
Porting NSA Security Enhanced Linux to Hand-held
devices

Russell Coker
russell@coker.com.au

http://www.coker.com.au/

Abstract

In the first part of this paper I will describe how
I ported SE Linux to User-Mode-Linux and to
the ARM CPU. I will focus on providing infor-
mation that is useful to people who are porting
to other platforms as well. In the second part
I will describe the changes necessary to appli-
cations and security policy to run on small de-
vices. This will be focussed on hand-held de-
vices but can also be used for embedded appli-
cations such as router or firewall type devices,
and any machine that has limited memory and
storage.

1 Introduction

SE Linux offers significant benefits for secu-
rity. It accomplishes this by adding another
layer of security in addition to the default Unix
permissions model. This is achieved by firstly
assigning atype to every file, device, network
socket, etc. Then every process has adomain,
and the level of access permitted to a type is
determined by the domain of the process that is
attempting the access (in addition to the usual
Unix permission checks). Domains may only
be changed at process execution time. The do-
main may automatically be changed when a
process is executed based on the type of the
executable program file and the domain of the
process that is executing it, or a privileged pro-
cess may specify the new domain for the child

process.

In addition to the use of domains and types
for access control SE Linux tracks theidentity
of the user (which will besystem_ufor pro-
cesses that are part of the operating system or
the Unix user-name) and the role. Eachidentity
will have a list of roles that it is permitted to as-
sume, and eachrole will have a list of domains
that it may use. This gives a high level of con-
trol over the actions of a user which is tracked
through the system. When the user runs SUID
or SGID programs the original identity will
still be tracked and their privileges in the SE se-
curity scheme will not change. This is very dif-
ferent to the standard Unix permissions where
after a SUID program runs another SUID pro-
gram it’s impossible to determine who ran the
original process. Also of note is the fact that
operations that are denied by the security pol-
icy [1] have theidentityof the process in ques-
tion logged.

I often run SE Linux demonstration machines
on the Internet which provide root access to the
world and an invitation to try and break the se-
curity. [2]

For a detailed description of how SE Linux
works I recommend reading the paper Peter
Loscocco presented at OLS in 2001 [3].

SE Linux has been shown to provide sig-
nificant security benefits for little overhead
on servers, desktop workstations, and laptops.

Linux Symposium 118

However it has not had much use in embedded
devices yet.

Some people believe that SE Linux is only
needed for server systems. I think that is in-
correct, and I believe that in many situations
laptops and hand-held devices need more pro-
tection than servers. A server will usually have
a firewall protecting it, with a small number
of running applications which are well main-
tained and easy to upgrade. Portable comput-
ers are often used in hostile environments that
servers do not experience, they have no fire-
walls to protect them, and often they are con-
nected to routers operated by potentially negli-
gent or hostile organizations.

But there are two main factors that cause an
increased need for security on portable devices.
One is that it is usually extremely difficult and
expensive to upgrade them if a new security fix
is needed. This means that in commercial use
portable computers tend to never have security
fixes applied. Another factor is that often the
person in posession of a hand-held computer is
not authorised to access all the data it contains,
and may even be hostile to the owner of the
machine.

Naturally for a full security solution for
portable computers a strong encryption system
will need to be used for all persistent file sys-
tems. There are various methods of doing this,
but all aspects of such encryption are outside
the scope of this project and can be imple-
mented independently.

2 Kernel Porting

The current stable series of SE Linux is based
on the 2.4.x kernels and uses the Linux Secu-
rity Modules (LSM) [4] interface. The current
LSM interface has a single sys_security() sys-
tem call that is used to multiplex all the system
calls for all of the security modules. SE Linux

uses 52 different system calls through this in-
terface. Due to problems in porting the kernel
code to some platforms (particularly those that
have a mixed 32 and 64bit memory model) the
decision was made to change the LSM inter-
face for kernel 2.6.0. The new interface will
make the code fully portable and remove the
painful porting work that is currently required.
However I needed to have SE Linux working
with the 2.4.x kernels so I couldn’t wait for ker-
nel 2.6.0.

The main difficulty in porting the code is the
system call execve_secure() which is used to
specify the security context for the new pro-
cess. This calls the kernel funtion do_exec() to
perform the execution, and do_exec() needs a
pointer to the stack, thus requiring architecture
specific code in the sys_execve_secure() func-
tion. The sys_security_selinux_worker() func-
tion (which determines which SE Linux sys-
tem call is desired and passes the appropriate
parameters to it) calls sys_execve_secure() and
therefore also needs architecture specific code,
and so does the main system call sys_security_
selinux().

My first port of SE Linux was to User-Mode
Linux [5]. This was a practice effort for the
main porting work. It is quite easy to debug
kernel code under UML, and as it uses the i386
system call interface I could port the kernel
code without any need to port application code.

The main architecture dependent code is
in the source filesecurity/selinux/
arch/i386/wrapper.c , which has code
to look on the stack for the contents of par-
ticular registers. This needs to be changed for
platforms with different register names, and for
UML which does not permit such direct access
of registers.

The solution in the case of UML was to not
have a wrapper function, as thecurrent struc-
ture had a pointer to the stack anyway that

Linux Symposium 119

could be used inside the sys_execve_secure()
function. So I renamed the sys_security_
selinux_worker() function to sys_security_
selinux() for the UML port and entirely re-
moved all reference to the wrapper. Then
I moved the implementation of sys_execve_
secure() into the platform specific directory
and implemented a different version for each
port.

This was essentially all that was required to
complete the port, the core code of SE Linux
was all cleanly written and could just be com-
piled. The only other work involved getting the
Makefile’s correctly configured, and adding a
hook to sys_ptrace().

One thing I did differently with my port to the
ARM architecture was that I removed the code
to replace the system call entry. When the SE
Linux kernel code loads on UML and i386 it
replaces the system call with a direct call to the
SE Linux code (rather than using the option for
LSM to multiplex between different modules).
As there is currently no support for having SE
Linux be a loadable module there seems to be
no benefit in this, and it seems that on ARM
there will be more overhead for adding an extra
level of indirection for this. So I made the SE
Linux patch hard-code the SE system call into
the sys-call table.

3 iPaQ Design Constraints

The CompaQ/HP iPaQ [6] computers are small
hand-held devices. The most powerful iPaQ
machines on sale have a 400MHz ARM based
CPU that is of comparable speed to a 300MHz
Intel Celeron CPU, with 64M of RAM and
48M of flash storage.

An iPaQ is not designed for memory upgrades.
There are some companies that perform such
upgrades, but they don’t support all models,
and this will void your warantee. Therefore

you are stuck with a memory limit of 64M.

The flash storage in an iPaQ can only be writ-
ten a limited number of times, this combined
with the small amount of storage makes it im-
possible to use a swap space for virtual mem-
ory unless you purchase a specialsleevefor us-
ing an external hard drive. Attaching an exter-
nal hard drive such as the IBM/HitachiMicro
Drive is expensive and bulky. Therefore if you
have a limited budget then storage expansion
(for increased file storage or swap space) is not
an option.

For storing files, the 32M file system can con-
tain quite a lot. The Familiar distribution is op-
timised for low overheads (no documentation
or man pages) and all programs are optimised
for size not speed. Also the JFFS2 [7] file
system used by Familiar supports several com-
pression algorithms including the Lempel-Ziv
algorithm implemented in zlib, so more than
32M of files can fit in storage.

For a system such as SE Linux to be viable on
an iPaQ it has to take up a small portion of the
32M of flash storage and 64M of RAM, and
not require any long CPU intensive operations.

Finally the screen of an iPaQ only has a reso-
lution of 240x320 and the default input device
is a keyboard displayed on the screen. This
makes an iPaQ unsuitable for interactive tasks
that involve security contexts as it takes too
much typing to enter them and too much screen
space to display them. As a strictly end-user
device this does not cause any problems.

4 CPU Requirements

Benchmarks that were performed on SE Linux
operational overheads in the past show that
trivial system calls (reading from /dev/zero and
writing to /dev/null) can take up to 33% longer
to complete when SE Linux is running, but that

Linux Symposium 120

the overhead on complex operations such as
compiles is so small as to be negligible [8]. The
machines that were used for such tests had sim-
ilar CPU power to a modern iPaQ.

One time consuming operation related to SE
Linux installation is compiling the policy
(which can take over a minute depending on
the size of the policy and the speed of the
CPU). This however is not an issue for an iPaQ
as the policy takes over a megabyte of perma-
nent storage and 5 megs of temporary file stor-
age, as well as requiring many tools that are not
normally installed (make, m4, the SE Linux
policy compilation program checkpolicy, etc).
The storage requirements make it impractical
to compile policy on the iPaQ, and the typical
use involves configuration being developed on
other machines for deployment on iPaQ. So the
time taken to compile the policy database is not
relevant.

The only SE Linux operation which can take a
lot of time that must be performed on an iPaQ
is labeling the file system. The file system must
be relabeled when SE Linux is first installed,
and after an upgrade. On my iPaQ (H3900 with
400MHz X-Scale CPU) it takes 29.7 seconds
of CPU time to label the root file system which
contains 2421 files. For an operation that is
only performed at installation or upgrade time
29.7 seconds is not going to cause any prob-
lems. Also thesetfilesprogram that is used to
label the file system could be optimised to re-
duce that time if it was considered to be a prob-
lem.

I conclude that for typical use of a hand-
held machine SE Linux only requires the CPU
power of an iPaQ. In fact the CPU use is
small enough that even the older iPaQ ma-
chines (which had half the CPU power) should
deliver more than adequate performance.

5 Kernel Resource Use

To compare the amounts of disk space and
memory I compiled three kernels. One
was 2.4.19-rmk6-pxa1-hh13 with the de-
fault config for the H3900 iPaQ. One was
a SE Linux version of the same kernel
with the options CONFIG_SECURITY, CON-
FIG_SECURITY_CAPABILITIES, and CON-
FIG_SECURITY_SELINUX. Another was the
same SE Linux kernel with development mode
enabled (which slightly increases the size and
memory).

For this project I have no need for the multi-
level-security (MLS) functionality of SE Linux
or the options for labelled networking and ex-
tended socket calls. This optional functionality
would increase the kernel size. I am focussing
on evaluating the choice of whether or not to
use SE Linux for specific applications, once
you have decided to use SE Linux you would
then need to decide whether the optional func-
tionality provides useful benefits to your use to
justify the extra disk space and memory use.

The kernel binaries are 658648 bytes for a non-
SE kernel, 704708 bytes for the base SE Linux
kernel, and 705560 bytes for the development
mode kernel. The difference between the ker-
nel with development mode enabled and the
regular one is that the development kernel al-
lows booting without policy loaded, and boot-
ing in permissive mode (with the policy deci-
sions not being enforced). For most develop-
ment work a kernel with development mode
enabled will be used, also for this test it al-
lowed me to determine the resource consump-
tion of SE Linux without a policy loaded.

To test the memory use of the different ker-
nels I configured an iPaQ to not load any ker-
nel modules. My test method was to boot the
machine, login at the serial console, wait 30
seconds to make sure that all daemons have

Linux Symposium 121

started, and runfreeto see the amount of mem-
ory that is free. This is not entirely accurate as
random factors may result in different amounts
of memory usage, however this is not as signif-
icant on the Familiar distribution due to the use
of devfsfor device nodes andtmpfsfor /var and
/tmp which means that in the normal mode of
operation almost nothing is written to the root
file system, so two boots will be working on
almost the same data.

From the results I looked at thetotal field in
the results (which gives the amount of RAM
that is available for user processes after the ker-
nel has used memory in the early stages of the
boot process), and theusedfield which shows
how much of that has been used. The kernel
message log gives a break-down of RAM that
is used by the kernel for code and data in the
early stages of boot, however that is not of rel-
evance to this study only the total amount that
is used matters.

The total memory available was reported as
63412k for the non-SE kernel, 63308k for the
SE Linux kernel, and 63300k for the develop-
ment mode kernel. So SE Linux takes 104k of
kernel memory early in the boot process and
112k if you use the development mode option.

The memory reported asusedvaried slightly
with each boot. For the vanilla kernel the value
18256k was reported in two out of four tests,
with values of 18252k and 18260k also be-
ing reported. I am taking the value 18256k as
the working value which I consider accurate to
within 8k.

For a standard SE Linux kernel the amount
reported asusedwas 19516k in three out of
six tests with the values of 19532k, 19520k,
and 19524k also being returned. So I consider
19516k as the working value and the accuracy
to be within 16k.

For the SE Linux kernel with development

mode enabled the memoryusedwas 19516k
in three out of four tests, and the other test was
19524k. So the difference between the devel-
opment mode kernel and the regular SE Linux
kernel is only 8K of kernel memory in the early
stages of the boot process.

Finally I did a test of a development mode ker-
nel with no policy loaded. The purpose of this
test was to determine how much memory is
used on a SE Linux kernel if the SE Linux code
is not loading the policy. For this the memory
reported asusedwas 18292k in three out of five
tests, with the values of 18296k and 18300k
also being returned.

Kernel memory used
non-SE 18256k
SE no policy 18292k
SE with policy 19516k

So an SE Linux kernel without policy loaded
uses approximately 36K more memory after
boot than a non-SE kernel in addition to the
104k or 112k used in the early stages of boot.

With a small policy loaded (360 types and
23,386 rules for a policy file that is 583771
bytes in size) the memory used by the kernel is
about 1224k for the policy and other SE Linux
data structures. The policy could be reduced
in size as there are many rules which would
only apply to other systems (the sample pol-
icy is quite generic and was quickly ported to
the iPaQ), although there may be other areas of
functionality that are desired which would use
any saved space.

So it seems that when using SE Linux the
memory cost is 104k when the kernel is loaded,
and a further 1260k for SE Linux memory
structures and policy when the boot process is
complete. The total is 1364k of non-swappable
kernel memory out of 64M of total RAM in an
iPaQ, this is about 2% of RAM.

Linux Symposium 122

All tests were done with GCC 3.2.3, a modi-
fied Linux 2.4.19, and an X-scale CPU. Differ-
ent hardware, kernel version, and GCC version
will give different results.

6 Porting Utilities

The main login program used on the Famil-
iar [9] distribution is gpe-login, which is an
xdm type program for a GUI login. This pro-
gram had to be patched to check a configura-
tion file and the security policy to determine
the correct security context for the user and to
launch their login shell in that context. The
patch for this functionality made the binary
take 4556 bytes more disk space in my build
(29988 bytes for the non-SE build compared to
34544 bytes for the version with SE Linux sup-
port).

The largest porting task was to provide SE
Linux support in Busybox [10]. Busybox pro-
vides a large number of essential utility pro-
grams that are linked into one program. Link-
ing several programs into one reduces disk
space consumption by spreading the overhead
for process startup and termination code across
many programs. On arm it seems that the min-
imum size of an executable generated by GCC
3.2.3 is 2536 bytes. In the default configura-
tion of Familiar Busybox is used for 115 com-
monly used utilities, having them in one pro-
gram means that the 2.5K overhead is only
used once not 115 times. So approximately
285K of uncompressed disk space is saved by
using busybox if the only saving is from this
overhead. The amount of disk space used
for initialisation and termination code would
probably increase the space used by more than
80% if all the applets were compiled separately
(my build of Busybox for the iPaQ is 337028
bytes).

The programs that are of most immediate note

in busybox arels, ps, id, and login. ls needs
the ability to show the security contexts of
the files, ps needs to show the security con-
texts of the running processes, andid needs to
show the context of the current process. Also
the /bin/login applet had to be modified in the
same manner as thegpe-loginprogram. These
changes resulted in the binary being 5600 bytes
larger (337028 bytes for a non-SE version and
342628 bytes for the version with SE Linux
support.

7 Busybox Wrappers for Domain
Transition

In SE Linux different programs run in differ-
ent securitydomains. A domain change can
be brought about by using theexecve_secure()
system call, or it can come from an automatic
domain transition. An example of an automatic
domain transition is when theinit process
(running in theinit_t domain) runs/sbin/getty
which has the typegetty_exec_t, which causes
an automatic transition to the domaingetty_t.
Another example is when getty runs/bin/login
which has the typelogin_exec_tand causes
an automatic transition to the domainlocal_
login_t. This works well for a typical Linux
machine where/sbin/gettyand /bin/login are
separate programs.

When using Busybox the getty and login pro-
grams will both be sym-links to/bin/busybox
and the type of the file as used for domain tran-
sitions will be the type of/bin/busybox, which
is bin_t. SE Linux does not perform domain
transitions based on the type of the sym-link,
and it assignes security types to the Inodes not
file names (so a file with multiple hard links
will only have one type). This means that we
can’t have a single Busybox program automat-
ically transitioning into the different domains.

There are several possible solutions to this

Linux Symposium 123

problem, one possible partial solution would
be to have Busybox useexecve_secure()to
run copies of itself in the appropriate domain.
Busybox already has similar code for deter-
mining when to change UID so that some of the
Busybox applets can be effectively SETUID
while others aren’t. The SETUID management
of Busybox requires that it be SETUID root,
and involves some risk (any bug in busybox can
potentially be exploited to provide root access).
Providing a similar mechanism for transition-
ing between SE Linux security domains would
have the same security problems whereby if
you crack one of the Busybox applets you
could then gain full access to any domain that
it could transition to. This does not provide
adequate security. Also it would only work
for transitions between privileged domains (it
would not work for transitions from unprivi-
leged domains). I did not even bother writing
a test program for this case as it is not worth
considering due to a lack of security and func-
tionality.

A better option is to split the Busybox program
into smaller programs so transitions can work
in the regular manner. With the current range
of applets that would require one program for
getty, one forlogin, one forklogd, one forsys-
logd, one formountandumount, one for ins-
mod, rmmod, andmodprobe, one for ifconfig,
one forhwclock, one for all the fsck type pro-
grams, one forsu, and one forping. Of course
there would also be one final build of busybox
with all the utility programs (ls, ps, etc) which
run with no special privilege. To test how this
would work I compiled Busybox with all the
usual options apart from modutils, and I did a
separate build with only support for modutils.
The non-modutils build was 323236 bytes and
the build with only modutils was 37764 bytes.
This gave a total of 361000 bytes compared to
342628 bytes for a single image, so an extra
18372 bytes of disk space was required for do-
ing such a split.

Splitting the binary in such a simple fashion
would likely cost 18K for each of the eleven
extra programs. If we changed the policy to
have syslogd and klogd run in the same domain
(and thus the same program) and have hwclock
run with no special privs (IE the domain that
runs it needs to have access to/dev/rtc) then
there would only be nine extra programs for
a cost of approximately 162K of disk space.
This disk space use could be reduced by fur-
ther optimisation of some of the applets, for ex-
ample in the case ofifconfig the code to check
argv[0] to determine the applet name could be
removed. A simple split in this manner would
also make it more difficult for an attacker to
make the program perform unauthorized ac-
tions. When a single program has/bin/login
functionality as well as/bin/shthen there is po-
tential for a buffer overflow in the login code to
trigger a jump to the shell code under control
of the attacker! When the shell is a separate
program that can only be entered through a do-
main transition it is much more difficult to use
an attack on the login program to gain further
access to the system.

Finally if we have a single Busybox pro-
gram that includes applets running in differ-
ent domains we need to make some significant
changes to the policy. The default policy has
assertrules to prevent compilation of a policy
that contains mistakes which may lead to secu-
rity holes. For the domainsgetty_t, klogd_t,
and syslogd_tthere are assertions to prevent
them from executing other programs without
a domain transition, and to prevent those do-
mains being entered through executing files of
types other than the matching executable type
(this requires that each of those domains have a
separate executable type, IE they are not all the
same program). Adding policy which requires
removing these assertions weakens the security
of the base domains and also makes the policy
tree different from the default tree which has
been audited by many people.

Linux Symposium 124

Another way of doing this which uses less disk
space is to have a wrapper program such as the
following:

#include <unistd.h>
#include <string.h>

int main(int argc, char **argv,
char **envp) {

/* ptr is the basename of the
executable that is being run */

char *ptr = strrchr(argv[0],
’/’);

if(!ptr)
ptr = argv[0];

else
ptr++;

/* basename must match one of
the allowed applets,
otherwise it’s a hacking
attempt and we exit */

if(strcmp(ptr, "insmod")
&& strcmp(ptr, "modprobe")
&& strcmp(ptr, "rmmod"))

return 1;
return execve("/bin/busybox",

argv, envp);
}

This program takes 2912 bytes of disk space.
The idea would be to have a copy of it
named/sbin/insmodwith type insmod_exec_t
which has symlinks/sbin/rmmodand mod-
probepointing to it. Then wheninsmod, rm-
mod, or modprobeis executed an automatic
domain transition to theinsmod_tdomain will
take place, and then the Busybox program will
be executed in the correct context for that ap-
plet.

This option is easy to implement, one advan-
tage is that there is no need to change the Busy-
box program. The fact that the entire Busybox
code base is available in privileged domains
is a minor weakness. Implementing this takes

about 2900 bytes of disk space for each of the
nine domains (or seven domains depending on
whether you have separate domains for klogd
and syslogd and whether you have a domain
for hwclock). It will take less than 33K or 27K
of disk space (depending on the number of do-
mains). This saves about 130K over the option
of having separate binaries for implementing
the functionality.

A final option is to have a single program to
act as a wrapper and change domains appropri-
ately. Such a program would run in its own do-
main with an automatic domain transition rule
to allow it to be run from all source somains.
Then it would look at its parent domain and the
type of the symlink to determine the domain of
the child process. For example I want to have
insmodrun in domaininsmod_twhen run from
sysadm_t. So I have an automatic transition
rule to transition fromsysadm_tto the domain
for my wrapper (bbwrap_t). Then the wrapper
determines that its parent domain issysadm_t,
determines that the type of the symlink for its
argv[0] is insmod_exec_tand asks the kernel
what domain should be entered when a process
in sysadm_texecutes a program of typeins-
mod_exec_t, and the answer isinsmod_t. So
the wrapper then uses theexecve_secure()sys-
tem call to execute Busybox in theinsmod_t
domain and tell it to run the insmod applet.

I implemented a prototype program for this.
For my prototype I used a configuration file to
specify the domain transitions instead of ask-
ing the kernel. The resulting program was
6K in size (saving 27K of disk space over the
multiple-wrapper method, and 156K of disk
space over the separate programs method), al-
though it did require some new SE Linux pol-
icy to be written which takes a small amount of
disk space and kernel memory.

One problem with this method is that it allows
security decisions to be made by an application

Linux Symposium 125

instead of the kernel. It is preferrable that only
the minimum number of applications can make
such security decisions. In a typical configu-
ration of SE Linux the only such applications
will be login, an X login program (in this case
gpe-login), cron (which is not installed in Fa-
miliar), andnewrole(the SE Linux utility for
changing the security context which operates
in a similar manner tosu).

The single Busybox wrapper is more of a risk
than most of these other programs. The login
programs are only executed by the system and
can not be run by the user with any elevated
privileges which makes them less vulnerable
to attack.Newroleis well audited and the do-
mains it can transition to are limited by kernel
to only include domains that might be used for
a login process (dangerous domains such aslo-
gin_t are not permitted).

Due to the risks involved with a single busy-
box wrapper, and the fact that the benefits of
using 6K on disk instead of 33K are very small
(and are further reduced by an increase in ker-
nel memory for the larger policy) I conclude
that it is a bad idea.

I conclude that the only viable methods of us-
ing Busybox on a SE Linux system are having
separate wrapper programs for each domain
to be entered (taking 33K of extra disk space
and requiring minor policy changes), or having
entirely separate programs compiled from the
Busybox source for each domain (taking ap-
proximately 162K of extra disk space with no
other problems). Also with some careful op-
timisation the 162K of overhead could be re-
duced for the option of splitting the Busybox
program. If 162K of disk space can be spared
(which should not be a problem with a 32M
file system) then splitting Busybox is the right
solution.

8 Removed Functionality

A hand-held distribution doesn’t require all the
features that are needed on bigger machines
such as servers, desktop workstations, and lap-
tops. Therefore we can reduce the size of the
SE Linux policy and the number of support
programs to save disk space and memory.

For a full SE Linux installation there are wrap-
pers for the commandsuseradd, userdel, user-
mod, groupadd, groupdel, groupmod, chfn,
chsh, andvipw. These can possibly be removed
as there is less need for adding, deleting, or
modifying users or groups on a hand-held de-
vice in the field. These programs would take
27K of disk space if they were included.

A default installation of Familiar does not in-
clude support for/etc/shadow, and therefore
there is no need for the wrapper programs for
the administrator to modify users’ accounts.
However I think that the right solution here is
to add /etc/shadowsupport to Familiar rather
than removing functionality from SE Linux.
This will slightly increase the size of the login
programs.

In a full install of SE Linux there are programs
chsidandchconto allow changing the security
type of files. These are of less importance for a
small device. There will be fewer types avail-
able, and the effort of typing in long names
of security contexts will be unbearable on a
touch-screen input device. A hand-held device
has to be configured to not require changing the
contexts of files, and therefore these programs
can be removed.

In the Debian distribution there is support for
installing packages on a live server and having
the security contexts automatically assigned to
the files. As iPaQ’s are used in a different en-
vironment I believe that there is less need for
such upgrades and such support could option-
ally be removed to save disk space. I have not

Linux Symposium 126

written the code for this yet, but I estimate it to
be about 100K.

The default policy for SE Linux has separate
domains for loading policy and for policy com-
pilation. On the iPaQ we can’t compile policy
due to not having tools such asm4 andmake,
so we can skip the compilation program and its
policy. Also the policy for a special domain for
loading new policy is not needed as the system
administration domainsysadm_tcan be used
for this purpose. It is possible to even save
3500 bytes of disk space by not including the
program to load the policy (a reboot will cause
the new policy to take affect).

A server configuration of SE Linux (or a
full workstation configuration) includes the
run_init program to start daemons in the cor-
rect security context. On a typical install of Fa-
miliar there are only three daemons, a program
to manage X logins, a daemon to manage blue-
tooth connections, and the PCMCIA cardmgr
daemon. For restarting these daemons it should
be acceptable to reboot the iPaQ, sorun_init is
not needed.

9 Disk Space and RAM Use

In the section on kernel resource usage I de-
termined that the kernel was using 1364K of
RAM for SE Linux with a 583771 byte policy
comprising 23,386 rules loaded. Since the time
that I performed those tests I reduced the pol-
icy to 455,422 bytes and 18,141 rules which
would reduce the kernel memory use. I did
not do any further tests as it is likely that I will
add new functionality which uses the memory I
have freed. So I can expect that 1.3M of kernel
memory is taken by SE Linux.

The SE Linux policy that is loaded by the ker-
nel takes 67K on disk when compressed. The
file_contextsfile (which specifies the security
contexts of files for the initial installation and

for upgrades) takes 24K. The kernel binary
takes 64K more disk space for the SE Linux
kernel. So the kernel code and SE Linux con-
figuration data takes 156K of disk space (most
of which is compressed data).

The programsetfilesis needed to apply thefile_
contextsdata to the file system.Setfilestakes
20K of disk space. Thefile_contextsfile could
be reduced in size to 1K if necessary to save
extra disk space, but in my current implemen-
tation it can not be removed entirely. In Fa-
miliar a large number of important system di-
rectories (such as/var) on Familiar are on a
ramfsfile system. I am usingsetfilesto label
/mnt/ramfs. So far it has not seemed beneficial
to have a smallfile_contextsfile for booting the
system and an optional larger one for use when
installing new packages or upgrading, but this
is an option to save 23K. Another option would
be to write a separate program that hard-codes
the security contexts for theramfs. It would
be smaller than setfiles and not require a em-
phfile_contexts file, thus saving 30K or more
of disk space. Currently this has not seemed
worth implementing as I am still in a prototype
phase, but it would not be a difficult task. Also
if such a program was written then the next
step would be to use ajffs2 loop-back mount
to label the root file system on a server before
installation to the iPaQ (so thatsetfilesnever
needs to run on the iPaQ.

The patches for thegpe-loginandbusyboxpro-
grams to provide SE Linux login support and
modified ls, ps, andid programs cause the bi-
naries to take a total of 10K extra disk space.

Splitting Busybox into separate programs for
each domain will take an estimated 162K of
disk space.

The total of this is approximately 348K of ad-
ditional disk space for a minimal installation
of SE Linux on an iPaQ. Adding support for
/etc/shadowand other desirable features may

Linux Symposium 127

increase that to as much as 450K depending
on the features chosen. However if you use
multiple Busybox wrappers instead of split-
ting Busybox then the disk space for SE Linux
could be reduced to less than 213K. If you then
replacedsetfilesfor the system boot labeling of
theramfsthen it could be reduced to 190K.

10 Conclusion

Security Enhanced Linux on a hand-held de-
vice can consume less than 1.3M of RAM and
less than 400K of disk space (or less than 200K
if you really squeeze things). While the mem-
ory use is larger than I had hoped it is within a
bearable range, and it could potentially be re-
duced by changing the kernel code to optimise
for reduced memory use. The disk space usage
is trivial and I don’t think it is a concern.

I believe that the benefits of reducing repair and
maintenance problems with hand-held devices
that are deployed in the field through better se-
curity outweigh the disadvantage of increased
memory use for many applications.

All source code and security policy code re-
leated to this article will be on my web
site [11].

References

[1] Configuring the SELinux Policy. Stephen
D. Smalley, NAI Labs.
http://www.nsa.gov/selinux/

policy2-abs.html

[2] Details of SE Linux test machine,
http://www.coker.com.au/

selinux/play.html

[3] Meeting Critical Security Objectives
with Security-Enhanced Linux. Peter A.
Loscocco, NSA; Stephen D. Smalley,

NAI Labs.http://www.nsa.gov/

selinux/ottawa01-abs.html

[4] Linux Security Modules,
http://lsm.immunix.org/

[5] User-Mode Linux,
http://sourceforge.net/

projects/user-mode-linux/

[6] HP Site for iPaQ Information,
http://whp-sp-orig.extweb.hp.

com/country/us/eng/prodserv/

handheld.html/

[7] Journalled Flash File System 2, http:

//sources.redhat.com/jffs2/

[8] Integrating Flexible Support for Security
Policies into the Linux Operating System.
Peter A. Loscocco, NSA; Stephen D.
Smalley, NAI Labs.http://www.nsa.

gov/selinux/freenix01-abs.html

[9] Familiar Linux distribution for
hand-held devices,
http://familiar.handhelds.org/

[10] Busybox - Swiss Army Knife of
Embedded Linux,
http://busybox.net/

[11] My SE Linux Web Pages, http:

//www.coker.com.au/selinux/

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

