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Abstract timely to examine its support for resource man-
agement. Enterprise workloads typically run
on two types of servers: clusters of 1-4 way

memory, CPU time, disk 1/0 bandwicth and B AT SO CIRm S PR O
network bandwidth is strongly tied to ker- : » SY

ators must balance the needs of the work-
nel tasks and address spaces. The kernel of- . - .
o . load with the often conflicting goal of main-
fers very limited support for enforcing user-

" N : : taining high system utilization. The balancing
specified priorities during the allocation of ’ )
becomes particularly important for large SMPs
these resources.

as they often run multiple workloads to amor-

In this paper, we argue that Linux kernel re-tize the higher cost of the hardware.
source management should be based on cIassEs

: key aspect of multiple workloads is that
rather than tasks alone and be guided by clast%(_:‘y vary in thebusiness importanceo the

shares rather than system utilization alone, . L
Server owner. To maximize the server’s utility,

Such class-based kernel resource managemerp1 -
. the system administrator needs to ensure that
(CKRM) allows system administrators to pro-

. . . . . workloads with higher business importance get
vide differentiated service at a user or job level
a larger share of server resources. The ker-

and prevent denial of service attacks. Italso en-

: nel’s resource schedulers need to allow some
ables accurate metering of resource consume- ) . : .
o orm of differentiated service to meet this goal.
tion in user and kernel mode. The paper IDrO'It Is also important that the resource usage b
poses a framework for CKRM and discusse b ge by

S,.
: . different workloads be accounted accurately
incremental modifications to kernel schedulers .
. so that the customers can be billed accord-
to implement the framework. ) .
ing to their true usage rather than an average
cost. Kernel support for accurate accounting
1 Introduction of resource usage is required, especially for re-

source consumption in kernel mode.

In Linux, control of key resources such as

With Linux having made rapid advances in Differentiated service is also useful to the desk-
scalability, making it the operating system oftop user. It would allow large file transfers to
choice for enterprise servers, it is useful ancget reduced priority to the disk compared to
disk accesses resulting from interactive com-
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mands. A kernel compile could be configuredwork for the CPU, disk I/O, network and mem-
to run in the background with respect to theory subsystems and propose the extensions
CPU, memory and disk, allowing a more im- necessary to implement it. Section 7 concludes
portant activity such as browsing to continuewith directions for future work.

unimpeded.

The current Linux kernel (version 2.5.69 atthe2 Framework
time of writing) lacks support for the above-

mentioned needs. There is limited and varyingB
support for any kind of performance isolation ~
in each of the major resource schedulers (CPUO,Ieflne a few terms.

network, disk I/0 and memory). CPU and in- Tasks are the Linux kernel's common represen-
bound network scheduling offer the greatestation for both processes and threadsclass
support by allowing specification of priorities. i 5 group of tasks. The grouping of tasks into

The deadline I/O scheduler [3] offers some iso|asses is decided by the user using rules and
lation between disk reads and writes but nojygjicies.

between users or applications and the VM sub-

system has support for limiting address spacé classification rule henceforth simply called
size of a user. More importantly, the granular-a rule, is a method by which a task can be clas-
ity of kernel supported service differentiation is sified into a class. Rules are defined by the sys-
a task (process), or infrequently the userid. ltem administrator, generally as part of a policy
does not allow the user to define the granular{defined later) but also individually, typically
ity at which resources get apportioned. Finally,as modifications or increments to an existing
there is no common framework for a systempolicy. Attributes of a task, such as real uid,
administrator to specify priorities for usage of real gid, effective uid, effective gid, path name,
different physical resources. command name and task or application tag (de-

. . _ fined later) can be used to define rules. A rule
The work described in this paper addressegongists of two parts: a set of attribute-value

these shortcomings._ _It proposes a class-basqgmes (A\V) and a class C. If the rule’s tuple
framework for prioritized resource manage-ya|ues match the corresponding attributes of a

ment of all the major physical resources manyask | then it is considered to belong to the class
aged by the kernel. A class is a user-definedgq

dynamic grouping of tasks that have associated
priorities for each physical resource. The pro-A policyis a collection of class definitions and
posed framework permits a better separatioglassification rules. Only one policy is active in
of user-specified policies from the enforcementa system at any point of time. Policies are con-
mechanisms implemented by the kernel. Mosstructed by the system administrator and sub-
importantly, it attempts to achieve these goalsnitted to a CKRM kernel. The kernel option-
using incremental modifications of the existingally verifies the policy for consistency and ac-
mechanisms. tivates it. The order of rules in a policy is im-
portant. Rules are applied in the order they are

The paper is organized as follows. Section 2 inyefined (one exception is the application tags
troduces the proposed framework and the censg gescribed in the notes below).

tral concepts of classification, monitoring and
control. Sections 3,4,5,6 explore the frame-An Application/Task Tags a user-defined at-
tribute associated with a task. Such an attribute

efore describing the proposed framework, we
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is useful when tasks need to be classified anduests to a class. The distinction is mostly
managed based on application-specific criteirelevant as most resource requests are initi-
ria. In such scenarios, an applications tasks caated by a task except for incoming network
specify its tag to the kernel using a system callpackets which need to be classified before it is
ioctl, /proc entry etc. and trigger its classifica- known which task will consume them. Classi-
tion using a rule that uses the task tag attributefication is a continuous operation. It happens
Since the task tag is opaque to the kernel, ibn a large scale each time a new policy is com-
allows applications and system administratorsnitted and all existing tasks get reclassified. At
additional flexibility in grouping tasks. later points, classification occurs whenever (1)
_ _ _ a new task is created e.g. fork(), exec(); (2)
A Resource Manageis the entity which de- he aitributes of a task change e.g setuid(), set-
termines the proportions in whlch‘resourcesgido, application tag change (initiated by the
should be allocated to classes. This could bgjication) and (3) explicit reclassification of

either a human system administrator or a rey gpecific task by the Resource Manager. Sce-
source management application middleware. \,5rios (1) and (2) are illustrated in Figure 1.

With all the new terms of the framework de- cjassification of tasks potentially allows all

fined, we can now describe how the frameworkyork injtiated by the task to be associated
operates to provide class-based resource magih the class. Thus the CPU memory and

agemgnt. Figure 1 illustrates the Ii_fecycle of ;0 requests generated by this task, or by the
tasks in the proposed framework with an emyarnel on behalf of this task, can be moni-

phasis on the three central aspects of classifiyraq and regulated by the class-aware resource

cation, monitoring and control. schedulers. Kernel-initiated resource requests
- which are on behalf of multiple classes e.g.
2.1 [Initialization a shared memory page writeout need special

treatment as do application initiated requests
Sometime after system boot up, the Resourcehich are processed asynchronously. Classifi-
Manager commits a policy to the kernel. Thecation of incoming network connections and/or
policy defines the classes and it is used to clasgdata (which are seen by the kernel before the
sify all tasks (pre-existing and new) createdtask to which they are destined) is discussed
and all incoming network packets. A CKRM- separately in Section 5.
enabled Linux kernel also contains a default
policy with a single default class to which all 2.3 Monitoring
tasks belong. The default policy determines

classification and control behaviour until the pagource usage is maintained at the class level
Resource Manager's policy gets loaded. Newy 4qgition to the regular system accounting by
policies can be loaded atany pointand overridg,gy yser etc. The system administrator or an
the existing policy. Such policy l0ads trigger gxiernal control program with root privileges

reclassification and reinitialization of monitor- .o optain that information from the kernel at
ing data and are expected to be very infrequenty,y time. The information can be used to as-
sess machine utilization for billing purposes or
2.2 Classification as an input to a future decision on changing the
share allotted to a class. The CKRM API pro-
Classification refers to the association of taskvides functions to query the current usage data
to classes and the association of resource res shown in Figure 1.
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Figure 1. CKRM lifecycle

2.4 Control resources.

The system administrator, as part of the ini-3 CPU scheduling

tial policy or at a later point in time, assigns a

per-resource share to each class in the system, _ _
Each class gets a separate share for CPU timghe CPU sche_:duler Is central to the opera_tlon
Memory pages, /O bandwidth and incomingOf the computing platform. It decides which
network I/O bandwidth. The resource sched{2Sk to run when and how long. In general re-
ulers try their best to respect these shares whil@/ime and timeshared jobs are distinguished,
allocating resources to a class. e.g. the CP@aCh with different objectives. Both are re-

scheduler tries to ensure that tasks belonginanzed through different scheduling disciplines
to Class A with a 50% CPU share coIIectiver'mplemented by the scheduler. Before address-

get 50% of the CPU time. At the next level 9 the share based scheduling schemes, we de-

of the control hierarchy, the system administra-SC'1P€ the current Linux scheduler.

tor or a control program can change the shares
assigned to a class based on their assessmen

of application progress, system utilization etc. _ _ o ) ) )
Collectively, the setting of shares and shareJO achieve its objectives, Linux assigns a static

based resource allocation constitute the contrd?"iority to each task that can be modified by
part of the resource management lifecycle and€ user through theice()  interface. Linux
are shown in Figure 1. This paper concentratef@S @range df) ... MAX_PRIQ] priority classes,

on the lower level share-based resource allocd2f Which the firstMAX_RT_PRIX(=100) are
tion since that is done by the kernel. set aside for realtime jobs and the remaining

40 priority classes are set aside for timesharing
The next four sections go into the details of(i.e. normal) jobs, representing the20. . . 19]
classification, monitoring and control aspectsnice value of UNIX processes. The lower the
of managing each of the four major physicalpriority value, the higher the “logical” priority

{, Linux 2.5 Scheduler



Linux Symposium 154

of a task, i.e. its general importance. In thisity bonuses or penalties based on the recent
context we always assume the logical prioritysleep averagesleep_avg of a given task.
when we are talking about priority increasesThe sleep average, a number in the range of
and decreases. Realtime tasks always have[@...MAX_SLEEP_AVG % HZ], accounts for the
higher priority then normal tasks. number of ticks a task was recently desched-
) ) uled. The time (in ticks) since a task went to

The Linux _schedulgr in 2.5, ak.a the O(l)sleep (maintained isleep_timestamp ) is
scheduler, is a multi queue scheduler that as;qyged on task wakeup and for every time tick

signs to each cpu a run queue, wherein 10Cakonsymed running, the sleep average is decre-
scheduling takes place. A per-cpu runqueugyented.

consists of two arrays of task lists, the active
array and the expired array. Each array indexhe  current  design  provisions a
represents a list of runnable task at their respeaange of PRIO_BONUS RATIO=25%
tive priority level. After executing for a period [—12.5%..12.5%] of the priority range for the
task move from the active list to the expiredsleep average. For instance a “nice=0" task has
list to guarantee that all tasks get a chance ta static priority of 120. With a sleep average
execute. When the active array is empty, exof O this task is penalized by 5 resulting in an
pired and active arrays are swapped. More deeffective priority of 125. On the other hand,
tail is provided further on. The scheduler sim-if the sleep average iIMAX_SLEEP_AVG
ply picks the first task of the highest priority 10 secs, a bonus of 5 is granted leading to an
gueue of the active queue for execution. effective priority of 115. The effective priority

) ) ) determines the priority list in the active and
Occasionally a load balancing algorithm rebal'expired array of the run queue. A task is

ances the runqueues to ensure that a similgfeciarednteractivewhen its effective priority
level of progress is made on each cpu. Realgyceeds its static priority by a certain level

time iss'ues ano! Iqad balancing issues are be(\'/vhich can only be due to its accumulating
yond this description here, hence we conCeNgleen average). High priority tasks reach

trate on the single cpu issue for now. For morgnteractivity with a much smaller sleep average
details we refer to [12]. It might also be of i,5n 1ower priority tasks.

interest to abstract this against the Linux 2.4

based scheduler, which is described in [10]. The timeslice, defined as the maximum time a
_ _task can run without yielding to another task,

As stated earlier, the scheduler needs to decidg simply a linear function of the static pri-

which task to run next and for how long. Time gty of normal tasks projected into the range
quantums in the kernel are defined as multipleg [MIN_TIMESLICE...MAX_TIMESLICE|. The

of a systentick. A tick is defined by the fixed yefaults are set @10._500] msecs. The
deIta(l/HZ_) of two consecutiye timer_inter- higher the priority of a task the longer its
rupts. In Linux 2.5:HZ=1000, i.e. the inter- imeglice . A task’s initial timeslice is de-
rupt routinescheduler_tick() is called  qycted from parents’ remaining timeslice. For
once every msec at which time the currentlygery timer tick the running task’s timeslice is
executing task is charged a tick. decremented. If decremented to “0”, the sched-
) uler replenishes the timeslice, recomputes the
. effective priority and either reenqueues the task
into the active array if it is interactive or into
the expired array if it is non-interactive. It then

Besides thestatic priority (static_prio
each task maintains areffective priority

(prio ). The distinction is made in or-
der to account for certain temporary prior-
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picks the next best task from the active arraysource container is introduced that accounts
This guarantees that all others tasks will exefor timeslices consumed by the tasks currently
cute first before any expired task will run again.assigned to the class. Initially, the timeslice
If a task is descheduled, its timeslice will not7'S;, i=[1... N] of each clasg’; is determined
be replenished at wakeup time, however its efby T'S; = S;** x STE. The timeslice allo-
fective priority might have changed due to anycated to a tasks(p) remains the same as in
sleep time. O(1). Everytime a task consumes one of its

_ o own timeslice ticks, it also consumes one from
If all runnable tasks have expired their times-ihq class’ timeslice. When a class’ ticks are

lices and have been moved to the expiredynaysted, the task consuming the last tick is
list, the expired array and the active armaypyt into the expired array. When the sched-
are swapped. This makes the scheduler O(L)ier picks other tasks from the same class to
as it d_oes not have to traverse a potentlall)fun, they immediately move to the expired ar-
large list of tasks as was needed in the 2.4,y a5 well. Eventually the expired and active
scheduler. Due to interactivity the situation arrays are switched at which time all resource
can arise that the active queue continues tQqniainers are refilled t6S. — S x STE.
have runnable tasks. As a result tasks in th&nce the array switch occurs as soon as the ac-
expired queue might get starved. To avoidjye |ist becomes empty, this approach is work
this, if the longest expired task is older thanconserving (the CPU is never idle if there are
STARVATION_LIMIT=10secs, the arrays are rynnaple tasks). A variant of this approach was
switched again. initially implemented by [17] based on a patch
from Rik van Riel for allocatingequal shares

3.2 CPU Share Extensions to the Linux Sched- to all usersin the system.

uler
However, WFS has some problems. If the tasks

We now examine the problem of extending theof a class are CPU bound and ... ts(p) >
O(1) scheduler to allocate CPU time to classeq’S; then a class could exhaust its timeslice be-
in proportion of their CPU shares. Propor-fore all its tasks have had a chance to run atleast
tional share scheduling of CPUs has been studbnce. Therefore the lower priority tasks of the
ied in depth [7, 21, 13] but not in the context class could perpetually move from the active
of making minimal modifications to an exist- to expired lists without ever being granted exe-
ing scheduler such as O(1). cution time. Starvation occurs because neither
the static priority (sp) nor the sleep average (sa)
of the tasks is changed at any time. Hence each
Yask’s timeslicets(p) = ®(sp) and effective
oo priority ep(p) = ®(sp, sa) remain unchanged.
SHARE_TIME_EPOCKSTE) be the time in-  ace the relative priority of tasks of a class
terval, measured in ticks, over which the modi-p o ar changes (in a CPU bound situation) nor

fied scheduler attempts to maintain the propory,as the amount of CPU time consumed by the
tions of allocated CPU time. Further, we usehigher priority tasks.

®(a) and®(a, b) to denote a functions of pa-
rameters a and b. To ensure a fair share for individual tasks

, , ] within classes, we need to ensure that the rate
Weighted Fair Share (WFS): Inthe firstap- ot hrogress of a task depends on the share as-

proach considered, henceforth called weighted;gneq'to its class. Three approaches to achieve
fair share (WFS), a per class scheduling re-

Let C;, i=[1...N] be the set of N dis-
tinct classes with corresponding cpu share
SPY such that YN, 97 = 1.  Let
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this are discussed next. with WFS+T1 is that smaller timeslices for
tasks could lead to increased context switches

Priority modifications (WFS+P): Let a \ith potentially negative cache effects.

switching intervalbe defined as the time in-

terval between consecutive array switches offo avoid reducings(p)’s, WFS+T2 increases
the modified scheduler); be its duration and T'S; of a starving class to make .., ts(p) =

t; andt;, be the timestamps of the switches.T'S; i.e. the class does not exhaust its times-
In the priority modifications approach to al- lice until each of its tasks have exhausted their
leviating starvation in WFS, henceforth calledindividual timeslices. To preserve the relative
WFS+P, we track the number of array switchegproportions between class timeslices, all other
se at which a task got starved due to its class'class timeslices also need to be changed ap-
timeslice exhaustion and increase the task’s efpropriately. Doing so would disturb the same
fective priority based orse, i.e. ep(p) = equality for those classes and hence WFS+T2
®(sp, sa, se). This ensures that starving tasksis not a workable approach.

eventually get theirep high enough to get a

chance to run at which poin is reset. The IWwo-level scheduler: Another way to regu-
drawback of this approach is that the increasedft€ CPU shares in WES is to take tasks out
scheduler overhead of tasks being selected fd the runqueue upon timeslice exhaustion and

execution and moving directly to the expired "€tUrn them to the runqueue at a rate commen-
list due to class timeslice exhaustion, remainSurate with the share of the class. A prototype

unchanged. implementation of this approach was described
in [17] in the context of user-based fair sharing.
Timeslice modifications (WFS+T1, This approach effectively implements a two-

WFS+T2): Recognizing that starvation level scheduler and is illustrated in Figure 2. A
can occur in WFES for clasg’; only if modified O(1) scheduler forms the lower level
Ypec, ts(p) > T'S;, the timeslice modification and a coarse-grain scheduler operates at the
approaches attempt to change one or thepper level, replenishing class timeslice ticks.
other side of the inequality to convert it to anIn the modified O(1), when a task expires, it
equality. In WFS+T1, the left hand side of theis moved into a FIFO list associated with its
inequality is changed by reducing the times-class instead of moving to the expired array.
lices of each task of a starved class as followsAt a coarse-granularity determined by the up-
Let exh; = X ,cc, ts(p) — T'S; when class per level scheduler, the class receives new time
timeslice exhaustion occurs. At array switchticks and reinserts tasks from the FIFO back
time, eachts(p) is multiplied by \; = Tsﬁjxhi into O(1)’s runqueue. Class time tick replen-
which results in the desired equality. WFS+Tlishment can be done for all classes at every ar-
is slow to respond to starvation because taskay switch point but that violates the O(1) be-
timeslices are recomputed in O(igforethey  haviour of the scheduler as a whole. To address
move into the expired array and not at arraythis problem, [17] uses a kernel thread to re-
switch time. Hence any task timeslice changeglenish 8 ms worth of ticks to one class (user)
take effect only one switching interval later every 8 ms and round robin through the classes
i.e. two intervals beyond the one in which (users). A variant of this idea is currently being
starvation occurred. One way to address thigxplored.

problem is to treat a task as having exhausted

its timeslice wherts(p) gets decremented to

(1—\; xts(p)) instead of 0. A bigger problem
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o Token ] is outside the scope of general kernel develop-
eplenis. en .
ment and this paper.
( ) Class-based resource management requires

TASK REACTIVATIO! two fundamental changes to the traditional ap-
switch proach to 1/0 scheduling. First, I/O requests
should be managed based on the priority or
weight of the request submitter with disk uti-
lization being a secondary, albeit important ob-
_\a&tff;teo jective. Second, I/O requests should be associ-
seeee i s Foennns ated with the class of the request submitter and
not a process or task. Hence the weight associ-
ated with an 1/0 request should be derived from
the weight of the class generating the request.

The first change is already occurring in the de-
velopment of the 2.5 Linux kernel with the de-
velopment of different 1/O schedulers such as
deadline, anticipatory, stochastic fair queueing
4 Disk scheduling and complete fair queueing. Consequently, the
additional requirements imposed by the sec-
o , ond change (scheduling by class) are relatively
The 1/0O scheduler in Linux forms the interface ... or  This fits in well with our project goal
between the generic block layer and the oWyt minimal changes to existing resource sched-
level device drivers. The block layer prowdesmers_
functions which are used by filesystems and the
virtual memory manager to submit I/O requestsWe now describe the existing Linux 1/0 sched-
to block devices. These requests are transilers followed by an overview of the changes
formed by the I/O scheduler and made avail-being proposed.
able to the low-level device drivers (henceforth
only called device drivers). Device drivers 41 Existing Linux /O schedulers
consume the transformed requests and forward
them, using device specific protocols, to the de-
vice controllers which perform the I/O. Since The various Linux 1/O schedulers can be ab-
prioritized resource management seeks to regstracted into a generic model shown in Fig-
ulate the use of a disk by an application, theure 3. 1/O requests are generated by the
I/O scheduler is an important kernel compo-block layer on behalf of processes access-
nent that is sought to be changed. Itis also posng filesystems, processes performing raw 1/0O
sible to regulate disk usage in the kernel layerand from the virtual memory management
above and below the I/O scheduler. ChangindVMM) components of the kernel such as
the pattern of 1/0 load generated by filesytemsswapd, pdflush etc. These producers of 1/0
or the virtual memory manager (VMM) is an requests call __make_request() which invokes
important option. A less explored option is various I/O scheduler functions such as eleva-
to change the way specific device drivers ortor_merge_fn. The enqueuing functions’ gen-
even device controllers consume the 1/0O re<erally try to merge the newly submitted block
guests submitted to them. The latter approach/O unit (bio in 2.5 kernels, buffer_head in

Figure 2: Proposed two-level CPU scheduler
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2.4 kernels) with previously submitted requestsequest is placed in the internal queue sorted
and sort it into one or more internal queues. Toby the starting device block number of the re-
gether, the internal queues form a single logquest. This minimizes disk seek times if the
ical queue that is associated with each blocldisk processes requests in FIFO order from the
device. At a later point, the low-level de- queue. An aging mechanism limits the num-
vice driver calls the generic kernel function ber of times an existing request can get by-
elv_next_request() to get the next request fronpassed by a newer request, preventing starva-
the logical queue. elv_next_request interactsion. The dequeue function is simply a removal
with the 1/0 scheduler’s dequeue function ele-of requests from the head of the internal queue.
vator_next_req_fn and the latter has an opporElevator_linus also has the welcome property
tunity to pick the appropriate request from oneof improving request response timageraged

of the internal queues. The device driver therover all processes.

processes the request, converting it to scatter- )

gather lists and protocol-specific commandd2€adline /O scheduler: The 2.5 kernel's
that are then sent to the device controller. Adéfault /O scheduler (deadline_iosched) in-
far as the I/0 scheduler is concerned, the blocroduces the notion of a per-request deadline
layer is the producer of 1/O requests and the deWhich is currently used to give a higher pref-
vice drivers are the consumers. Strictly speak€€nce to read requests. Internally, it main-
ing, the block layer includes the I/0 scheduler@ins five queues. During enqueing, each re-

but we distinguish the two for the purposes ofduest is assigned a deadline and inserted into
our discussion. gueues sorted by starting sector (sort_lestyl

by deadline (fifo_list). Separate sort and fifo
Block layer lists are maintained for read and write requests.
(producer) The fifth internal queue contains requests to be
handed off to the driver. During a dequeue

I/0 Scheduler operation, if the dispatch queue is empty, re-
fE“q“‘?“e guests are moved from one of the four sort
unctions . . . :
Sort/Merge or fifo lists in batches. Thereafter, or if the
Internal dispatch queue was not empty, the head re-
Queue (s) guest on the dispatch queue is passed on to the
Prioritize driver. The logic for moving requests from the
D . .
fona sons sort or fifo lists ensures th_at eac_h read request
is processed by its deadline without starving
1 write requests. Disk seek times are amortized
Low-level by moving a large batch of requests from the
Device Driver sort_list (which are likely to have few seeks as
(consumer)

they are already sector sorted) and balancing it
with a controlled number of requests from the
fifo list (each of which could cause a seek since
Default 2.4 Linux I/O scheduler: The 2.4 they are ordered by deadline and not sector).
Linux kernel's default 1/0 scheduler (eleva- | "US, deadline_iosched effectively emphasizes
tor_linus) primarily manages disk utilization. average read request response times over disk
It has a single internal queue. For each neV\wtlllzatlon and total average request response

bio, the 1/0 scheduler checks to see if it can bdM€:
merged with an existing request. If not, a new

Figure 3: Abstraction of Linux I/O scheduler
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Anticipatory 1/0O scheduler: The anticipatory cess granularity.

I/O scheduler [9, 4] attempts to reduper- , _ )
processread response times. It introduces aC€llo disk scheduler: Cello is a two-level
controlled delay in dispatchingny new re- I/O scheduler [16] that distinguishes between

quests to the device driver, thereby allowingClasses of I/O requests and allows each class
a process whose request just got serviced i De serviced by a different policy. A coarse

submit a new request, potentially requiring a9r&in class-lndependent scheduler decides how
smaller seek. The tradeoff between reduced@nY requests to service from each class. The
seeks and decreased disk utilization (due to the€cond level class-dependent scheduler then

additional delays in dispatch) are managed usd€cides which of the requests from its class
ing a cost-benefit calculation. anticipatory 1/0 should be serviced next. Each class has its own

scheduling method is an additional optimiza-iNt€rnal queue which is manipulated by the

tion that can potentially be added to any of thelass-specific scheduler.  There is one output
/O scheduler mentioned in this paper gueue common to all classes. Enqueuing into
the output queue is done by the class-specific

Complete Fair Queueing 1/0O scheduler: schedulers in a way that ensures individual re-
Two new 1/O schedulers recently proposedquest deadlines are met as far as possible while
in the Linux kernel community, introduce reducing overall seek time. Dequeuing from
the concept of fair allocation of I/O band- the output queue occurs in FIFO order as in
width amongst producers of I/O requests. Thamost of the previous I/O schedulers. Cello has
Stochastic Fair Queueing (SFQ) scheduler [5peen shown to provide good isolation between
is based on an algorithm originally proposedclasses as well as the ability to meet the needs
for network scheduling [11]. It tries to appor- of streaming media applications that have soft
tion I/O bandwidth equally amongst giro- realtime requirements for I/O requests.
cessedn a system using 64 internal queues

and one output (dispatch) queue. During ary 2 costa: Proposed I/O scheduler
enqueue, the process ID of the currently run-

ning process (very likely to be the 1/0O request__ i ,
producer) is used to select one of the inter-1 Nis paper proposes that a modified version of

nal queues and the request inserted in Fiedhe class-independent scheduler of the Cello

order within it. During dequeue, SFQ round- I/O scheduling framework can provide a low-
robins through the non-empty internal queuesoverhead class-based I/0 scheduler suitable for

picking requests from the head. To avoid tooCKRM’s goals.

many seeks, one full round of requests arerne ey difference between the proposed
collected, sorted and merged into the dispatcRepeqyler called Costa and Cello is the elimina-
queue. The head request of the dispatch queyg,, of the class-specific I/0 schedulers which
is then passed to the device driver. Completg,,y he add unnecessary overhead for CKRM's
Fair Queuing is an extension of the same apg,q| of 1/0 bandwidth regulation. Fig 4 illus-
proach where no hash function is used. Henc@ o the Costa design. When the kernel is
each process in the system has a correspondanfigyred for CKRM support, a new internal
ing internal queue and can get an fair shargy e e is created for each class that gets added
of the I/O bandwidth (equal share if all pro- v, the Kkernel. Since each process is always
cesses generate I/O requests at the same ratghqqciated with a class, 1/O requests that they

Both CFQ and SFQ manage per-process /Qenerate can also be tagged with the class id
bandwidth and can provide fairmess at a progng ysed to enqueue the request in the class-
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Block layer width in proportion of their weights with the
(producer) set of queues at a higher level always getting
g serviced first. Some check for preventing star-
Sort/Merge Funntion vation of lower priority queues could be used
similar to the ones used in deadline_iosched.

Per-class queues

- - 5 QoS Networking in Linux
Dequeue
function

Many research efforts have been made in net-

Output . ) : :
gugfe working QoS (Quality of Service) to provide
quality assurance of latency, bandwidth, jitter,
FCFS and loss rate. With the proliferation of mul-
timedia and quality-sensitive business traffic,
it becomes essential to provide reserved qual-
Low-level . . . .
Device Driver ity services (IntServ [23]) or differentiated ser-
(consumer) vices (DiffServ [2]) for important client traffic.

Figure 4: Proposed Costa I/O scheduler  The Linux kernel has been offering a well es-
tablished QoS network infrastructure for out-

bound bandwidth management, policy-based
specific internal queue. The request->class asouting, and DiffServ. Hence, Linux is being
sociation cannot be done through a lookup ofwvidely used for routers, gateways, and edge
the current process’ class alone. During de- servers, where network bandwidth is the pri-
gueue, the Costa I/O scheduler picks up remary resource to differentiate among classes.

guests from several internal queues and sorts ) ,
them into the common dispatch queue. The/Vhen it comes to Linux as an end server OS,

head request of the dispatch queue is theRN the other hand, networking QoS has not
handed to the device driver. been given as much attention because QoS is

primarily governed by the system resources
The mechanism also allows internal queues teuch as CPU, memory, and I/O and less by
be associated witlsystemclasses that group the network bandwidth. However, when we
I/O requests coming from important produc-consider the end-to-end service quality, we
ers such as the VMM. By separating these outalso should require networking QoS in the end
Costa can give them preferential treatment foservers as exemplified by the fair share admis-
urgent VM writeout or swaps. sion control mechanism proposed in this sec-

In addition to a weight value (which deter- tlon

mines the fraction of I/0 bandwidth that a classin the rest of the section, we first briefly intro-
will receive), the internal queues could alsoduce the existing network QoS infrastructure
have an associataatiority value which deter- of Linux. Then, we describe the design of the
mines their relative importance. At a given pri- fair share admission control in Linux and pre-
ority level, all queues could receive 1/0 band-liminary performance results.
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5.1 Linux Traffic Control, Netfilter, DiffServ havior (PHB) collectively to aggregate traffic
classes that are identified by a 6-bit code point

_ ] ) in the IP header. Classification and condition-

The Linux traffic control [8] consists of queue- ing are typically done at the edge of a DiffServ
ing disciplines (qdisc) and filters. A qdisc con- yomain. The domain is a contiguous set of

sists of one or more queues and a packet scheflg jeg compliant to a common PHB. The Diff-
uler. It makes traffic conform to a certain pro- ger, pHB s supported in Linux [22]. Classes,
file by shaping or policing. A hierarchy of 4, hrecedence, code point marking, and con-
qdiscs can be constructed jointly with a classyjtjoning can be implemented by qdiscs and fil-
hierarchy to make different traffic classes gov-o.s At the end servers, the code point can be

erned by proper traffic profiles. Traffic can j,5,keq by setting th®®_TOS socket option.
be attributed to different classes by the filters -

that match the packet header fields. The filtetn the policy based networking [18], a pol-
matching can be stopped to police traffic abovecy agent can configure the traffic classification
a certain rate limit. A wide range of qdiscs of edge and end servers according to a pre-
ranging from a simple FIFO to classful CBQ defined filtering rules that match layer 3/4 or
or HTB are provided for outbound bandwidth layer 7 information. Netffilter, qdisc, and appli-
management, while only one ingress qdisc igation layer protocol engines can classify traf-
provided for inbound traffic filtering and polic- fic for differentiated packet processing at later
ing [8]. The traffic control mechanism can stages. Classifications at prior stages can be
be used in various places where bandwidth isverridden by the transaction information such
the primary resource to control. For instanceas URI, cookies, and user identities as they are
in service providers, it manages bandwidth alknown. It has been shown that a coordination
location shared among different traffic flows of server and network QoS can reduce end-to-
belonging to different customers and servicesnd response time of important client requests
based on service level agreements. It also casignificantly by virtual isolation from the low
be used in client sites to reduce the interferenceriority traffic [15].

between upstream and downstream traffic and

to enhance the response time of the interactivg ,  piqritized Accept Queues with Propor-

and urgent traffic. tional Share Scheduling

Netfilter provides sophisticated filtering rules

and targets. Matched packets can be accepted/e present here a simple change to the existing
denied, marked, or mangled to carry out vari-Linux TCP accept mechanism to provide dif-
ous edge services such as firewall, dispatcheferentiated service across priority classes. Re-
proxy, NAT etc. Routing decisions can becent work in this area has introduced the con-
made based on the netfilter markings so packeept of prioritized accept queues [19] and ac-
ets may take different routes according to theircept queue schedulers using adaptive propor-
classes. The gdiscs would enable various Qo8onal shares to self-managed web servers [14].

features in such edge services when used with ) N
Netfilter. Netfilter classification can be trans- Under certain load conditions [14], the TCP ac-

ferred for use in later qdiscs by markings orC€Pt queue of each socket becomes the botle-
mangled packet headers. neck in network input processing. Normally,
listening sockets fork off a child process to
The Differentiated Service (DiffServ) [2] pro- handle an incoming connection request. Some
vides a scalable QoS by applying per-hop beeptimized applications such as the Apache web
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0 The accepting process schedules connection
450 | 1 acceptance according to a simple weighted
= w0l Ol Shac0s e ] deficit round robin to pick up connection re-
4 guests from each queue according to its as-
% 350 | i 7 signed share. The share, or weight can be as-
£ 30| /_,:-_{/ | signed by the sysctl interface.
—;t 250 | 1 In the basic priority accept queue design pro-
g 200 1 | posed earlier in [6], starvation of certain pri-
a ority classes was a possibility as the accept-
150 7 ing process picked up connection requests in
100 a descending priority order. With a propor-

100 150 200 250 300 350 400 450 500 550 600 tional share scheme in this paper, it is easier
Request Rate (connection requests/scc) to avoid starvation of particular classes to give

Figure 5: Proportional Accept Queue Results.Share guarantees to low priority classes.

The efficacy of the proportional accept queue
mechanism is demonstrated by an experiment.

server maintain a pool of server processes t§ the experiment, we used Netfilter with man-
perform this task. When the number of incom-9l€ tables andMARKoptions to characterize
ing requests exceeds the number of static podfaffic into priority classes based on source IP
servers, additional processes are forked up tgddress. Hitperfs from two client machines
a configurable maximum. When the incom-S€nd requests to an Apache web server run-
ing connection request load is higher than thd"ing On a single server over independent giga-
level that can be handled by the available servepit Ethernet connections. The only Apache pa-
processes, requests have to wait in the accef@Mmeter changed from the default was the max-
queue until one is available. imum number of httpd threads. This was set to
50 in the experiment.
In the typical TCP connection, the client initi-
ates a request to connect to a server. This cor-igure 5 shows throughput of Apache for two
nection request is queued in a single global acPriority classes, sharing inbound connection
cept queue belonging to the socket associategandwidth by 7:3. We can see that the through-
with that server’s port. Processes that perfornPut Of the priority class O requests is slightly
anaccept() call on that socket pick up the higher than that_ of the priority clgss 1 requests
next queued connection request and process #/hen the load is low. As load increases, the
Thus all incoming connections to a particmaracceptance rates to the priority classes 0 and 1

TCP socket are serialized and handled in FIFQVill bé constrained in proportion to their rel-
order. ative share, which in turn determines the pro-

cessing rate of the Apache web server and con-
We replace the existing single accept queue patection request queueing delay. Under a severe
socket with multiple accept queues, one forload, the priority class 0 requests are processed
each priority class. Incoming traffic is mappedat a considerably higher throughput.
into one of the priority classes and queued on
the accept queue for that priority. There are
eight priority classes in the current implemen-
tation.
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6 Controlling Memory tual address space of a process—must be cal-
culated as a function of the proportions (or pri-
orities) that are used for CPU scheduling. Be-

While many other system resources can be&ause this type of memory management has re-

managed according to priorities or proportionsceived little applied or academic attention, our

virtual memory managers (VMMurrently do  work in this area is still nascent. We present

not allow such control. Theesident set size here the structural changes to the Linux VMM

(RSS)of each process—the number of phys-necessary for proportional/prioritized memory

ical page frames allocated to that processmmanagement; we also present previous, appli-

will determine how often that process incurscable research, as well as future research di-

a page fault. If the RSS of each process igections that will address this complex prob-

not somehow proportially shared or prioritized,lem. While the proportional/prioritized man-

then paging behavior can overwhelm and unagement of memory is currently less well de-
dermine the efforts of other resource manageveloped than the other resources presented in
ment policies. this paper, it is necessary that it be comparably

_ ) developed.
Consider two processed, and B, where A is

assigned a larger share thahwith the CPU
scheduler. IfA is given too small an RSS and
begins to page fault frequently, then it will not
often be eligible for scheduling on the CPU. Consider a function that explicitly calculates
Consequently3 will be scheduled more often the desired RSS for each address space—the
than A, and the VMM will have become the target RSS-when the footprints of the active
de factoCPU scheduler, thus violating of the address spaces exceeds the capacity of main
requested scheduling proportions. memory. After this function sets these targets,
a system couldmmediatelybring the actual
Furthermore, it is possible for most existing Rss into alignment with these targets. How-
VMM pOliCieS to exhibit a SpeCifiC kind of de- ever, dOing S0 may require a substantial num-
generative behavior. Once processrom the per of page swapping operations. Since disk
example above begins to page fault, its infregperations are so slow, it is inadvisable to use
guent CPU scheduling prevents it from ref'aggressive, pre-emptive page swapping. In-
erencing its pages at the same rate as otheftead, a system should seek to move the the ac-
frequently scheduled processes. Thereforgal RSS values toward their targets inaay
its pages will become more likely to evicted, fashion, one page fault at a time. Until the ac-
thereby reducing its RSS. The smaller RSyl RSS of address space matches its target, it

will increasethe probability of further page can be labeled as being eitherércesr in
faults. This degenerative feedback loop will §eficitof its target.

cease only when some other process either ex-

its or changes its reference behavior in a manAs the VMM reclaims pages, it will do so

ner that reduces the competition for main memfrom address spaces with excess RSS values.

ory space. This approach to page reclamation suggests
a change in the structure of thmage lists—

Main memory use must be controlled just asgpecifically, theactive and inactive lists that

space—the logical space defined either by a

file or by the anonymous pages within the vir-  lin the Linux community, these are known as the

6.1 Basic VMM changes
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VMM usesglobal page lists. If this approach resultin superfluous allocations to some virtual
to ordering pages in unchanged, then the VMMmachines. If the target RSS for some virtual
would have to search the page lists for pagemachine is larger than necessary, and some of
that belong to the desired address spaces th#te main memory reserved for that virtual ma-
have excess RSS values. Alternatively, onehine is rarely useqgthen its target RSS should
pair of page lists—activeandinactive—could be reduced. Waldspurger addresses this prob-
exist for each address space. The reclamatiolem with ataxation policy In short, this policy

of pages from a specific address space woulgenalizes each virtual machine for unused por-
therefore require no searching. tions of its main memory share by reducing its

) _ target RSS.
By ordering pages separately with each address

space, we also enable the VMM to more eas-
ily track reference behavior for each addres
space. While the information to be gathere%

would depend on the underlying policy that S€could easily be generalized so that it can apply

Iects_target RSS valu_es, we belleve_ that Suc'fb address spaces within Linux instead of vir-
tracking may play an |.m.portant role in the de-y,4| machines on an ESX Server. Specifically,
velopment of such policies. we must describe how shares of main memory

Note that the target RSS values would need t§Pace can be assigned to each address space.
be recalculated periodically. While the period G'ven those shares, target RSS values can be
should be directly proportional to theemory calculated in the same manner as for virtual
pressure—some measure of the current work-Machines in the original research.

'OaFj’S demand for main memory s_pace—|t 'S 8The taxation scheme requires that the system
topic of future research to determine what thatOe able to measure the active use of pages in
period should be. By coupling the period 1Eoreach address space. Waldspurger used a sam-
target RSS calculations to the memory presbling strategy where some number of randomly

sure, we can ensure that this strategy only Nselected pages for each virtual machine were

curs signiﬂcan_t compl_JtationaI overhead Wherbccess protected, forcingninor page faults
heavy paging is occuring. to occur upon the first subsequent reference
to those pages, and therefore giving the ESX
6.2 Proportionally sharing space Server an opportunity to observe those page
uses. The same approach could be used within
Waldspurger [20] describes a method of prothe Linux VMM, where a random sampling
portionally sharing the space of a system runof pages in each address space would be ac-
ning VMWare’s ESX Server between a numbercess protected. Alternatively, a sampling of the
of virtual machines. Specifically, as with a pro- pages’ reference bits could be used to monitor
portional share CPU scheduler, memory shareislle memory.
can be assigned to each virtual machine, and

Waldspurger’s policy will calculate target RSS\C/)Vgldshpurger ofbserves that, W'th'n a r;ormal
values for each virtual machine. , the use of access protection or reference

bits, taken from virtual memory mappings, will
Proportionally sharing main memory space camot detect references that are a result of DMA
transfers. However, since such DMA transfers

pplication to the Linux VMM.  This ap-
roach to proportionally sharing main memory

LRU lists However, they only approximate an LRU or-
dering, and so we refer to them only gege lists 2Waldspurger refers to such space as biifey
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are scheduled within the kernel itself, those reffairly divide the utility of a system among com-
erences could also be explicitly counted withpeting clients (e.g., processes, users, service

help from the DMA scheduling routines. classes). It is relatively simple to divide the
utility of the CPU because that utility ikn-
6.3 Future directions ear andindepedent One second of scheduled

CPU time yields a nearly fixed number of exe-

The description above does not address a pap_uted instructions Therefore, each additional

ticular problem:shared memorySpace can be second of scheduled CPU time nearly yields
shared between threads or processes in a nurfi-constant increase in the number of executed
ber of ways, and such space presents imporlpstructions. Furthermore, the utility of CPU

tant problems that we must solved to achieve §°€S not depend on the computation being per-
complete solution formed: Every process derives equal utility

from each second of scheduled CPU time.

i Memory, however, is a more complex resource
The problem of shared spaces. The assign-  pecayse its utility is neither independent nor

ment of shares to an address space can be Coflier |dentical RSS values for two processes
plicated whgn that address space is shared l?%ay yield vastly different numbers of page
processes in different process groups Or e its’for each process. The number of page

vice classes. One simple approach is for eacl, i js dependent on the reference patterns of
address space to belong to a specific servicg,qh process.

class. In this situation, its share would be de-

fined only by that service class, and not by theTo see the non-linearity in the utility of mem-
processes that share the space. Another apry, consider two processe4,andB. Assume
proach would be for each shared address spadkat for A, an RSS ofp pages will yieldm

to adopt the highest share value of its shareehisses, wheren > 0. If that RSS were in-
tasks or processes. In this way, an importantreased t@ + ¢ pages, the number of misses
process will not be penalized because it is shaiincurred by A may take any valuen’ where
ing its space with a less important process. 0 < m’ < m* Changes in RSS do not im-

_ ply a constant change in the number of misses
Note that this problem does not apply only tog ¢ered by an address space.
memory mapped files and IPC shared mem-

ory segments, but to any shared space. Fdrhe proportial sharing of memospacethere-
example, the threads of a multi-threaded profore, does not necessarily achieve the stated
cess share a virtual address space. Similarlgoal of fairly dividing the utility of a system.
when a process calferk() , it creates a new Consider thatdA should receive 75% of the
virtual address space whose pages are sharsgistem, whileB should receive the remain-
with the original virtual address space usinging 25%. Dividing the main memory space by
the copy-on-write (COW)mechanism. These these proportions could yeild heavy page fault-
shared spaces must be assigned proportional

shares even though the tasks and processes us-*We assume no delays to access memory, as memory

ing them may themselves have differing sharegs a separate resource from the CPU.
“We ignore the possibility oBelady’s anomalj],
in which an increase in RSS could imply an increase in
) . page faults. While this anomaly is likely possible for any
Proportionally sharing page faults. The reql, in-kernel page replacement policy, it is uncommon
goal of proportional share scheduling is toand inconsequential for real workloads.
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ing for A but not for B. Note also that none proposed here serve only as a starting point for
of the 25% assigned tB may be idle, and so future work and for discussion in the kernel
Waldspurger’s taxation scheme will not reducecommunity. Prototypes of some of the sched-
its RSS. Nonetheless, it may be the case thatalers discussed in this paper are under develop-
reduction in RSS by 5% foB may increase its ment and will be made available soon.

misses only modestly, and that an increase in

RSS by 5% forA may reduce its misses drasti-
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