Porting NSA Security Enhanced Linux to Hand-held
devices

Russell Coker
russell@coker.com.au
http://www.coker.com.au/

Abstract process.

In addition to the use of domains and types
for access control SE Linux tracks thdentity

of the user (which will besystem_uor pro-
cesses that are part of the operating system or

In the first part of this paper | will describe how
| ported SE Linux to User-Mode-Linux and to
the ARM CPU. | will focus on providing infor-

mation that is useful to people who are portingthe Unix user-name) and the role. Eadéntity

to c_)ther plgtforms as well. In the second par_twi" have a list of roles that it is permitted to as-
| will describe the changes necessary to appli-

: . . sume, and eadtole will have a list of domains
cgtlons ar_ld sc_ecunty palicy to run on small de'that it may use. This gives a high level of con-
vices. This will be focussed on hand-held de- . e the actions of a user which is tracked
vices but can also be used.for embedded ?pplfhrough the system. When the user runs SUID
cations such as router or firewall type devices

d hine that has limited r SGID programs the original identity will
:tr:)razng machine that has fimited memory antyy), be tracked and their privileges in the SE se-

curity scheme will not change. This is very dif-

ferent to the standard Unix permissions where
1 Introduction after a SUID program runs another SUID pro-
gram it’'s impossible to determine who ran the
original process. Also of note is the fact that
operations that are denied by the security pol-

icy [1] have theidentity of the process in ques-
tion logged.

SE Linux offers significant benefits for secu-
rity. It accomplishes this by adding another
layer of security in addition to the default Unix
permissions model. This is achieved by firstly

assigning d@ypeto every file, device, network | ygan run SE Linux demonstration machines

socket, etc. Then every process haoanain o, the nternet which provide root access to the

and the level of access permitted t0 a type i§yqriq and an invitation to try and break the se-
determined by the domain of the process that Burity. [2]

attempting the access (in addition to the usual

Unix permission checks). Domains may onlyFor a detailed description of how SE Linux
be changed at process execution time. The daworks | recommend reading the paper Peter
main may automatically be changed when d@.oscocco presented at OLS in 2001 [3].
process is executed based on the type of the _ _ _
executable program file and the domain of the>E Linux has been shown to provide sig-
process that is executing it, or a privileged pro_nlflcant security benefits for_ little overhead
cess may specify the new domain for the child®" Servers, desktop workstations, and laptops.



Linux Symposium 118

However it has not had much use in embeddedses 52 different system calls through this in-
devices yet. terface. Due to problems in porting the kernel
_ ) _ code to some platforms (particularly those that
Some people believe that SE Linux is onlypaye g mixed 32 and 64bit memory model) the
needed for server systems. | think that is in-gacision was made to change the LSM inter-
correct, and | believe that in many situationsace for kernel 2.6.0. The new interface will
laptops and hand-held devices need more prgyae the code fully portable and remove the
tection than servers. A server will usually havepainyl porting work that is currently required.
a firewall protecting it, with a small number ovever | needed to have SE Linux working

of running applications which are well main- \ith the 2.4.x kernels so | couldn't wait for ker-
tained and easy to upgrade. Portable computie| 2 6.0.

ers are often used in hostile environments that

servers do not experience, they have no fireThe main difficulty in porting the code is the
walls to protect them, and often they are con-system call execve_secure() which is used to
nected to routers operated by potentially neglispecify the security context for the new pro-
gent or hostile organizations. cess. This calls the kernel funtion do_exec() to

_ perform the execution, and do_exec() needs a
But there are two main factors that cause athginter to the stack, thus requiring architecture

increased need for security on portable devicegpecific code in the sys_execve_secure() func-
One is that it is usually extremely difficult and t5n The sys_security_selinux_worker() func-

expensive to upgrade them if a new security fix; 4, (which determines which SE Linux sys-

is needed. This means that in commercial USgsy ¢4l is desired and passes the appropriate
portable c_omputers tend to never have Secu“%arameters toit) calls sys_execve_secure() and
fixes applied. Another factor is that often theherefore also needs architecture specific code,

person in posession of a hand-held computer ignq so does the main system call sys_security
not authorised to access all the data it contain%e”nuxo_ - -

and may even be hostile to the owner of the
machine. My first port of SE Linux was to User-Mode

) ) Linux [5]. This was a practice effort for the
Naturally for a full security solution for .,-:4 porting work. It is quite easy to debug
portable computers a strong encryption systeMere| code under UML, and as it uses the i386
will need to be used for all persistent file SyS-system call interface | could port the kernel

tems. There are various methods of doing thisgqqe without any need to port application code.
but all aspects of such encryption are outside

the scope of this project and can be imple-The main architecture dependent code is
mented independently. in the source filesecurity/selinux/
arch/i386/wrapper.c , which has code
to look on the stack for the contents of par-
ticular registers. This needs to be changed for
platforms with different register names, and for
The current stable series of SE Linux is basedUML which does not permit such direct access
on the 2.4.x kernels and uses the Linux Secuef registers.

rity Modules (LSM) [4] interface. The current o

LSM interface has a single sys_security() sys- N€ solution in the case of UML was to not
tem call that is used to multiplex all the systemPave & wrapper function, as tiearrent struc-
calls for all of the security modules. SE Linux turé had a pointer to the stack anyway that

2 Kernel Porting



Linux Symposium 119

could be used inside the sys_execve_securefpu are stuck with a memory limit of 64M.

function. So | renamed the sys_security , . .
selinux_worker() function to sys_security “The flash storage in an iPaQ can only be writ-

selinux() for the UML port and entirely re- ten a limited number of times, this combined

moved all reference to the wrapper. Thenwith the small amount of storage makes it im-
| moved the implementation of sys_execve POSSible to use a swap space for virtual mem-
secure() into the platform specific directory OTY UnIess you purchase a speci@eveior us-

and implemented a different version for eachind an external hard drive. Attaching an exter-
port. nal hard drive such as the IBM/HitacMicro

Drive is expensive and bulky. Therefore if you
This was essentially all that was required tohave a limited budget then storage expansion
complete the port, the core code of SE Linux(for increased file storage or swap space) is not
was all cleanly written and could just be com-an option.
piled. The only other work involved getting the

Makefile's correctly configured, and adding aFor storing files, the 32M file system can con-
hook to sys_ptrace(). tain quite a lot. The Familiar distribution is op-

timised for low overheads (no documentation
One thing | did differently with my port to the or man pages) and all programs are optimised
ARM architecture was that | removed the codefor size not speed. Also the JFFS2 [7] file
to replace the system call entry. When the SEystem used by Familiar supports several com-
Linux kernel code loads on UML and i386 it pression algorithms including the Lempel-Ziv
replaces the system call with a direct call to thealgorithm implemented in zlib, so more than
SE Linux code (rather than using the option for32M of files can fit in storage.
LSM to multiplex between different modules). . )
As there is currently no support for having ggFor a system such as SE Linux to be viable on

Linux be a loadable module there seems to b&N iPaQ it has to take up a small portion of the
no benefit in this, and it seems that on ARM32M of flash storage and 64M of RAM, and

there will be more overhead for adding an extrd 0t require any long CPU intensive operations.

Ie_vel of indirection for this. So | made the _SE Finally the screen of an iPaQ only has a reso-
Linux patch hard-code the SE system call N9y tion of 240x320 and the default input device
the sys-call table. is a keyboard displayed on the screen. This
makes an iPaQ unsuitable for interactive tasks

3 iPaQ Design Constraints that involve security contexts as it takes too
much typing to enter them and too much screen
pace to display them. As a strictly end-user

The CompaQ/HP iPaQ [6] computers are smal evice this does not cause any problems.

hand-held devices. The most powerful iPaQ
machines on sale have a 400MHz ARM based
CPU that is of comparable speed to a 300MHZ4 CPU Requirements
Intel Celeron CPU, with 64M of RAM and

48M of flash storage. _
Benchmarks that were performed on SE Linux

An iPaQ is not designed for memory upgradesoperational overheads in the past show that
There are some companies that perform suctrivial system calls (reading from /dev/zero and
upgrades, but they don’t support all modelswriting to /dev/null) can take up to 33% longer
and this will void your warantee. Therefore to complete when SE Linux is running, but that



Linux Symposium 120

the overhead on complex operations such a6 Kernel Resource Use

compiles is so small as to be negligible [8]. The

machines that were used for such tests had sim-

ilar CPU power to a modern iPaQ. To compare the amounts of disk space and
_ _ _ memory | compiled three kernels. One

One time consuming operation related t0 SByas 2.4.19-rmk6-pxal-hh13 with the de-

Linux installation is compiling the policy gt config for the H3900 iPaQ. One was

(which can take over a minute depending ony Sg Linux version of the same kernel

the size of the policy and the speed of th&yjith the options CONFIG_SECURITY, CON-

CPU). This however is not an issue for an iPaQrjg SECURITY CAPABI_LITIES, and CON-

as the policy takes over a megabyte of permag|_sECURITY_SELINUX. Another was the

nent storage and 5 megs of temporary file storsame SE Linux kernel with development mode

age, as well as requiring many tools that are nogpapled (which slightly increases the size and
normally installed (make, m4, the SE Linux memory).

policy compilation program checkpolicy, etc).
The storage requirements make it impracticaFor this project | have no need for the multi-
to compile policy on the iPaQ, and the typical level-security (MLS) functionality of SE Linux
use involves configuration being developed oror the options for labelled networking and ex-
other machines for deployment on iPaQ. So théended socket calls. This optional functionality
time taken to compile the policy database is nowvould increase the kernel size. | am focussing
relevant. on evaluating the choice of whether or not to
_ use SE Linux for specific applications, once
The or_lly SE Linux operation which can take ayou have decided to use SE Linux you would
lot of time that must be performed on an iPaQinen need to decide whether the optional func-
is labeling the file system. The file system muskjonality provides useful benefits to your use to

be relabeled when SE Linux‘ is first installegl,justify the extra disk space and memory use.
and after an upgrade. On my iPaQ (H3900 with

400MHz X-Scale CPU) it takes 29.7 secondsThe kernel binaries are 658648 bytes for a non-
of CPU time to label the root file system which SE kernel, 704708 bytes for the base SE Linux
contains 2421 files. For an operation that iskernel, and 705560 bytes for the development
only performed at installation or upgrade timemode kernel. The difference between the ker-
29.7 seconds is not going to cause any probrel with development mode enabled and the
lems. Also thesetfilesprogram that is used to regular one is that the development kernel al-
label the file system could be optimised to re-lows booting without policy loaded, and boot-
duce that time if it was considered to be a probing in permissive mode (with the policy deci-
lem. sions not being enforced). For most develop-
_ ment work a kernel with development mode
I conclude that for typical use of a hand- gnapled will be used, also for this test it al-
held machine SE Linux only requires the CPUjged me to determine the resource consump-

power of an iPaQ. In fact the CPU use iston of SE Linux without a policy loaded.
small enough that even the older iPaQ ma-

chines (which had half the CPU power) shouldTo test the memory use of the different ker-

deliver more than adequate performance. nels I configured an iPaQ to not load any ker-
nel modules. My test method was to boot the
machine, login at the serial console, wait 30
seconds to make sure that all daemons have



Linux Symposium 121

started, and rufreeto see the amount of mem- mode enabled the memonsedwas 19516k
ory that is free. This is not entirely accurate asn three out of four tests, and the other test was
random factors may result in different amounts19524k. So the difference between the devel-
of memory usage, however this is not as signif-opment mode kernel and the regular SE Linux
icant on the Familiar distribution due to the usekernel is only 8K of kernel memory in the early
of devfsfor device nodes antinpfsfor /var and  stages of the boot process.

/tmp which means that in the normal mode of .
operation almost nothing is written to the rootFinally I did a test of a development mode ker-

file system, so two boots will be working on nel with no policy loaded. The purpose of this
almost the same data. test was to determine how much memory is

used on a SE Linux kernel if the SE Linux code
From the results | looked at thetal field in  is not loading the policy. For this the memory
the results (which gives the amount of RAM reported asisedwas 18292k in three out of five
that is available for user processes after the ketests, with the values of 18296k and 18300k
nel has used memory in the early stages of thalso being returned.
boot process), and thesedfield which shows
how much of that has been used. The kernel

message log gives a break-down of RAM that Kernel memory used

. : non-SE 18256k

is used by the kernel for code and data in the .

early stages of boot, however that is not of rel- SE no policy 18292k
y stag ! SE with policy 19516k

evance to this study only the total amount that
is used matters.

_ So an SE Linux kernel without policy loaded
The total memory available was reported asyses approximately 36K more memory after
63412k for the non-SE kernel, 63308k for thepoot than a non-SE kernel in addition to the
SE Linux kernel, and 63300k for the develop-104k or 112k used in the early stages of boot.
ment mode kernel. So SE Linux takes 104k of
kernel memory early in the boot process and/Vith a small policy loaded (360 types and
112k if you use the development mode option.23,386 rules for a policy file that is 583771

. . bytes in size) the memory used by the kernel is

The memory reported assedvaried slightly  aphout 1224k for the policy and other SE Linux
with each boot. For the vanilla kernel the valueqata structures. The policy could be reduced
15_3256k was reported in two out of four tests,j, size as there are many rules which would
Wlth values of 18252!( and 18260k also be-0n|y apply to other systems (the sample pol-
ing reported. | am taking the value 18256k ascy is quite generic and was quickly ported to
th_e yvorklng value which | consider accurate toihe iPaQ), although there may be other areas of
within 8k. functionality that are desired which would use

For a standard SE Linux kernel the amount®"y Saved space.

reported asusedwas 19516k in three out of gq jt seems that when using SE Linux the

six tests with the values of 19532k, 19520K,memory costis 104k when the kernel is loaded,
and 19524k also being returned. So | considegng a further 1260k for SE Linux memory
19516k as the working value and the accuraCgiryctures and policy when the boot process is
to be within 16k. complete. The total is 1364k of non-swappable
kernel memory out of 64M of total RAM in an

For the SE Linux kernel with development . o
P iPaQ, this is about 2% of RAM.



Linux Symposium 122

All tests were done with GCC 3.2.3, a modi- in busybox ards, ps id, andlogin. Is needs
fied Linux 2.4.19, and an X-scale CPU. Differ- the ability to show the security contexts of
ent hardware, kernel version, and GCC versiorthe files, ps needs to show the security con-
will give different results. texts of the running processes, adcdeeds to
show the context of the current process. Also
the/bin/login applet had to be modified in the
6 Porting Utilities same manner as tlype-loginprogram. These
changes resulted in the binary being 5600 bytes
larger (337028 bytes for a non-SE version and

The main login program used on the Famil-345658 pytes for the version with SE Linux
iar [9] distribution is gpe-login which is an support.

xdmtype program for a GUI login. This pro-

gram had to be patched to check a configura-

tion file and the security policy to determine 7 Busybox Wrappers for Domain
the correct.secu.rlty contgxt for the user and to Transition

launch their login shell in that context. The

patch for this functionality made the binary

take 4556 bytes more disk space in my buildn SE Linux different programs run in differ-
(29988 bytes for the non-SE build compared teent securitydomains A domain change can
34544 bytes for the version with SE Linux sup-be brought about by using tlexecve secure()
port). system call, or it can come from an automatic

_ _ domain transition. An example of an automatic
The largest porting task was to provide SEjomain transition is when thénit process

Linux support in Busybox [10]. Busybox pro- (rynning in theinit_t domain) rung'sbin/getty
vides a large number of essential utility pro-\ynich has the typeetty _exec, which causes
grams that are linked into one program. Link-5, o tomatic transition to the domajetty t
ing several programs into one reduces diskynqther example is when getty ruﬁﬂ'nnong

space consumption by spreading the overheaghich has the typdogin_exec_tand causes
for process startup and termination code across, automatic transition t_o the_domdimcal

many programs. On arm it seems that the minrogin_t This works well for a typical Linux

imum size of an executable generated by GCGyachine wherdsbin/gettyand /binflogin are
3.2.3 is 2536 bytes. In the default Conf'gura'separate programs.

tion of Familiar Busybox is used for 115 com-

monly used utilities, having them in one pro- When using Busybox the getty and login pro-
gram means that the 2.5K overhead is onlygrams will both be sym-links tébin/busybox
used once not 115 times. So approximatelyand the type of the file as used for domain tran-
285K of uncompressed disk space is saved bgitions will be the type ofbin/busyboxwhich
using busybox if the only saving is from this is bin_t SE Linux does not perform domain
overhead. The amount of disk space usedransitions based on the type of the sym-link,
for initialisation and termination code would and it assignes security types to the Inodes not
probably increase the space used by more thdile names (so a file with multiple hard links
80% if all the applets were compiled separatelywill only have one type). This means that we
(my build of Busybox for the iPaQ is 337028 can't have a single Busybox program automat-
bytes). ically transitioning into the different domains.

The programs that are of most immediate notd here are several possible solutions to this



Linux Symposium 123

problem, one possible partial solution wouldSplitting the binary in such a simple fashion
be to have Busybox usexecve secure@ would likely cost 18K for each of the eleven
run copies of itself in the appropriate domain.extra programs. If we changed the policy to
Busybox already has similar code for deter-have syslogd and klogd run in the same domain
mining when to change UID so that some of the(and thus the same program) and have hwclock
Busybox applets can be effectively SETUID run with no special privs (IE the domain that
while others aren’t. The SETUID managementruns it needs to have access/t®v/rtg then

of Busybox requires that it be SETUID root, there would only be nine extra programs for
and involves some risk (any bug in busybox cara cost of approximately 162K of disk space.
potentially be exploited to provide root access).This disk space use could be reduced by fur-
Providing a similar mechanism for transition- ther optimisation of some of the applets, for ex-
ing between SE Linux security domains wouldample in the case ofconfigthe code to check
have the same security problems whereby ifirgv[0] to determine the applet name could be
you crack one of the Busybox applets youremoved. A simple split in this manner would
could then gain full access to any domain thatalso make it more difficult for an attacker to
it could transition to. This does not provide make the program perform unauthorized ac-
adequate security. Also it would only work tions. When a single program hé&sin/login

for transitions between privileged domains (itfunctionality as well agbin/shthen there is po-
would not work for transitions from unprivi- tential for a buffer overflow in the login code to
leged domains). | did not even bother writingtrigger a jump to the shell code under control
a test program for this case as it is not worthof the attacker! When the shell is a separate
considering due to a lack of security and func-program that can only be entered through a do-
tionality. main transition it is much more difficult to use

o ) an attack on the login program to gain further
A better option is to split the Busybox program gccess to the system.

into smaller programs so transitions can work

in the regular manner. With the current rangeFinally if we have a single Busybox pro-
of applets that would require one program forgram that includes applets running in differ-
getty, one forlogin, one forklogd one forsys- ent domains we need to make some significant
logd, one formountandumount one forins- changes to the policy. The default policy has
mod rmmod andmodprobe one forifconfig  assertrules to prevent compilation of a policy
one forhwclock one for all the fsck type pro- that contains mistakes which may lead to secu-
grams, one fosy, and one foping. Of course rity holes. For the domaingetty { klogd_t
there would also be one final build of busyboxand syslogd_tthere are assertions to prevent
with all the utility programs (Is, ps, etc) which them from executing other programs without
run with no special privilege. To test how this a domain transition, and to prevent those do-
would work | compiled Busybox with all the mains being entered through executing files of
usual options apart from modutils, and | did atypes other than the matching executable type
separate build with only support for moduitils. (this requires that each of those domains have a
The non-modautils build was 323236 bytes andseparate executable type, |IE they are not all the
the build with only modutils was 37764 bytes. same program). Adding policy which requires
This gave a total of 361000 bytes compared toemoving these assertions weakens the security
342628 bytes for a single image, so an extraf the base domains and also makes the policy
18372 bytes of disk space was required for dotree different from the default tree which has
ing such a split. been audited by many people.



Linux Symposium 124

Another way of doing this which uses less diskabout 2900 bytes of disk space for each of the
space is to have a wrapper program such as théine domains (or seven domains depending on
following: whether you have separate domains for klogd

and syslogd and whether you have a domain

#include <unistd.h> for hwclock). It will take less than 33K or 27K

#include <string.h> of disk space (depending on the number of do-
mains). This saves about 130K over the option
int main(int argc, char **argv, of having separate binaries for implementing
char **envp) { the functionality.
[* ptr is the basename of the ] o )
executable that is being run */ A final option is to have a single program to
char *ptr = strrchr(argvi0], act as a wrapper and change domains appropri-
'r); ately. Such a program would run in its own do-
if(!ptr) main with an automatic domain transition rule
ptr = argv[0]; to allow it to be run from all source somains.
else Then it would look at its parent domain and the
ptr++; type of the symlink to determine the domain of
the child process. For example | want to have
/* basename must match one of insmodrun in domairinsmod_twhen run from
the allowed applets, sysadm_t So | have an automatic transition

otherwise it's a hacking
attempt and we exit */
if(stremp(ptr, “insmod")
&& strcmp(ptr, "modprobe™)
&& stremp(ptr, "rmmod"))

rule to transition fromsysadm_to the domain
for my wrapper bbwrap_J). Then the wrapper
determines that its parent domainsigsadm t
determines that the type of the symlink for its
argv[0] is insmod_exec_and asks the kernel

return 1; .
return execve("/bin/busybox” what domain should be entered when a process
argv, envp); in sysadm_texecutes a program of typas-
} mod_exec,tand the answer i;ismod_t So

the wrapper then uses tkegecve_securegys-

] _ tem call to execute Busybox in thesmod_t
This program takes 2912 bytes of disk spac€yomain and tell it to run the insmod applet.
The idea would be to have a copy of it

named/sbin/insmodwith type insmod_exec_t | implemented a prototype program for this.
which has symlinks/sbin/rmmodand mod- For my prototype | used a configuration file to
probe pointing to it. Then whennsmod rm-  specify the domain transitions instead of ask-
mod or modprobeis executed an automatic ing the kernel. The resulting program was
domain transition to thexsmod_tdomain will 6K in size (saving 27K of disk space over the
take place, and then the Busybox program willmultiple-wrapper method, and 156K of disk
be executed in the correct context for that apspace over the separate programs method), al-
plet. though it did require some new SE Linux pol-

i . _ icy to be written which takes a small amount of
This option is easy to implement, one advan-disk space and kernel memory.

tage is that there is no need to change the Busy-

box program. The fact that the entire BusyboxOne problem with this method is that it allows
code base is available in privileged domainssecurity decisions to be made by an application
is a minor weakness. Implementing this takes



Linux Symposium 125

instead of the kernel. It is preferrable that only8 Removed Functionality
the minimum number of applications can make

such security decisions. In a typical configu-a hand-held distribution doesn'’t require all the
ration of SE Linux the only such applications featyres that are needed on bigger machines
will be login, an X login program (in this case gych as servers, desktop workstations, and lap-
gpe-login, cron (which is not installed in Fa- 155, Therefore we can reduce the size of the
miliar), andnewrole(the SE Linux utility for  sg Linux policy and the number of support

changing the security context which operates)rograms to save disk space and memory.
in a similar manner tgu).

_ _ ~For afull SE Linux installation there are wrap-
The single Busybox wrapper is more of a rlskpers for the commandsseradd userde) user-

than most of these other programs. The loginy,oq groupadd groupde] groupmod chfn

programs are only executed by the system anghsh andvipw. These can possibly be removed
can not be run by the user with any elevatedys there is less need for adding, deleting, or
privileges which makes them less vuInerablemodifying users or groups on a hand-held de-

mains it can transition to are limited by kernel 27k of disk space if they were included.
to only include domains that might be used for

alogin process (dangerous domains sudeas A default installation of Familiar does not in-
gin_tare not permitted). clude support for/etc/shadow and therefore
there is no need for the wrapper programs for
Due to the risks involved with a single busy- the agministrator to modify users’ accounts.
box wrapper, and the fact that the benefits 0fyowever | think that the right solution here is
using 6K on disk instead of 33K are very smallyg aqd/etc/shadowsupport to Familiar rather
(and are further reduced by an increase in kefgn removing functionality from SE Linux.

nel memory for the larger policy) | conclude Thjs will slightly increase the size of the login
that it is a bad idea. programs.

| conclude that the only viable methods of us-| g fyll install of SE Linux there are programs

ing Busybox on a SE Linux system are haVlngchsidandchconto allow changing the security
separate wrapper programs for each domaifype of files. These are of less importance for a
to be entered (taking 33K of extra disk spacésmga|| device. There will be fewer types avail-
and requiring minor policy changes), or havingab|e, and the effort of typing in long names
entirely separate programs compiled from theyf security contexts will be unbearable on a
Busybox source for each dpmaln (taklng aPtouch-screen input device. A hand-held device
proximately 162K of extra disk space with no nas to he configured to not require changing the

other problems). Also with some careful op-contexts of files, and therefore these programs
timisation the 162K of overhead could be re-c3n pe removed.

duced for the option of splitting the Busybox

program. If 162K of disk space can be sparedn the Debian distribution there is support for

(which should not be a problem with a 32M installing packages on a live server and having

file system) then splitting Busybox is the right the security contexts automatically assigned to

solution. the files. As iPaQ’s are used in a different en-
vironment | believe that there is less need for
such upgrades and such support could option-
ally be removed to save disk space. | have not



Linux Symposium 126

written the code for this yet, but | estimate it to for upgrades) takes 24K. The kernel binary
be about 100K. takes 64K more disk space for the SE Linux
kernel. So the kernel code and SE Linux con-

The default policy for SE Linux has separatefigration data takes 156K of disk space (most
domains for loading policy and for policy com- ¢ \vhich is compressed data).
pilation. On the iPaQ we can’t compile policy

due to not having tools such as4andmake The progransetfiless needed to apply tHée
so we can skip the compilation program and itscontextsdata to the file systemSetfilestakes
policy. Also the policy for a special domain for 20K of disk space. Théle contextdile could
loading new policy is not needed as the systenie reduced in size to 1K if necessary to save
administration domairsysadm_ftcan be used extra disk space, but in my current implemen-
for this purpose. It is possible to even savetation it can not be removed entirely. In Fa-
3500 bytes of disk space by not including themiliar a large number of important system di-
program to load the policy (a reboot will causerectories (such aésar) on Familiar are on a
the new policy to take affect). ramfsfile system. | am usingetfilesto label

, , ) /mnt/ramfs So far it has not seemed beneficial
A server configuration of SE Linux (Or & 4 haye a smalile_contextsile for booting the
full yvqustatlon configuration) mcl_udes the system and an optional larger one for use when
run_init program to start daemons in the Cor-jngiajling new packages or upgrading, but this
rect security context. On a typical install of Fa- g 5 option to save 23K. Another option would

miliar there are only three daemons, a progranye 14 write a separate program that hard-codes
to manage X logins, a daemon to manage bluée security contexts for theamfs It would
tooth connections, and the PCMCIA cardmgrye smgler than setfiles and not require a em-

daemon. For restarting these daemons itshoulghfi|e contexts file, thus saving 30K or more
be acceptable to reboot the iPaQysn_initis T

of disk space. Currently this has not seemed
not needed.

worth implementing as | am still in a prototype
phase, but it would not be a difficult task. Also
9 Disk Space and RAM Use if such a program was written then the next
step would be to use jfs2 loop-back mount
to label the root file system on a server before

In the section on kemel resource usage | depgiaiation to the iPaQ (so thaetfilesnever
termined that the kernel was using 1364K ofoads to run on the iPaQ.

RAM for SE Linux with a 583771 byte policy

comprising 23,386 rules loaded. Since the timeThe patches for thgpe-loginandbusyboxpro-
that | performed those tests | reduced the polgrams to provide SE Linux login support and
icy to 455,422 bytes and 18,141 rules whichmodifiedls, ps andid programs cause the bi-
would reduce the kernel memory use. | didnaries to take a total of 10K extra disk space.

not do any further tests as it is likely that | will o _
add new functionality which uses the memory |SPIitting Busybox into separate programs for

have freed. So | can expect that 1.3M of kernefach domain will take an estimated 162K of
memory is taken by SE Linux. disk space.

The SE Linux policy that is loaded by the ker- The total of this is approximately 348K of ad-

nel takes 67K on disk when compressed. Thdlitional disk space for a minimal installation
file_contextile (which specifies the security Of SE Linux on an iPaQ. Adding support for
contexts of files for the initial installation and /€tc/shadowand other desirable features may



Linux Symposium

127

increase that to as much as 450K depending
on the features chosen. However if you use
multiple Busybox wrappers instead of split-
ting Busybox then the disk space for SE Linux
could be reduced to less than 213K. If you then
replacedsetfiledor the system boot labeling of
theramfsthen it could be reduced to 190K.

10 Conclusion

Security Enhanced Linux on a hand-held de-
vice can consume less than 1.3M of RAM and
less than 400K of disk space (or less than 200K

if you really squeeze things). While the mem- [7]
ory use is larger than | had hoped it is within a
bearable range, and it could potentially be re- rg
duced by changing the kernel code to optimise
for reduced memory use. The disk space usage

is trivial and | don’t think it is a concern.

| believe that the benefits of reducing repair and
maintenance problems with hand-held devices
that are deployed in the field through better se-
curity outweigh the disadvantage of increased

memory use for many applications.

All source code and security policy code re-
leated to this article will be on my web

site [11].

References

[1] Configuring the SELinux Policystephen

D. Smalley, NAI Labs.
http://www.nsa.gov/selinux/
policy2-abs.html

[2] Details of SE Linux test machine
http://www.coker.com.au/
selinux/play.html

[3] Meeting Critical Security Objectives

with Security-Enhanced Linufeter A.
Loscocco, NSA,; Stephen D. Smalley,

NAI Labs. http://www.nsa.gov/
selinux/ottawa01-abs.html

4] Linux Security Modules

http://Ism.immunix.org/

User-Mode Linux
http://sourceforge.net/
projects/user-mode-linux/

HP Site for iPaQ Information
http://whp-sp-orig.extweb.hp.
com/country/us/eng/prodserv/
handheld.html/

Journalled Flash File System Bttp:
lIsources.redhat.com/jffs2/

] Integrating Flexible Support for Security

Policies into the Linux Operating System
Peter A. Loscocco, NSA; Stephen D.
Smalley, NAI Labshttp://www.nsa.
gov/selinux/freenix0l-abs.html

Familiar Linux distribution for
hand-held devices
http://familiar.nandhelds.org/

] Busybox - Swiss Army Knife of

Embedded Linux
http://busybox.net/

[11] My SE Linux Web Pagesttp:

/lwww.coker.com.au/selinux/



Proceedings of the
Linux Symposium

July 23th—-26th, 2003
Ottawa, Ontario
Canada



Conference Organizers

Andrew J. HuttonSteamballoon, Inc.
Stephanie Donovar,inux Symposium
C. Craig Rossl.inux Symposium

Review Committee

Alan Cox,Red Hat, Inc.

Andi Kleen,SuSE, GmbH

Matthew Wilcox,Hewlett-Packard

Gerrit HuizengalBM

Andrew J. HuttonSteamballoon, Inc.

C. Craig Rossl.inux Symposium

Martin K. Petersenyild Open Source, Inc.

Proceedings Formatting Team

John W. LockhartRed Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



