
High Availability Data Replication

Paul Clements
SteelEye Technology, Inc.

http://www.steeleye.com/

paul.clements@steeleye.com

James E.J. Bottomley
SteelEye Technology, Inc.

http://www.steeleye.com/

james.bottomley@steeleye.com

Abstract

This paper will identify some problems that
were encountered while implementing a highly
available data replication solution on top of ex-
isting Linux kernel drivers. It will also discuss
future plans for implementing asynchronous
replication and intent logging (which are re-
quirements for performing disaster recovery
over a WAN) in the Linux kernel.

1 Introduction

The first part of this paper (Section 2) will dis-
cuss some issues in the 2.2 and 2.4 Linux ker-
nels that had to be overcome in order to im-
plement a replication solution using raid1 over
nbd.

The second part of the paper (Section 3) will
present future plans for implementing asyn-
chronous replication and intent logging in the
md and raid1 drivers.

2 Fixing the existing problems

We’ve done considerable work over the past 3
years testing, debugging, and finally fixing sev-
eral problems in the md, raid1, and nbd drivers
of the Linux kernel. We ran into several bugs
in these drivers, primarily due to the fact that
we’re using them in an unusual fashion, with

one of the underlying disk devices of the raid1
mirror being accessed over the network, via a
network block device (see Figure 1). Our us-
age of raid1 in conjunction with nbd led to the
increased occurrence of several race conditions
and also caused the error handling code of the
drivers to be stressed much more than a nor-
mal, internal disk only, raid1 setup.

The following is a brief summary of some of
the problems we’ve uncovered and solved:

• eliminating md retries in order to avoid
massive stalls when a device (in our case,
a network device) fails

• correcting SMP locking errors and al-
lowing an nbd connection to be cleanly
aborted when problems are encountered

• fixing various bugs in the raid1 driver:

– mistakes in the error handling code

– incorrect SMP locking

– IRQ enabling/disabling bugs

– non-atomic memory allocations in
critical regions

– block number “off by one” error1

At the time of this writing, patches for all of
these problems have been accepted into the lat-
est releases of the mainline 2.4 and 2.5 kernel

1This problem was actually corrected by Neil Brown
after our initial bug report to him.

Linux Symposium 110

/dev/sda1

/dev/md0 raid1 device

local disk
network

block device /dev/sda1 local disk/dev/nb0

 Replication Source Replication Target

Figure 1: Data replication using raid1 over nbd

series. For information about all of SteelEye’s
open source patches or to download the source
code for the patches, visit the SteelEye Tech-
nology Open Source Website[1].

2.1 Eliminating md retries

This was one of the first problems that we en-
countered back in the fall of 2000. At the
time, we were working with the 2.2 Linux ker-
nel. The md resynchronization code (md_do_
sync) was written, at the time, to always retry
any failed I/O (read or write) no less than 4096
times!2 On a network failure, this caused raid1
and nbd to spin in tight loops for several sec-
onds, hanging the entire system. Our stopgap
solution (read, hack) was to strategically in-
sert schedule calls into the error handling
code of those drivers.3 Needless to say, the

2PAGE_SIZE∗(1 << 1) ∗ 2/ sizeof(struct
buffer_head *) (md.c, c. 2.2.16 kernel)

3We did not have the option of modifying md, since
it is compiled into the kernel in most Linux distributions,

md resynchronization code got a major over-
haul before the 2.4 kernel was released and this
issue was fixed.

2.2 Allowing nbd connections to be aborted

After initially fixing a few trivial bugs in nbd
having to do with missing or incorrect spin lock
calls, we realized that we could not afford to
wait for TCP socket timeouts when we needed
to abort a network connection, or when the net-
work went down. We needed to have the abil-
ity to terminate nbd connections at will, so that
our high availability services could have com-
plete control over the data replication process.
To fix this, we unblockedSIGKILL during the
network transmission phase of nbd so that we
could send a signal from user space to termi-
nate an nbd connection. We also needed to add
code to ensure that nbd’s request queue was

and we did not want to be in the business of distributing
entire rebuilt kernels.

Linux Symposium 111

cleared and all outstanding I/Os were marked
as failed when a connection was terminated.

Our patches for nbd have been accepted into
the mainline 2.5 kernel (c. 2.5.50) and were
backported and accepted into the 2.4 kernel
(c. 2.4.20-pre).

2.3 Fixing various bugs in the raid1 driver

The raid1 driver, by far, has been the biggest
thorn in our side. . . we’ve made many fixes to
raid1 over the past few years in order to in-
crease its robustness. Neil Brown has simul-
taneously been performing a lot of cleanup and
bugfix work in the md and raid1 drivers that
was beneficial to our cause, as well.

The first set of problems that we ran into with
raid1 was related to handling failures of the
underlying devices.4 To correct the problems,
we added code to detect device failures dur-
ing resync and during normal I/O operations.
The additional code correctly marks the device
“bad,” fails all outstanding I/Os, and aborts
resync activities, if necessary.

After fixing this initial set of problems, we
were able to stress the raid1 driver much more
heavily than we previously had been able to
(without it falling over dead). Unfortunately,
this heavier stress uncovered a whole raft of
new problems. We were able, however, to
eventually pin-point and solve each of these
new problems. Many of the problems turned
out to be due to some fairly common kernel
programming mistakes, such as:

• “nested” spin_lock_irq calls– Fail-
ure to use thesave and restore
versions of the spin lock macros with
nested calls (i.e., spin_lock_irq

4Since we use nbd underneath raid1, device “fail-
ures” are quite a common occurrence (e.g., when the
network goes down).

called while anotherspin_lock_irq
is already in force) leads to the CPU flags
being improperly set. This means that
interrupts could be enabled at inappro-
priate times, causing deadlocks to occur.
The rule of thumb here is that it’s best to
avoid nesting spin locks whenever possi-
ble, and to always use theirqsave and
irqrestore versions of the macros, in-
stead of the simpleirq versions, if dead-
locks are a concern.

• sleeping with a spin lock held– There
were cases where the driver was doing
non-atomic memory allocations or calling
schedule with a spin lock held, which
caused deadlocks to occur. To avoid the
deadlocks, the code was rearranged so
that a spin lock was never held while call-
ing schedule and a fewkmalloc calls
were changed to use theGFP_ATOMIC
flag rather than theGFP_KERNELflag.

• “off by one” error – This was a simple
case of differing block sizes being used
in the md and raid1 drivers resulting in
one of the block counts used in the resync
code being shifted incorrectly. This bug
caused resyncs to hang, leaving the raid
device in an unusable state.

Our patches for raid1 have been accepted into
the Red Hat Advanced Server 2.1 kernel (2.4.9-
ac based) and an alternate version of the fixes
(authored by Neil Brown) has been accepted
into the mainline 2.4 kernel (c. 2.4.19-pre).
The raid1 driver in the 2.5 kernel is not be-
lieved to suffer from any of the aforementioned
problems.

3 Future enhancements

We are planning to enhance the md and raid1
drivers of the Linux kernel to support asyn-
chronous data replication and intent logging.

Linux Symposium 112

shadow bit block counter

1 n − 1 memory

 disk

Figure 2: In-memory and on-disk bitmap layout

Our strategy for implementing these changes
will be to place the bulk of the code into the
md driver, in a manner that will allow all the
underlying raid drivers to take advantage of it.
We will also add the necessary code to raid1 to
call the md driver hooks.

We plan to leverage some of the implementa-
tion and design of Peter T. Breuer’sfr1 code[2],
which was recently published[3]. Thefr1
driver implements intent logging and asyn-
chronous replication as an add-on to the raid1
driver. We will make the following, additional
changes to thefr1 code, to produce a final so-
lution:

• disk backing for the bitmap (intent log)

• addition of a daemon to asynchronously
clear the on-disk bitmap

• conversion of single bits to 16-bit block
counters (to track pending writes to a
given block, so as not to prematurely clear
a bitmap bit on disk)

• allow rescaling of the bitmap (i.e., allow
one bit to represent various block sizes—
the current code is restricted to one bit per
1024-byte data block only)

• make the code fully leveragable by all the
raid personality drivers

• add some additional configuration inter-
faces for the new features

3.1 Intent Logging

In a data replication system, an intent log is
used to keep track of which data blocks are
out of sync between the primary device and
the backup device. An intent log is simply a
bitmap, in which a set bit (1) represents a data
block that is out of sync, and a cleared bit (0)
represents a data block that is in sync. The use
of an intent log obviates the full resync that is
normally required upon recovery of an array.

3.1.1 Bitmap Layout

We will store the bitmap both in memory and
on disk, in order to be able to withstand fail-
ures (or reboots) of the primary server without
losing resynchronization status information.

We will use a simple, one-bit-per-block bitmap
for the on-disk representation of the intent log,
while the in-memory representation will be

Linux Symposium 113

slightly more complex. The reason for this ad-
ditional complexity is the need to track pending
writes, so as not to clear a bit in the bitmap un-
til all pending writes for that data block have
completed5. The write tracking will be han-
dled using a 16-bit counter for each data block.
One bit in the counter will actually be used as a
“shadow” of the corresponding on-disk bit, re-
ducing the usable counter size by one bit (see
Figure 2). The counter will be incremented
when a write begins and decremented when
one has completed. Only when the counter has
reached zero, can the on-disk bit be cleared.

In order to conserve RAM, the in-memory
bitmap will be constructed in a two-level fash-
ion, with memory pages being allocated and
deallocated on demand (see Figure 3). This al-
lows us to allocate only as much memory as
is needed to hold the set bits in the bitmap.
As a fail-safe mechanism, when a page can-
not be allocated, the (pre-allocated) pointer for
that page will actually be hijacked and used as
a counter itself. This will allow logging to con-
tinue, albeit with less granularity,6 during peri-
ods of extreme memory pressure.

The bitmap will also be designed so that it
is possible to readjust the size of the data
“chunks” that the bits represent. This will
be handled by translating from the default md
driver I/O block size of 1KB to the chunk
size, whenever the bitmap is marked or cleared.
So, with a chunk size of 64KB, for example,
the I/O to 64 contiguous disk blocks will be
tracked by a single bit in the on-disk bitmap
(and the corresponding in-memory counter).

5clearing the bit prematurely could result in data cor-
ruption on the backup device if a network failure coin-
cides

6On x86, with 32-bit pointers and 4KB pages, the
granularity is reduced to roughly 1/1000 the normal
level.

3.1.2 Bitmap Manipulation

To make use of the bitmap, we will make mod-
ifications to two areas of the raid1 driver:

1. Ordinary write operations will require
a bitmap entry be made (and synced to
disk) before the actual data is written—the
bitmap entry will be cleared once the data
has been written to the backup device.

2. Resynchronization operations will no
longer involve a full resynchronization of
the backup device, but rather a resync of
just the “dirty” blocks (as indicated by the
bitmap).

3.1.3 Write Operations

The sequence of events to write blockn on a
raid1 device with an intent log is as follows:

1. set thenth shadow bit in the in-memory
bitmap and increment the counter for
block n (both can be done as a single op-
eration since the shadow bit and counter
are contiguous)

2. increment the “outstanding write request”
counter for the array7 (and disallow fur-
ther writes to the device if the counter has
exceeded the configured limit)

3. sync the shadow bit to disk, if the on-disk
bit was not already set

4. duplicate the write request, including its
data buffer

5. queue the write request to the primary de-
vice

7This counter is really only used when the array is
in asynchronous replication mode. For more details, see
Section 3.2.

Linux Symposium 114

 . . . page pointers (pre−allocated)

pages (allocated on demand)

Figure 3: Two-level, demand-allocated bitmap

6. queue the duplicate request to the backup
device

We then allow the writes to complete asyn-
chronously. After each write is completed,
the raid1 driver is notified with a call to its
b_end_io callback function (raid1_end_
request). This function is responsible for
signalling the completion of I/O back to its
initiator. In synchronous mode, we wait un-
til the writes to both the primary and backup
devices have completed before acknowledging
the write as complete. In asynchronous mode,
the write is acknowledged as soon as the data
is written to the primary device.

After the write has been acknowledged, the
callback function is responsible for decrement-
ing the block counter and, if the counter’s value
is 0, clearing the shadow bit in the in-memory
bitmap. Whenever a shadow bit is cleared, a re-
quest will also be placed in a queue to indicate
that the on-disk bit needs to be cleared.

The bits in the on-disk bitmap will be cleared
asynchronously, by a dedicated kernel dae-
mon, mdflushd . The daemon will periodi-
cally awaken and flush all the queued updates
to disk.8 The interval at which the daemon

8unless the shadow bit has been reset in the mean-
time, in which case the update is simply discarded and
the on-disk bit is left set.

will awaken and flush its queue will be tunable
(with a default value of 5 seconds).

Clearing the bits in the on-disk bitmap in a lazy
manner will help to reduce the number of disk
writes, and will also ensure that any bits that
happen to correspond to I/O “hotspots”9 will
simply remain dirty, rather than causing a con-
stant stream of writes to the on-disk bitmap.

3.1.4 Resynchronization Operations

The resynchronization process of the md driver
is fairly straightforward. Following recovery
from a failure, the driver will attempt a com-
plete resync of the backup device. We will
modify this process slightly, so that for each
data block that is to be resynchronized, we will
first check the appropriate shadow bit in the in-
memory bitmap and then, either:

• resync the block (if the bit is set), or

• discard the resync request and indicate
success (if the bit is cleared)

Once a block has been resynced, its shadow
bit will be cleared and its block counter ze-
roed. An update request will then be queued

9areas of the disk that are continually written, such
as an ext3 filesystem journal

Linux Symposium 115

to tell mdflushd that the on-disk bit should
be cleared.

3.2 Asynchronous Replication

In an asynchronous replication system, write
requests to a mirror device are acknowledged
as soon as the data is written to the primary
device in the mirror. In contrast, in a syn-
chronous replication system, writes are not ac-
knowledged until the data has been written to
all components of the mirror. Synchronous
replication works well in environments where
the mirror components are local. However,
when the backup device is located on a net-
work, the write throughput of a synchronous
mirror decreases as network latency increases.
An asynchronous mirror does not suffer this
performance degradation since a write opera-
tion can be completed without waiting for the
write request and its acknowledgement to make
a complete roundtrip over the network. To
achieve reasonable write throughput in a WAN
replication environment, an asynchronous mir-
ror is generally employed.

3.2.1 Outstanding Write Request Limit

In an asynchronous mirror, there can be sev-
eral outstanding (i.e., in-flight) write requests
at any given time. In order to limit the amount
of data that is out of sync on the backup de-
vice during normal mirror operation, it is nec-
essary to keep the number of outstanding write
requests fairly low. Therefore, we will place
a limit on the number of outstanding write re-
quests. However, to avoid degrading the write
throughput of the mirror, this limit must be ad-
equately high. Since the limit will need to be
tuned appropriately for each environment, it
will be made a user configurable parameter.10

10To avoid overflowing the block counters in the in-
memory bitmap, we will make it impossible to set this

When the limit for outstanding writes has been
exceeded, the driver will throttle writes to the
mirror until another write acknowledgement
returns from the remote system (i.e., the mir-
ror will degrade to synchronous write mode).
A message will be printed in the system log
when this event occurs, to warn system admin-
istrators that they should adjust the relevant pa-
rameters. The outstanding write request limit
will default to a reasonable value (which will
be determined through testing).

3.2.2 Device Tagging

In synchronous replication mode, there is no
real need to differentiate between primary and
backup devices, since writes must be commit-
ted to all array components before being ac-
knowledged. However, in asynchronous mode,
the component devices of a raid1 array will
need to be tagged as “primary” or “backup” to
ensure that the bitmap is handled correctly, and
to ensure that read requests are always satisfied
from the primary device. To accomplish this,
we will need an additional/etc/raidtab
directive to enable a device to be tagged as a
“backup.” Devices tagged as backups will be
placed into a special “write-only” mode that
exists in md.

4 Conclusion

With the recent bugfix and cleanup work that
has been done, and with the upcoming addi-
tional features that are in the works, the Linux
kernel md driver will finally be an enterprise-
class software RAID and data replication so-
lution: robust, and capable of being used for
many different applications, from simple inter-
nal disk mirroring and striping, to LAN data
replication, and even disaster recovery over a

limit higher than the maximum value for those counters.

Linux Symposium 116

WAN.

5 Acknowledgements

We would especially like to thank Peter T.
Breuer and Neil Brown for their outstanding
and ongoing work in the Software RAID (md)
subsystem of the Linux kernel. Without their
contributions, we would not have been able to
undertake such a huge endeavor.

References

[1] SteelEye Technology, Inc.SteelEye
Technology Open Source Website
http://licensing.steeleye.
com/open_source/

[2] Peter T. Breuer.Fast Intelligent Software
RAID1 Driverhttp:
//www.it.uc3m.es/ptb/fr1/
http://freshmeat.net/
projects/fr1/

[3] Peter T. Breuer, Neil Brown, Ingo
Molnar, Paul Clements.linux-raid
mailing list discussions on raid1 bitmap
and asynchronous writes
http://marc.theaimsgroup.
com/?l=linux-raid&b=200302
Jan-Apr 2003

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

