symposium 161

5.1 Linux Traffic Control, Netfilter, DiffServ

The Linux traffic control [8] consists of queue-
ing disciplines (qdisc) and filters. A qdisc con-
sists of one or more queues and a packet sched-
uler. It makes traffic conform to a certain pro-
file by shaping or policing. A hierarchy of
qdiscs can be constructed jointly with a class
hierarchy to make different traffic classes gov-
erned by proper traffic profiles. Traffic can
be attributed to different classes by the filters
that match the packet header fields. The filter
matching can be stopped to police traffic above
a certain rate limit. A wide range of qdiscs
ranging from a simple FIFO to classful CBQ
or HTB are provided for outbound bandwidth
management, while only one ingress qdisc is
provided for inbound traffic filtering and polic-
ing [8]. The traffic control mechanism can
be used in various places where bandwidth is
the primary resource to control. For instance
in service providers, it manages bandwidth al-
location shared among different traffic flows
belonging to different customers and services
based on service level agreements. It also can
be used in client sites to reduce the interference
between upstream and downstream traffic and
to enhance the response time of the interactive
and urgent traffic.

Netfilter provides sophisticated filtering rules
and targets. Matched packets can be accepted,
denied, marked, or mangled to carry out vari-
ous edge services such as firewall, dispatcher,
proxy, NAT etc. Routing decisions can be
made based on the netfilter markings so pack-
ets may take different routes according to their
classes. The qdiscs would enable various QoS
features in such edge services when used with
Netfilter. Netfilter classification can be trans-
ferred for use in later qdiscs by markings or
mangled packet headers.

The Differentiated Service (DiffServ) [2] pro-
vides a scalable QoS by applying per-hop be-

havior (PHB) collectively to aggregate traffic
classes that are identified by a 6-bit code point
in the IP header. Classification and condition-
ing are typically done at the edge of a DiffServ
domain. The domain is a contiguous set of
nodes compliant to a common PHB. The Diff-
Serv PHB is supported in Linux [22]. Classes,
drop precedence, code point marking, and con-
ditioning can be implemented by qdiscs and fil-
ters. At the end servers, the code point can be
marked by setting theIP_TOS socket option.

In the policy based networking [18], a pol-
icy agent can configure the traffic classification
of edge and end servers according to a pre-
defined filtering rules that match layer 3/4 or
layer 7 information. Netfilter, qdisc, and appli-
cation layer protocol engines can classify traf-
fic for differentiated packet processing at later
stages. Classifications at prior stages can be
overridden by the transaction information such
as URI, cookies, and user identities as they are
known. It has been shown that a coordination
of server and network QoS can reduce end-to-
end response time of important client requests
significantly by virtual isolation from the low
priority traffic [15].

5.2 Prioritized Accept Queues with Propor-
tional Share Scheduling

We present here a simple change to the existing
Linux TCP accept mechanism to provide dif-
ferentiated service across priority classes. Re-
cent work in this area has introduced the con-
cept of prioritized accept queues [19] and ac-
cept queue schedulers using adaptive propor-
tional shares to self-managed web servers [14].

Under certain load conditions [14], the TCP ac-
cept queue of each socket becomes the bottle-
neck in network input processing. Normally,
listening sockets fork off a child process to
handle an incoming connection request. Some
optimized applications such as the Apache web



Linux Symposium 162

Figure 5: Proportional Accept Queue Results.

server maintain a pool of server processes to
perform this task. When the number of incom-
ing requests exceeds the number of static pool
servers, additional processes are forked up to
a configurable maximum. When the incom-
ing connection request load is higher than the
level that can be handled by the available server
processes, requests have to wait in the accept
queue until one is available.

In the typical TCP connection, the client initi-
ates a request to connect to a server. This con-
nection request is queued in a single global ac-
cept queue belonging to the socket associated
with that server’s port. Processes that perform
an accept() call on that socket pick up the
next queued connection request and process it.
Thus all incoming connections to a particular
TCP socket are serialized and handled in FIFO
order.

We replace the existing single accept queue per
socket with multiple accept queues, one for
each priority class. Incoming traffic is mapped
into one of the priority classes and queued on
the accept queue for that priority. There are
eight priority classes in the current implemen-
tation.

The accepting process schedules connection
acceptance according to a simple weighted
deficit round robin to pick up connection re-
quests from each queue according to its as-
signed share. The share, or weight can be as-
signed by the sysctl interface.

In the basic priority accept queue design pro-
posed earlier in [6], starvation of certain pri-
ority classes was a possibility as the accept-
ing process picked up connection requests in
a descending priority order. With a propor-
tional share scheme in this paper, it is easier
to avoid starvation of particular classes to give
share guarantees to low priority classes.

The efficacy of the proportional accept queue
mechanism is demonstrated by an experiment.
In the experiment, we used Netfilter with man-
gle tables andMARKoptions to characterize
traffic into priority classes based on source IP
address. Httperfs from two client machines
send requests to an Apache web server run-
ning on a single server over independent giga-
bit Ethernet connections. The only Apache pa-
rameter changed from the default was the max-
imum number of httpd threads. This was set to
50 in the experiment.

Figure 5 shows throughput of Apache for two
priority classes, sharing inbound connection
bandwidth by 7:3. We can see that the through-
put of the priority class 0 requests is slightly
higher than that of the priority class 1 requests
when the load is low. As load increases, the
acceptance rates to the priority classes 0 and 1
will be constrained in proportion to their rel-
ative share, which in turn determines the pro-
cessing rate of the Apache web server and con-
nection request queueing delay. Under a severe
load, the priority class 0 requests are processed
at a considerably higher throughput.



Linux Symposium 163

6 Controlling Memory

While many other system resources can be
managed according to priorities or proportions,
virtual memory managers (VMM)currently do
not allow such control. Theresident set size
(RSS)of each process—the number of phys-
ical page frames allocated to that process–
will determine how often that process incurs
a page fault. If the RSS of each process is
not somehow proportially shared or prioritized,
then paging behavior can overwhelm and un-
dermine the efforts of other resource manage-
ment policies.

Consider two processes,A andB, whereA is
assigned a larger share thanB with the CPU
scheduler. IfA is given too small an RSS and
begins to page fault frequently, then it will not
often be eligible for scheduling on the CPU.
Consequently,B will be scheduled more often
than A, and the VMM will have become the
de factoCPU scheduler, thus violating of the
requested scheduling proportions.

Furthermore, it is possible for most existing
VMM policies to exhibit a specific kind of de-
generative behavior. Once processA from the
example above begins to page fault, its infre-
quent CPU scheduling prevents it from ref-
erencing its pages at the same rate as other,
frequently scheduled processes. Therefore,
its pages will become more likely to evicted,
thereby reducing its RSS. The smaller RSS
will increasethe probability of further page
faults. This degenerative feedback loop will
cease only when some other process either ex-
its or changes its reference behavior in a man-
ner that reduces the competition for main mem-
ory space.

Main memory use must be controlled just as
any other resource is. The RSS of eachaddress
space—the logical space defined either by a
file or by the anonymous pages within the vir-

tual address space of a process—must be cal-
culated as a function of the proportions (or pri-
orities) that are used for CPU scheduling. Be-
cause this type of memory management has re-
ceived little applied or academic attention, our
work in this area is still nascent. We present
here the structural changes to the Linux VMM
necessary for proportional/prioritized memory
management; we also present previous, appli-
cable research, as well as future research di-
rections that will address this complex prob-
lem. While the proportional/prioritized man-
agement of memory is currently less well de-
veloped than the other resources presented in
this paper, it is necessary that it be comparably
developed.

6.1 Basic VMM changes

Consider a function that explicitly calculates
the desired RSS for each address space—the
target RSS—when the footprints of the active
address spaces exceeds the capacity of main
memory. After this function sets these targets,
a system couldimmediatelybring the actual
RSS into alignment with these targets. How-
ever, doing so may require a substantial num-
ber of page swapping operations. Since disk
operations are so slow, it is inadvisable to use
aggressive, pre-emptive page swapping. In-
stead, a system should seek to move the the ac-
tual RSS values toward their targets in alazy
fashion, one page fault at a time. Until the ac-
tual RSS of address space matches its target, it
can be labeled as being either inexcessor in
deficitof its target.

As the VMM reclaims pages, it will do so
from address spaces with excess RSS values.
This approach to page reclamation suggests
a change in the structure of thepage lists—
specifically, theactive and inactive lists that
impose an order on pages1. The current Linux

1In the Linux community, these are known as the



Linux Symposium 164

VMM usesglobal page lists. If this approach
to ordering pages in unchanged, then the VMM
would have to search the page lists for pages
that belong to the desired address spaces that
have excess RSS values. Alternatively, one
pair of page lists—activeand inactive—could
exist for each address space. The reclamation
of pages from a specific address space would
therefore require no searching.

By ordering pages separately with each address
space, we also enable the VMM to more eas-
ily track reference behavior for each address
space. While the information to be gathered
would depend on the underlying policy that se-
lects target RSS values, we believe that such
tracking may play an important role in the de-
velopment of such policies.

Note that the target RSS values would need to
be recalculated periodically. While the period
should be directly proportional to thememory
pressure—some measure of the current work-
load’s demand for main memory space—it is a
topic of future research to determine what that
period should be. By coupling the period for
target RSS calculations to the memory pres-
sure, we can ensure that this strategy only in-
curs significant computational overhead when
heavy paging is occuring.

6.2 Proportionally sharing space

Waldspurger [20] describes a method of pro-
portionally sharing the space of a system run-
ning VMWare’s ESX Server between a number
of virtual machines. Specifically, as with a pro-
portional share CPU scheduler, memory shares
can be assigned to each virtual machine, and
Waldspurger’s policy will calculate target RSS
values for each virtual machine.

Proportionally sharing main memory space can

LRU lists. However, they only approximate an LRU or-
dering, and so we refer to them only aspage lists.

result in superfluous allocations to some virtual
machines. If the target RSS for some virtual
machine is larger than necessary, and some of
the main memory reserved for that virtual ma-
chine is rarely used2, then its target RSS should
be reduced. Waldspurger addresses this prob-
lem with ataxation policy. In short, this policy
penalizes each virtual machine for unused por-
tions of its main memory share by reducing its
target RSS.

Application to the Linux VMM. This ap-
proach to proportionally sharing main memory
could easily be generalized so that it can apply
to address spaces within Linux instead of vir-
tual machines on an ESX Server. Specifically,
we must describe how shares of main memory
space can be assigned to each address space.
Given those shares, target RSS values can be
calculated in the same manner as for virtual
machines in the original research.

The taxation scheme requires that the system
be able to measure the active use of pages in
each address space. Waldspurger used a sam-
pling strategy where some number of randomly
selected pages for each virtual machine were
access protected, forcingminor page faults
to occur upon the first subsequent reference
to those pages, and therefore giving the ESX
Server an opportunity to observe those page
uses. The same approach could be used within
the Linux VMM, where a random sampling
of pages in each address space would be ac-
cess protected. Alternatively, a sampling of the
pages’ reference bits could be used to monitor
idle memory.

Waldspurger observes that, within a normal
OS, the use of access protection or reference
bits, taken from virtual memory mappings, will
not detect references that are a result of DMA
transfers. However, since such DMA transfers

2Waldspurger refers to such space as beingidle.



Linux Symposium 165

are scheduled within the kernel itself, those ref-
erences could also be explicitly counted with
help from the DMA scheduling routines.

6.3 Future directions

The description above does not address a par-
ticular problem:shared memory. Space can be
shared between threads or processes in a num-
ber of ways, and such space presents impor-
tant problems that we must solved to achieve a
complete solution.

The problem of shared spaces. The assign-
ment of shares to an address space can be com-
plicated when that address space is shared by
processes in different process groups or ser-
vice classes. One simple approach is for each
address space to belong to a specific service
class. In this situation, its share would be de-
fined only by that service class, and not by the
processes that share the space. Another ap-
proach would be for each shared address space
to adopt the highest share value of its shared
tasks or processes. In this way, an important
process will not be penalized because it is shar-
ing its space with a less important process.

Note that this problem does not apply only to
memory mapped files and IPC shared mem-
ory segments, but to any shared space. For
example, the threads of a multi-threaded pro-
cess share a virtual address space. Similarly,
when a process callsfork() , it creates a new
virtual address space whose pages are shared
with the original virtual address space using
the copy-on-write (COW)mechanism. These
shared spaces must be assigned proportional
shares even though the tasks and processes us-
ing them may themselves have differing shares.

Proportionally sharing page faults. The
goal of proportional share scheduling is to

fairly divide the utility of a system among com-
peting clients (e.g., processes, users, service
classes). It is relatively simple to divide the
utility of the CPU because that utility islin-
ear and indepedent. One second of scheduled
CPU time yields a nearly fixed number of exe-
cuted instructions3. Therefore, each additional
second of scheduled CPU time nearly yields
a constant increase in the number of executed
instructions. Furthermore, the utility of CPU
does not depend on the computation being per-
formed: Every process derives equal utility
from each second of scheduled CPU time.

Memory, however, is a more complex resource
because its utility is neither independent nor
linear. Identical RSS values for two processes
may yield vastly different numbers of page
faults for each process. The number of page
faults is dependent on the reference patterns of
each process.

To see the non-linearity in the utility of mem-
ory, consider two processes,A andB. Assume
that for A, an RSS ofp pages will yieldm
misses, wherem > 0. If that RSS were in-
creased top + q pages, the number of misses
incurred byA may take any valuem′ where
0 ≤ m′ ≤ m4. Changes in RSS do not im-
ply a constant change in the number of misses
suffered by an address space.

The proportial sharing of memoryspace, there-
fore, does not necessarily achieve the stated
goal of fairly dividing the utility of a system.
Consider thatA should receive 75% of the
system, whileB should receive the remain-
ing 25%. Dividing the main memory space by
these proportions could yeild heavy page fault-

3We assume no delays to access memory, as memory
is a separate resource from the CPU.

4We ignore the possibility ofBelady’s anomaly[1],
in which an increase in RSS could imply an increase in
page faults. While this anomaly is likely possible for any
real, in-kernel page replacement policy, it is uncommon
and inconsequential for real workloads.



Linux Symposium 166

ing for A but not forB. Note also that none
of the 25% assigned toB may be idle, and so
Waldspurger’s taxation scheme will not reduce
its RSS. Nonetheless, it may be the case that a
reduction in RSS by 5% forB may increase its
misses only modestly, and that an increase in
RSS by 5% forA may reduce its misses drasti-
cally.

Ultimately, a system should proportionally
share the utility of main memory. We con-
sider this topic a matter of significant future
work. It is not obvious how to measure online
the utility of main memory for each address
space, nor how to calculate target RSS values
based on these measurements. Balancing the
contention between fairness and throughput for
virtual memory must be considered carefully,
as it will be unacceptable to achieve fairness
simply by forcing some address spaces to page
fault more frequently. We do, however, believe
that this problem can be solved, and that the
utility of memory can be proportionally shared
just as with other resources.

7 Conclusion and Future Work

In this paper we make a case for providing ker-
nel support for class-based resource manage-
ment that goes beyond the traditional per pro-
cess or per group resource management. We
introduce a framework for classifying tasks and
incoming network packets into classes, mon-
itoring their usage of physical resources and
controlling the allocation of these resources by
the kernel schedulers based on the shares as-
signed to each class. For each of four ma-
jor physical resources (CPU, disk, network and
memory), we discuss ways in which propor-
tional sharing could be achieved using incre-
mental modifications to the corresponding ex-
isting schedulers.

Much of this work is in its infancy and the ideas

proposed here serve only as a starting point for
future work and for discussion in the kernel
community. Prototypes of some of the sched-
ulers discussed in this paper are under develop-
ment and will be made available soon.

8 Acknowledgments

We would like to thank team members from
the Linux Technology Center, particularly
Theodore T’so, for their valuable comments on
the paper and the work on individual resource
schedulers. Thanks are also in order for nu-
merous suggestions from the members of the
kernel open-source community.

References

[1] L. A. Belady. A study of replacement
algorithms for virtual storage.IBM
Systems Journal, pages 5:78–101, 1966.

[2] S. Blake, D. Black, M. Carlson,
E. Davies, Z. Wang, and W. Weiss. An
Architecture for Differentiated Services.
RFC 2475, Dec 1998.

[3] Jonathan Corbet. A new deadline I/O
scheduler.http:
//lwn.net/Articles/10874 .

[4] Jonathan Corbet. Anticipatory I/O
scheduling.http:
//lwn.net/Articles/21274 .

[5] Jonathan Corbet. The Continuing
Development of I/O Scheduling.http:
//lwn.net/Articles/21274 .

[6] IBM DeveloperWorks. Inbound
connection control home page.
http://www-124.ibm.com/pub/
qos/paq_index.html .



Linux Symposium 167

[7] Pawan Goyal, Xingang Guo, and
Harrick M. Vin. A Hierarchical CPU
Scheduler for Multimedia Operating
Systems. InUsenix Association Second
Symposium on Operating Systems
Design and Implementation (OSDI),
pages 107–121, 1996.

[8] Bert Hubert. Linux Advanced Routing &
Traffic Control.
http://www.lartc.org .

[9] Sitaram Iyer and Peter Druschel.
Anticipatory scheduling: A disk
scheduling framework to overcome
deceptive idleness in synchronous I/O.
In 18th ACM Symposium on Operating
Systems Principles, October 2001.

[10] M. Kravetz, H. Franke, S. Nagar, and
R. Ravindran. Enhancing Linux
Scheduler Scalability. InProc. 2002
Ottawa Linux Symposium, Ottawa, July
2001.
http://lse.sourceforge.net/
scheduling/ols2001/elss.ps .

[11] Paul E. McKenney. Stochastic Fairness
Queueing. InINFOCOM, pages
733–740, 1990.

[12] Ingo Molnar. Goals, Design and
Implementation of the new ultra-scalable
O(1) scheduler. In 2.5 kernel source tree
documentation
(Documentation/sched-design.txt).

[13] Jason Nieh, Chris Vaill, and Hua Zhong.
Virtual-time round-robin: An o(1)
proportional share scheduler. In2001
USENIX Annual Technical Conference,
June 2001.

[14] P. Pradhan, R. Tewari, S. Sahu,
A. Chandra, and P. Shenoy. An
Observation-based Approach Towards
Self-Managing Web Servers. InIWQoS
2002, 2002.

[15] Quality of Service White Paper.
Integrated QoS: IBM WebSphere and
Cisco Can Deliver End-to-End Value.
http:
//www-3.ibm.com/software/
webservers/edgeserver/doc/
v20/QoSwhitepap%er.pdf .

[16] Prashant J. Shenoy and Harrick M. Vin.
Cello: A disk scheduling framework for
bext generation operating systems. In
ACM SIGMETRICS 1998, pages 44–55,
Madison, WI, June 1998. ACM.

[17] Antonio Vargas. fairsched+O(1) process
scheduler.http://www.ussg.iu.
edu/hypermail/linux/kernel/
0304.0/0060.html .

[18] Dinesh Verma, Mandis Beigi, and
Raymond Jennings. Policy based SLA
Management in Enterprise Networks. In
Policy Workshop, 2001.

[19] T. Voigt, R. Tewari, D. Freimuth, and
A. Mehra. Kernel Mechanisms for
Service Differentiation in Overloaded
Web Servers. In2001 USENIX Annual
Technical Conference, Jun 2001.

[20] Carl A. Waldspurger. Memory resource
management in {VM}ware {ESX}
{S}erver. In Proceedings of the 5th
Symposium on Operating Systems
Design and Implementation, December
2002.

[21] Carl A. Waldspurger and William E.
Weihl. Stride scheduling: Deterministic
proportional- share resource
management. Technical Report
MIT/LCS/TM-528, 1995.

[22] Werner Almesberger Werner and Jamal
Hadi Salim amd Alexye Kuznetsov.
Differentiated Services on Linux. In
Globecom, volume 1, pages 831–836,
1999.



Linux Symposium 168

[23] J. Wroclawski. The Use of RSVP with
IETF Integrated Services. RFC 2210,
Sep 1997.

Trademarks and Disclaimer

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM is a trademark or registered trademarks of In-
ternational Business Machines Corporation in the
United States, other countries, or both.

Linux is a trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group
in the United States and other countries.

Other trademarks are the property of their respec-
tive owners.



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


