
Strong Cryptography in the Linux Kernel
Discussion of the past, present, and future of strong cryptography in the Linux kernel

Jean-Luc Cooke
CertainKey Inc.

jlcooke@certainkey.com

David Bryson
Tsumego Foundation
david@tsumego.com

PGP:0x74B61620

Abstract

In 2.5, strong cryptography has been incorpo-
rated into the kernel. This inclusion was a
result of several motivating factors: remove
duplicated code, harmonize IPv6/IPSec, and
the usual crypto-paranoia. The authors will
present the history of the Cryptographic API,
its current state, what kernel facilities are cur-
rently using it, which ones should be using it,
plus the new future applications including:

1. Hardware and assembly crypto drivers

2. Kernel module code-signing

3. Hardware random number generation

4. Filesystem encryption, including swap
space.

1 History of Cryptography inside
the kernel

The Cryptographic API came about from two
somewhat independent projects: the interna-
tional crypto patch last maintained by Herbert
Valerio Riedel and the requirments for IPv6.

The international crypto patch (or ‘kerneli’)
was written by Alexander Kjeldaas and in-
tended for filesystem encryption, it has

grown to also optionally replace duplicated
code in the UNIX random character device
(/dev/*random). This functionality could not
be incorporated into the main line kernel at the
time because kernel.org was hosted in a na-
tion with repressive cryptography export reg-
ulations. These regulations have since been re-
laxed to permit open source cryptographic soft-
ware to travel freely from kernel.org’s locality.

The 2.5 kernel, at branch time, did not include
any built in cryptography. But with the advent
of IPv6 the killer feature of kernel space cryp-
tography has shown itself. The IPv6 specifica-
tion contains a packet encryption industry stan-
dard for virtual private network (VPN) tech-
nology. The 2.5 kernel was targeted to have
a full IPv6 stack–this included packet encryp-
tion. The IPv6 and kernel maintainers in their
infinite wisdom (!) saw an opportunity to re-
move duplicated code and encouraged the ker-
neli.org people to play with others.

And so, strong cryptography is now at the dis-
posal of any 2.5+ kernel hacker.

2 Why bring cryptography into
our precious kernel?

Cryptography, in one form or another, has ex-
isted in the main line kernel for many versions.
The introduction of the random device driver

Linux Symposium 129

by Theodore Ts’o integrated two well known
cryptographic (digest) algorithms, MD5 and
SHA-1. Other forms of cryptography were in-
troduced with the loopback driver (also writ-
ten by Theodore Ts’o) these included an XOR
and DES implementation for primitive filesys-
tem encryption.

The introduction of cryptography for filesys-
tem encryption, coupled with the kerneli
patches, allowed users to hook the loopback
device up to a cipher of their choosing. Thus
providing a solution for secure hard disk stor-
age on Linux.

With the advent of IPSec the introduction of
crypto into the kernel makes setting up en-
crypted IP connections extremely easy. Pre-
vious implementatinons have used userspace
hooks and required compilcated configuration
to setup properly. With IPSec being inside the
kernel much of those tasks can be automated.

More advanced features for cryptography in
the kernel will be explained throughout this pa-
per.

2.1 Example Code

The use of the API is quite simple and straight-
forward. The following lines of code show a
basic use of the MD5 hash algorithm on a scat-
terlist.

#include <linux/crypto.h>

struct scatterlist sg[2];
char result[128];
struct crypto_tfm *tfm;

tfm = crypto_alloc_tfm("md5", 0);
if (tfm == NULL)

fail();

/* copy data into */
/* the scatterlists */

crypto_digest_init(tfm);
crypto_digest_update(tfm, &sg, 2);
crypto_digest_final(tfm, result);

crypto_free_tfm(tfm);

Ciphers are implemented in a similar fashion
but must set a key value (naturally) before do-
ing any encryption or decryption operations.

#include <linux/crypto.h>

int len;
char key[8];
char result[64];
struct crypto_tfm *tfm;
struct scatterlist sg[2];

tfm = crypto_alloc_tfm("des", 0);
if (tfm == NULL)

fail();

/* place key data into key[] */
crypto_cipher_setkey(tfm, key, 8);

/* copy data into scatterlists */

/* do in-place encryption */
crypto_cipher_encrypt(tfm,sg[0],

sg[0],len);
crypto_free_tfm(tfm);

The encryption and decryption functions are
capable of doing in-place operations as well as
in/out (separate source and destination) opera-
tions. This example shows in-place opertaion.
By changing the encrypt line to:

crypto_cipher_encrypt(tfm,
sg[0], sg[1], len);

the code then becomes an in/out operation.

3 Kernel module code-signing

Signing of kernel modules has been a desired
addition to the kernel for a long time. Many

Linux Symposium 130

people have attempted to do some kind of au-
thenticated kernel module signing/encryption
but usually by the means of an external user-
mode program. With the movement of the
module loader into the kernel in the 2.4 se-
ries a truly secure module loader is possible.
The authors would like to propose a method for
trusted module loading.

To create the secure module structure we need
a way of designating a module as trusted. Dur-
ing compile time, a token can be created for
each module. The token contains two identi-
fiers.

• Time stamp token, denoting module cre-
ation time.

• A secure hash of the module in its com-
piled state.

After these three tokens are created they are
encrypted by an internal private key (protected
by a separate password of course) bound to the
kernel. The encrypted file is then stored in a
file on the local disk.

Loading of the module occurs as follows.

1. A request to load modulerot13 is made
by the system.

2. The kernel reads the encrypted file for
modulerot13 .

3. Using the kernels public key the file is
decrypted, and the tokens are placed in
memory

4. A hash is computed against the file on res-
ident disk of modulerot13 and com-
pared against the signed token.

5. If the hashes are equal the module is
trusted and code loaded into memory.

This allows for a large degree of flexibility.
Anybody on the system who has access to the
kernels public key can verify the validity of the
modules. Plus the kernel does not need to have
the private key in memory to authenticate since
the public key can do the decryption. Thus re-
ducing the time that the private key is stored in
resident memory unencrypted.

However this approach can only protect a sys-
tem to a point. If a malicious user is on your
system and is at the stage where they can load
modules (root access) this will only slow them
down. Nothing prevents them from compiling
a new kernel with a ‘dummy’ module loader
that skips this check (solutions to this problem
welcome!).

This system requires that the kernel contain
functionality to support arbitrarily large inte-
gers and perform asymmetric cryptography op-
erations. Currently, there is preliminary code
that supports this functionality, but has yet to
be formally tested or introduced to the commu-
nity.

4 Cryptographic Hardware and
Assembly Code

A new exciting aspect of cryptography in the
kernel is the ability to use hardware based cryp-
tographic accelerators. Many vendors offer a
variety of solutions for speeding up crypto-
graphic routines for symmetric and asymmet-
ric operations.

The chips provide cheap, efficient, and fast
cryptographic processors. These can be pur-
chased for as little as $80.00USD and offer a
considerable speedup for the algorithms they
support. The proposed method of integrating
hardware and assembly is to have the chip or
card register its capabilities with the API.

This way the API can serve as a front end to the

Linux Symposium 131

Figure 1: The proposed hardware interface
model

hardware driver module. Instead of a the hard-
ware registering “aes” it would register “aes-
<chipset name>” with the API. Calls to the API
can then specify which implementations of the
ciphers that are desired depending on what per-
formance is needed.

As of this writing (May 2003) there is also no
way to query the API for the fastest method it
has for computing a cipher. There is in the de-
sign stage an asynchronous system for dynam-
ically receiving requests and distributing them
to the various pieces of hardware (or software)
present on the system. The OpenBSD API and
cryptography sub-system is being used as a ref-
erence model.

This method would allow users of the API
to send queries to a scheduler with a call
similar to the current interface, but adding
using the cypher nameaes_fastest or
aes_hardware . The scheduler then sends
the requested command to a piece of hardware
that is waiting for requests, and fulfills the re-
quested hardware requirements.

Drivers that are currently finished and/or under
development include:

• Hifn series processors 7751 and 7951.

• Motorola MPC190 and MPC184 series.

• Broadcom BCM582[0|1|3] series.

4.1 Hardware Random Number Generation

Most cryptographic hardware and lately some
motherboards have been including a hardware
random number generation chip. These are
a wonderful source of generating entropy be-
cause they are both fast and produce very ran-
dom data. A set of free-running oscillators
usually generates the data. The oscillators fre-
quency clocks drift relative to each other and to
the internal clock of the chipset. Thus, produc-
ing randomly flipped bits in a specified ‘RNG’
register.

Random number generation in the kernel uses
interrupts from the keyboard, mouse, hard disk,
and network interfaces to create an entropy
pool. This entropy pool produces the out-
put of /dev/random and the less secure
/dev/urandom .

The current interface is missing a way to
add random data from an arbitrary hardware
source. By using tying the random driver into
the Cryptographic API the random driver can
gain both extra sources of entropy and the ac-
celeration from making its MD5 and SHA-
1 functions available for hardware execution.
The result would be a faster and better entropy
pool for random data generation.

5 Filesystem encryption

By far, the cryptographic API has the largest
user-base with filesystem encryption. Sev-
eral distributions have shipped with support for
filesystem loopback encryption for over a year.
Let us take a moment to explore the details of

Linux Symposium 132

filesystem encryption. When a write or read re-
quest occurs in the kernel the information des-
tined for a device passes through the VFS layer,
then down through the device driver layer and
onto the physical media.

Figure 2: A diagram of the Linux VFS

Looking for a place to encrypt the data isn’t
easy, we could intercept the information at the
VFS layer, but the result is encrypted data with
plaintext metadata. Thus giving an attacker an
edge, for example being able to track down
your /tmp/.SCO_source_code directory
and begin attacking the encrypted data there.
The next place to intercept the plaintext data
would be at the filesystem level. But writing
per filesystem hooks to encrypt both filesystem
data and filesystem metadata would be a night-
mare to implement, not to mention a horrible
design decision. So the only place left is some-
where outside of the filesystem code, but be-
fore the data is passed to the device driver for
the media. Enter loopback drivers.

The loopback device driver in Linux allows
us to send the data (plaintext) and metadata
(plaintext) through a layer of memory copying

before it is written to a device. Here is where
the encryption will be done—this way all data
written to the device can be encrypted instead
of just the filesystem data.

Figure 3: A diagram of the loopback encryp-
tion layer

By using the loopback driver an added level of
flexibility is added. Users can have their home
directories stored as large encrypted files on the
primary drive. These would then be loaded via
the cryptographic loopback driver upon login
and unmount when the user exits all sessions.

5.1 Swap memory Encryption

Encryption of swap is a difficult problem to
approach. Any system in which the filesys-
tem data is encrypted has the chance of the
data being moved out to swap memory when
the OS gets low on RAM. This can easily
be solved by ‘locking’ all memory into RAM
and not allowing it to be swapped to a physi-
cal media with themlock() function. How-
ever, this vastly reduces the usability of the sys-
tem (Linux tends to kill processes when out of

Linux Symposium 133

memory). In the past, Linux has implemented
encrypted swap with a loopback device run-
ning through the swap accesses. This approach
works, but is slow and cumbersome to imple-
ment.

What is needed is a policy for encryptingall
pages swapped to disk. The OpenBSD com-
munity has had a similar policy for a long time
and feels that the performance loss (roughly
2.5 times longer to write a page to disk) is
worth the added security.

The 2.4 series crypto (not a part of the main-
line the kernel) named the “International Ker-
nel Cryptography Patch” included a loopback
encryption driver. The driver had limited fea-
tures but did the job of encrypting data fairly
well. In the 2.5 series driver there have been
some performance improvements, like multi-
threaded (and SMP) reading from loopback de-
vices, and code readability improvements.

6 Userspace Access

Access to the API is not currently possible
from user space. Discussions over how to im-
plement this have come up with a variety of
proposals. The current direction is to have a
device provide access to the API via ioctls.

Compatibility with the already mature
OpenBSD API has been suggested. This
would decrease application porting time to
almost nothing.

7 Final Comments

Thus far the 2.5 Cryptographic API has been
under constant development with the adding of
new ciphers and functionality since its inclu-
sion in the kernel. The API is young and has
promising plans to expand, hopefully the au-
thors of this paper have given you an adequate

intro to the capabilites of the API.

References

[Bryson] David Bryson,The Linux CryptoAPI: A
Users Perspective. 16 May 2002.
http://www.kerneli.org/howto/
index.php .

[Morris] Morris, James, and David S. Miller.
Scatterlist Cryptographic API. 10 May.
2003. Linux Kernel Documentation linux/
Documentation/crypto/api-intro.txt.

[Steve] Steve,steve@trevithick.net . Re:
[CryptoAPI-devel] Re: hardware crypto
support for userspace ?11 Dec. 2002 via
http://www.kerneli.org/
pipermail/cryptoapi-devel .

[Hifn] Hifn, Inc. 7951 Data Sheet - Device
Specification. 2 June. 2001.
http://www.hifn.com/docs/a/
DS-0028-02-7951.pdf .

[Provos] Provos, Niels.Encrypting Virtual Mem-
ory. http://www.openbsd.org/

papers/swapencrypt.ps .

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

