
System Installation Suite
Massive Installation for Linux

Sean Dague
japh@us.ibm.com

Abstract

The first hurdle that a user or administrator
must overcome when migrating to Linux is the
installation. In the not so distant past, this was
a near Herculean task. Today, with a myriad
of Linux distributions available, many focusing
on the end user experience, installation of a sin-
gle machine has become much easier. In some
instances it is even Mom proof. This has given
rise to a new issue, however, as these methods
of installation tend to be distribution specific,
and tend to have a single machine view of the
world.

System Installation Suite attempts to solve the
massive installation problem, i.e. how does
an administrator handle installation and main-
tenance of hundreds or thousands of nodes
at once, in Linux. The solution is agnos-
tic of Linux distribution and architecture, and
presents a uniform interface on every Linux
platform. It does this through the creation
of installation images, which are built on a
centralized server somewhere. These images
are then deployed over the network to client
machines. The use of installation images,
which are in fact fully instantiated Linux sys-
tems stored on an image server, gives rise to
some interesting possibilities for system man-
agement and maintenance. The design process
that went into System Installation Suite, and
the possibilities that it provides for will be dis-
cussed further in this paper.

1 Background

System Installation Suite is a collaboration be-
tween two different open source massive in-
stallation tools, SystemImager and LUI (the
Linux Utility for Cluster Installation). The de-
sign of System Installation Suite came largely
from harvesting the strengths of both of these
tools, while attempting to leave their short
comings behind. It is appropriate that we ex-
plore some of the strengths and weaknesses
of both LUI and SystemImager before delving
into the design of System Installation Suite as
a whole.

1.1 LUI - Linux Utility for Cluster Installation

The Linux Utility for Cluster Installation (LUI)
was one of the first Open Source projects con-
tributed by the IBM Linux Technology Center.
The project was started by Rich Ferri to ma-
ture the state of Linux clustering. LUI version
1.0 was released to the world in April of 2000
under the GNU Public License.

LUI is a resource based cluster installation
tool, conceptually based on NIM (Network In-
stall Manager), the network installer for AIX.
In LUI everything was driven by resources.
LUI resources included: the list of packages
(RPMs) that will be installed on a client, tar-
balls that would be expanded on the client, disk
partition tables that would be used to setup the
disks, custom kernels and ramdisks, post in-
stall scripts, or single files that would be propa-

Ottawa Linux Symposium 2002 94

gated. A combination of these resources would
fully describe the final makeup of a client.

Resources were first abstractly defined in the
LUI database. Then clients were abstractly
defined in the LUI database. Finally re-
sources were assigned to clients. LUI also
supported arbitrary grouping, so resource and
client groups could be defined, and the alloca-
tion of resource groups to client groups could
be utilized.

LUI installation required nodes with network
interface cards that could network boot. For
clients which did not have network bootable
NICs, an floppy from the etherboot project
could be made to simulate this process. The
network booted kernel had a remote NFS root
on the LUI server, and the installation logic
was drive by acloneprogram contained within
the NFS root.

LUI had many weak spots where things would
often break down. The first issue was the re-
liance on PXE, TFTP, and NFS v2 which are
not entirely reliable, secure, or scalable proto-
cols. 1 When network booting worked prop-
erly, it was fantastic, when it failed, it was often
extremely difficult to debug the failure. This
was especially true due to the fact that there
are various versions of the PXE standard which
behaved slightly differently.

The second major issue was the timing of client
instantiation. All the resources were instanti-
ate into a working client machine on the client
when running from the network booted kernel
and NFS root. Although some sanity checks
were run on the resources before they were al-
lowed to be registered, many checks were ei-
ther too expensive or too complex to be run.
The most common failure was having an in-
consistent list of RPMs, i.e. one which did

1Since the time of LUI’s introduction, both NFS v3
and more robust implementations of tftp (such as atftpd)
have become available on Linux

not properly satisfy all package dependencies.
By the time such an error was detected (dur-
ing client installation), it was too late to re-
cover gracefully. In a best case scenario, the
machine had remote console access to debug
the issue. In the more common case, the ma-
chine was hung in the middle of an installation,
and a monitor and keyboard had to be wheeled
over to the node to examine the failure.

The final issue with LUI was overly compli-
cated with its resource model. Once a user un-
derstood all the possible resources, how they
related, and which ones were really required to
bring up a machine, it was great. However this
learning curve was often rather steep.

Many of these issues were being looked at for
a LUI 2.0 redesign during the spring of 2001.
However the interaction with the SystemIm-
ager project made the redesign take an entirely
different direction.

1.2 SystemImager

SystemImager is a project which was started by
Brian Elliot Finley. Its first incarnation was un-
der the name Pterodactyl, where it was a set off
programs designed to replicate Solaris installa-
tions. It later became a far more robust product
firmly rooted in Linux exclusively. SystemIm-
ager 1.0 was released in May of 2000 under the
GNU Public License.

SystemImager, as the name implies, is an im-
age based installation and maintenance tool.
Unlike many other image based tools, Sys-
temImager images are actually full live file sys-
tems which exist on the image server. These
images are captured from a running machine
that has been properly prepared, also known as
a golden client. The image consists of the en-
tire client file system, and is stored in a directly
under the/var/lib/systemimager/imagestree
on the image server. These images can later

Ottawa Linux Symposium 2002 95

be deployed to other client machines using the
SystemImager autoinstallation process.

The autoinstall process for SystemImager is
different from that of LUI. Instead of network
booting just a kernel, and using a remote NFS
root to drive installation, SystemImager uses
an embedded Linux, BOEL (Brian’s Own Em-
bedded Linux), to control the installation. The
kernel and initial ramdisk for BOEL fit on
a floppy, cd, or can be served from the net-
work for machines that support network boot-
ing. Once BOEL has brought the client ma-
chine onto the network, it reconnects to the
image server and fetches an autoinstall shell
script. The autoinstall script drives the remain-
der of the installation. All file transfer between
client and server is done usingrsync 2, which
provides a mechanism for remote file synchro-
nization.

The use of live file systems on the server and
rsync to transfer these file in SystemImager al-
lows for a number of additional features. Be-
causersync can use a number of different un-
derlying file transfer methods, the installation
can happen over a secure ssh connection. This
allows for unattended installation where client
and server are separated by significant physi-
cal distance and the only route between them
is a public, insecure network. Because images
are replicated at a file level and not a package
level, the process of file transfer is inherently
distribution agnostic. Software on the node
needs not have come from a distribution pack-
age (RPM, Deb, etc.), but may have been in-
stalled from source or binary tarball.

However, SystemImager is not an stand alone
installation tool. It doesn’t solve the “first
node” issue. When using SystemImager for in-
stallation, one must first build the golden client
using some native installation method. Only
after the node is fully installed and configured

2http://rsync.samba.org

manually can the image be captured. Before
System Installation Suite, SystemImager also
did only very minimal customizations to the
images after installation. This meant that sim-
ple hardware differences like different models
of network cards in client machines could re-
quire separate images on the server.

1.3 System Installation Suite

System Installation Suite takes the best parts
of SystemImager and LUI and adds other fea-
tures that neither of them previously had. The
LUI project morphed into a project called Sys-
temInstaller, which uses a much simpler model
for instantiating a machine from a set of pack-
ages and disk partition files. In System In-
stallation Suite, SystemImager stays largely
unchanged from a user perspective, however
some of the internals have changed to allow
interaction with SystemInstaller, and all of the
image customization code was removed from
the autoinstallation process and replaced with
calls to System Configurator. System Config-
urator is the third major component of System
Installation Suite, a uniform configuration API
for installation. It supports features such as
network setup, boot loader setup, and ramdisk
creation. System Configurator also makes im-
ages deployed under System Installation Suite
more generic, and applicable to a wider range
of hardware.

2 SystemInstaller

SystemInstaller is the image build tool for Sys-
tem Installation Suite. It is very similar to LUI
in function, however instead of building clients
directly, SystemInstaller builds images on the
image server. The images are made to look just
as if they were harvested from a live machine
that was installed by a native installer.

The design of SystemInstaller came from many

Ottawa Linux Symposium 2002 96

lessons learned during the LUI project. The
SystemInstaller team attempted to keep all the
strengths of LUI without retaining any of the
weaknesses.

2.1 SystemInstaller Architecture

The biggest hurdle that any LUI user had to
overcome was understanding all the possible
resources that existed, and how they interacted
with each other. In many instances resources
were either co-dependent, redundant, or could
have been auto detected and allocated during
installation. An example of just such and in-
stance was the ramdisk resource.

Most modern distribution kernels are built ex-
tremely modularly. This makes it very easy to
use the same kernel on many different types of
hardware by only changing the modules.conf
file. If the root filesystem of the machine is on a
device that needs one or more of these modules
to access it, an initial ramdisk needs to be built
to support this. LUI did not support the auto-
matic create of an initial ramdisk, and required
the user to create, and allocate one manually.
If the creation of the initial ramdisk took place
on a system running an smp kernel, but was at-
tempted to be used on a up kernel system, the
boot would fail. This was a common occur-
rence for beginner LUI users. Hence one of the
early goals of SystemInstaller was to make the
resource model much simpler, or even totally
transparent to the user.

Even though LUI had weaknesses, it also had
many strengths that other install tools did not
have. Chief among these was the LUI database.
All of the user facing LUI commands did noth-
ing more then add the appropriate meta data
into the LUI database. During installation, the
clonescript fetched data from the LUI database
and used it to instantiate the resources on the
client machines. After installation was done,
LUI no longer needed this data at all. How-

ever, a decision was made that the data should
be persistent, and an API created to access it,
in the hopes that some other application might
find it useful.

This is exactly what happened. When the OS-
CAR Clustering project was looking for an in-
stallation tool, they choose LUI because it had
a cluster database already. OSCAR could just
ride on top of LUI’s database, and add extra in-
formation if required. As OSCAR was one of
LUI’s biggest users, when looking to replace
LUI with System Installation Suite, the con-
cept of a cluster database was a requirement
that had to be kept.

With these two key points: simplify the re-
source model, and provide a cluster database,
design on SystemInstaller began. Sys-
temInstaller retained a flat file database, as LUI
had, as it was still felt that requiring an SQL
database was too significant an overhead for an
installation tool. Although this did mean sac-
rificing some functionality, and the ability for
remote access to the data store, it did mean the
prerequisites were far lighter. The intent was
always to move towards a model where vari-
ous data stores (flat file, SQL, or even LDAP)
could be accessed transparently. However, this
goal was a bit beyond the scope of the initial
release. In addition to the data store, many con-
venience functions were defined and exported
so that products such as OSCAR would have a
clean interface to interacting with System In-
stallation Suite.

SystemInstaller has a far more simple com-
mand line interface than LUI had. Only the
package list and disk partition table resources
were retained. This was possible because the
image could be tweaked after initial creation
but before deployment manually. The addi-
tion of custom kernels, or hand compiled soft-
ware could be handled at this stage, and did
not need to be incorporated into the early Sys-

Ottawa Linux Symposium 2002 97

temInstaller interface. This reduced complex-
ity makes System Installation Suite much eas-
ier to use out of the box than LUI ever was.

2.2 SystemInstaller Interface

The SystemInstaller interface consists of a
number of non-interactive command line util-
ities, an interactivebuildimage program, and
a graphical user interface,tksis which uses the
Perl Tk bindings. Both buildimage and tksis
are built on top of the command line interfaces
of SystemInstaller and SystemImager. This
separation between the functional interface and
user interface was extremely important in mak-
ing it possible for other user interfaces to be
built on top of the command line utilities.

There are four extremely important commands
in SystemInstaller that do all the real work for
creating images and client definitions. These
commands are as follows:

• mksiimage - Build an image from a list of
packages

• mksidisk - Add disk partition information
to an image

• mksimachine - Update, Delete, or Show a
machine definition

• mksirange - Create a group of machine
entries

The mksiimage , mksidisk , and mksima-
chine commands are entirely contained within
the SystemInstaller package. Themksirange
command is a wrapper on top of SystemIm-
ager’s addclients command, which also in-
serts the client definitions into the System In-
stallation Suite database.

Most SystemInstaller commands support the
following actions: add (-A), delete (-D), and

list (-L). The major exception is themksi-
machineandmksirangecombination of com-
mands. This limitation is currently based on
limitations of theaddclientscommand, specif-
ically its inability to add a single machine def-
inition of arbitrary name.

All of the commands in SystemInstaller serve
both manipulate the System Installation Suite
database, and perform the actual instantiation
of their commands. Because of this, failures in
image and client instantiation are immediately
returned to the user. The full advantages of this
will be discussed later.

3 SystemImager Redux

In order to initially integrate SystemImager
into System Installation Suite, only minor en-
hancements were needed. Many of these en-
hancements were generally applicable to Sys-
temImager outside of the scope of System In-
stallation Suite, and hence seen as merely addi-
tional function to existing SystemImager users.

SystemImager logically breaks up into three
components: server, client, and autoinstalla-
tion. With the version 2.0 release of SystemIm-
ager, which integrated with the other compo-
nents of System Installation Suite, only ele-
ments of the server component were changed.
The following is a brief overview of merely the
changes in those components. For further in-
formation on SystemImager design, please re-
fer to the SystemImager manual.

3.1 SystemImager Server Changes

Before System Installation Suite, SystemIm-
ager was a complete product which consisted
of a number of command line utilities. Princi-
ple among these were two commands that did
most of the work on the server.

Ottawa Linux Symposium 2002 98

• getimage - captures images from a pre-
pared client, and creates autoinstall script

• addclients - adds a range of client defini-
tions associated with an image

In order to accommodate SystemInstaller
and System Installation Suite the following
changes were made:

The getimagecommand was broken into two
separate commands. The newgetimagewas
responsible only for harvesting the image from
a client. This primarily involved rsyncing the
entire contents of the golden client node into a
directory within /var/lib/systemimager/images.
An additionalmkautoinstallscript command
now became the interface for generating the
autoinstallation script. This functional separa-
tion was needed by SystemInstaller, as its mk-
siimage and mksidisk commands performed
the functional equivalent of getimage. This
functional separation also enabled the ability to
regenerate autoinstall scripts from within Sys-
temImager. Prior to this change, users had to
utilize a documented hack of pointing getim-
age against the localhost interface.

The second major change was the addition of
a non interactive mode toaddclients. Prior
to SIS, addclients could only be run in an in-
teractive mode. Although this provided a sim-
ple console user interface that was easy to un-
derstand, it hindered the ability for other in-
terfaces to sit above the SystemImager com-
mands. It would have been relatively easy to
duplicate the function of addclients within Sys-
temInstaller, however it was it was still felt
that it would be extremely beneficial if the ex-
act same math was used to calculate the list of
clients irrespective of the interface the user was
utilizing. As SystemImager’s logic for this ex-
isted solely insideaddclients it was simplest
to wrap theaddclientscommand frommksir-
ange.

In addition to these command line interface
changes, the beginnings of a SystemImager
library was started. A number of functions
were added to this library during the evolu-
tion of SystemImager 2.0 which allowed Sys-
temInstaller to add entries to the SystemImager
rsyncd.conf file reliably. In SystemImager, this
process is handled by the getimage command.
When building an image with SystemInstaller,
getimage is never called, so this aspect of the
SystemImager interface could not be used.

4 Image Deployment

Once an image is either built with Sys-
temInstaller, or harvested with SystemImager,
it resides on an image server, generally in
/var/lib/systemimager/images. This image is
then ready to be deployed to client machines.
Although most of the logic for image de-
ployment in System Installation Suite remains
unchanged from SystemImager, it is signifi-
cantly different from most package based in-
stall mechanisms that it is worthy of discus-
sion. The differences in image based deploy-
ment over package based deployment lead to a
number of interesting pros and cons of the two
methodologies.

4.1 BOEL

The engine for the autoinstallation process
is BOEL (Brian’s Own Embedded Linux).
BOEL consists of a monolithic Linux Kernel
2.2 and a ramdisk containing Glibc 2.1, Busy-
Box 0.60.0, rsync 2.4.6, sfdisk, and a num-
ber of other utilities. BOEL’s entire job is to
bring the client machine to a state where it can
remotely access the image server, and then it
hands off its job to the autoinstallation script.
BOEL is based on Tom’s Root Boot distribu-
tion. More details about BOEL can be found
in a recent article in Embedded Linux Journal.

Ottawa Linux Symposium 2002 99

BOEL can be booted from a number of media,
including floppy disk, cdrom, network boot, or
even the local hard drive in the special case of
an autoinstallation update of a client. When
booted from a floppy disk or local hard drive,
BOEL will attempt to access a local config-
uration file. This file can contain informa-
tion about things such as the ip address of the
client, the default gateway, and image server
ip address. The local configuration file is very
useful when doing installations on a network
where the installation administrator does not
have control over the site dhcp server. If the
local configuration file is not available, a dhcp
client is used to activate the network devices
during boot.

Once the network device is configured, BOEL
will attempt to determine which image server
it should contact. This information may either
be provided via local configuration file or dhcp
options. After that, BOEL attempts to deter-
mine the host name of the machine it is running
on. This is accomplished through either val-
ues in the local configuration file, reverse DNS
lookup, or a special hosts file served from the
image server.

With the network enabled, and the image
server and local host name found, BOEL con-
nects to the image server using rsync, and re-
trieves the autoinstall script for the host. This
script is stored in thescripts rsync module as
the file HOSTNAME.sh. At this point BOEL
turns over control to the autoinstall script that
it has downloaded.

4.2 The Auto Install Script

BOEL is an extremely constrained environ-
ment. It contains only a minimal glibc, a stati-
cally linked ash shell, and the BusyBox imple-
mentation of standard Linux commands. This
means the autoinstall script must be POSIX
shell. The tasks the autoinstall script must ac-

complish are as follows:

1. partition the disk drives with sfdisk

2. format all the partitions appropriately
(ext2, ext3, and reiserfs are supported)

3. mount all the partitions to the proper
mount points

4. rsync the appropriate rsync module from
the server to the local disk

5. run systemconfigurator to setup network,
modules.conf, and bootloader

6. execute a specified post install action (one
of: beep, reboot, or shutdown)

If at any point the auto installation attempts an
operation which fails, it will dump its console
out to a shell and await human input. At this
point no remote notification is provided in the
event of failure.

Because the autoinstall script is merely a
POSIX shell script, it can be easily mod-
ified to perform other actions beyond the
straight scope of the autoinstallation process.
Themkautoinstallscript command should be
considered to generate a template autoinstall
script. Although it will work fine for most sce-
narios without any modification, the possibility
exists to easily modify it to add extra function.

4.3 Image Customization

Once the files from the image are transfered
to the client machine, the job of installation is
nearly complete. The only thing that remains
is modifying the abstract image so that it has
node specific information in it. For a machine
to actually boot and connect to the local area
network the network scripts must properly re-
flect the state of the node, and the bootloader

Ottawa Linux Symposium 2002 100

must be installed. Setting up networking is
something which tends to be very distribution
specific. Making a machine bootable is very ar-
chitecture specific. Instead of forcing that code
into the autoinstall script, where one only has
access to the POSIX shell environment, a dif-
ferent approach was taken.

System Installation Suite installs all the soft-
ware in the image to the client machine. The
client machine is a full instantiation of a
runnable node. It has all the C, Perl, and
Python libraries that a running machine would
have. Why not exploit this fact by installing
an additional program in the image or on
the golden client which is transferred to the
client during installation. This program would
be called via thechroot function, and would
present a unified API for configuration of net-
working, bootloader setup, and other required
tasks to the autoinstall script, which would be
exactly the same on any architecture or distri-
bution. This program became known as the
System Configurator project.

System Configurator implements a unified
calling interface to setup both network scripts
and boot loaders. In the process of setting up
these features, it also can detect local hardware
and modify the appropriate underlying files ac-
cordingly. This feature is even exploited from
SystemImager outside the scope of System In-
stallation Suite. This allows an image to be
used on machines which have different net-
work interface cards. Prior to SIS, this was not
possible. System Configurator will also auto
generate initial ramdisks upon request. This
solves the long standing issue with LUI where
one had to create an appropriate initial ramdisk
if attempting to install with a modular kernel
on SCSI hardware.

4.4 Foot Printing

There were many possible ways that System
Configurator could have implemented its ab-
straction. One that was suggested, and firmly
rejected, was classifying features in terms of
distributions. The problem is to support a
dozen or so distributions, over 3 or more re-
leases, means 40+ code paths. Also, signifi-
cant updates between stable releases of a dis-
tribution would be nearly impossible to track
or support. The eventual design concept that
won was “foot printing”.

Let’s say you know there are two different pro-
grams to create ramdisks, and each of them
takes different options. You could either first
try to find a comprehensive list of all Linux dis-
tributions that use one or the other, and then
detect distribution, and use the right one (as
stored in your matrix), or you could just say
“If program a is there, run it like this, if pro-
gram b, run it like that”. This takes out a whole
lot of indirection in detection, and provides for
the possibility of supporting distributions that
you didn’t even know existed.

The idea of foot printing naturally leads to a
modular architecture. Each module registers
itself for a specific type of job (Network, Boot-
loader, Hardware, etc.), and when the phase for
that job is executed, the modules are asked if
their footprint is found. If so, their setup rou-
tine is executed. Depending on the type of job
being accomplished, it may either be ok to ex-
ecute all modules which footprint properly, or
only the first one to do so. This decision is
made per task module.

4.5 System Configurator

System Configurator can do many tasks, and
does different tasks when used in a System In-
stallation Suite context or a SystemImager only
context. The basic setup directives include sup-

Ottawa Linux Symposium 2002 101

port for the following:

• pci hardware detection

• network setup

• initial ramdisk generation

• bootloader configuration file generation

• bootloader setup (running the proper
bootloader)

• time zone setup

• network time sync

At every stage the main line code uses foot-
printing and plugin modules to accomplish
tasks. Whenever possible System Configurator
calls native setup tools for the distribution it is
running on. The attempt is to make it very hard
to determine that System Configurator created
or modified files, as it did exactly what a na-
tive user or tool in the distribution environment
would do.

A good example of this is the creation of mod-
ules.conf on the Debian distribution. In De-
bian there is a directory of files in /etc/modutils
which are all merged into modules.conf using
the update-modulescommand. System Con-
figurator modifies the appropriate files and runs
update-modules if the /etc/modutils directory
is found.

In the current release of System Configura-
tor 4 different types of networking are sup-
ported, which provides support for Red Hat,
Mandrake, Conectiva, SuSE, TurboLinux, and
Debian. An additional 2 types of networking
have been identified that would add support for
Caldera and Slackware, but haven’t been im-
plemented yet. System Configurator can sup-
port as many network adapters as your Linux
system can handle, though SystemImager and

System Installation Suite only support config-
uration of the primary network adapter at this
time.

System Configurator also supports four dif-
ferent methods for bootloader setup, Lilo and
Grub on i386, and two ways to setup Elilo on
IA64. There is experimental support for PPC
and PA-RISC setup at the moment, though the
autoinstallation process does not yet support
either of those platforms.

After System Configurator runs, the abstract
image has become a real live node, tuned for
the distribution and hardware that it is running
on. This node will be able to reboot and be-
come network accessible. Once the machine
is network accessible, any additional custom
setup could be performed by remote shell com-
mands or programs such as cfengine.

5 Maintenance

Images are live file systems stored on an im-
age server. Images get transfered across the
network via rsync. Before rsync transfers files
it first computes the difference between the
source and destination for the files. One image
can be applied to many machines.

All these facts taken together paint a picture
of how SIS provides an extremely efficient up-
date mechanism for client nodes. Suppose that
some core library to your system has a secu-
rity vulnerability, for instance zlib. Pushing
this update to all your running machines is as
simple as applying the update to the image,
then rsyncing that image back out to the client
nodes. In most cases updates of a running node
can be performed without a reboot, the notable
exceptions being an update to a kernel or com-
monly used shared library with a security vul-
nerability.

SystemImager provides an interface to per-

Ottawa Linux Symposium 2002 102

forming this update process via theupdate-
client command. Updateclient is intelligent
enough to exclude many directories that are
used for variable or node specific information,
such as /var/log, /var/run/, /var/spool, /tmp,
/proc and ext3 journal files. This list of ex-
cludes is stored in a file on the client, so it can
be tailored to meet site specific needs.

Because the rsync protocol computes the dif-
ference between the source and destination file
systems, only those files that have changed get
propagated. This reduces network traffic sig-
nificantly. Rsync can even check for changed
byte ranges within a large file, so that it can
replicate on a sub file level.

6 Image vs. Client Instantiation

As has been shown in this paper, System Instal-
lation Suite takes a novel approach to instal-
lation. Most other tools used for unattended
massive installation pull packages across the
network, and instantiate them directly on the
client during install. System Installation Suite
does this instantiation on the server, then trans-
fers the resultant image across the network.
There are many advantages to this methodol-
ogy. Maintenance mode, and support for non
packaged software have previously been dis-
cussed. However there are many other advan-
tages, some of which are still not fully ex-
ploited, to this approach.

All installation methods must have some code
running on the client node to perform the in-
stallation. With SIS, all the code run on the
client during install is SIS code. Packages
are not allowed to run their own scripts dur-
ing the portion of installation which occurs on
the client. This means there are far less moving
parts during the SIS install process, and hence
less things that can go wrong with the install.
In a package based installation, one bad pack-

age can prevent the install from working. With
SIS, the one package can be manually force fit
into the image where the user has far greater
latitude (tools like alien might even be used to
install non native packages). The SIS install
process doesn’t care where the content of the
image came from. This reduced complexity
during actual installation of the clients trans-
lates into a smaller number of problems that
can occur during the autoinstall phase. This is
true in theory, and in has been shown in prac-
tice as well.

One of the things that image installation does
not do as well as package based install tools, is
conserve disk space. In a package based instal-
lation environment the main server stores only
packages. When the client installs, it will de-
termine which combination of package it needs
to complete installation, and fetch only those
packages it needs to complete the process. The
space required on the server is all the pack-
ages off the distribution CDs, plus any addi-
tional update packages. For most distribution
releases this will amount to about 3 GiB of disk
space per distro, per release, per architecture.

With image based installation the images are
fully instantiated and stored on the server. An
average image with a full load of software
ranges from 1 to 2 GiB of data. There have
been thoughts about providing an image nor-
malization tool that would reduce the space re-
quired to store multiple images on the server, or
to support multiple phase images, where many
different images would be overlayed to create
the final installation. Neither of these options
are being seriously explored at this point be-
cause of one important fact: a 60 GiB EIDE
drive costs less than $100. Disk space is cheap.
Adding complexity to the project to save stor-
age space requirements does not seem like a
valuable use of developer resource.

The final advantage that System Installation

Ottawa Linux Symposium 2002 103

Suite’s image implementation provides is the
ability to live test an image on the server be-
fore deployment. The image is a live file sys-
tem. Any user level program run chrooted from
an image will run just as if it was a live ma-
chine. If you want to know whether an appli-
cation will run properly in your image, you can
chroot $IMAGEDIR $CMD.

This methodology was used when adding
SuSE support to SystemInstaller. I harvested
a SuSE 7.2 system onto my Mandrake 8.1 de-
velopment machine. I then chrooted into the
SuSE image and built additional SuSE images
from inside it. This meant I could develop
for multiple distributions on a single machine
without having to reboot. This feature of Sys-
temInstaller has begun to be exploited by a
number of users that wish to create test and
build environments for many distributions, but
have a limited number of physical machines.
The only limitation to this is testing software
which needs access to physical hardware or
kernel interfaces, as the host kernel will be
used for that. There is a possible way around
this limitation, discussed in the next section.

7 Future Work

SIS right now is at the very beginning of its
life. There are a number of short comings that
it has, and many directions it can go from here.
What follows is a few of those thoughts, some
of which are very pie in the sky, and some that
will probably make it into the code stream by
the end of this year.

7.1 Current Weaknesses

SIS has a number of weaknesses currently. The
first major one is the fact that images currently
contain more than just the software that is ap-
plied to the image. Because images also con-
tain files like /etc/raidtab, and /etc/fstab, an im-

age is bound to a partition model. This means
that an image build for /dev/hda, cannot be ap-
plied to a machine with only SCSI devices. As
most software doesn’t care about the underly-
ing disk devices, this should be able to be ex-
tracted from the main image and put into the
autoinstall script.

The lack of multiple adapter support is also
a big weakness. SIS currently only will set
up theeth0 interface during installation. Al-
though there are hacks to change which inter-
face is setup and to bring up additional adapters
via dhcp, real multiple adapter support needs
to be added to the autoinstall script to support
this.

Remote logging existed in LUI, but there is no
equivalent in SIS. This needs to be put in place
before SIS can be considered enterprise ready,
as lack of remote logging makes the discovery
of failures far more difficult.

The autoinstallation kernel needs a Debian en-
vironment to build in. The main reason for
this is that Debian provides libc_pic packages,
which make it easy to create a smaller version
of glibc to go on the autoinstall media. This is
a serious limitation to having true source pack-
ages that can be rebuilt on any environment.
There are a number of possible options here,
the use of uClibc, dietlibc, or minilibc are top
on the list.

Although building images directly on the
server works for most packages, it doesn’t for
all of them. Occasionally a package will at-
tempt to start a daemon which needs to com-
municate with other services or directly with
hardware. Although it is questionable for a
package to do this in a post install script with-
out having a good way to shut it down, it does
happen. There has been the possibility of doing
some manner of freeze / thaw on post install
scripts, so that certain package scripts would
be stopped from running, then executed on first

Ottawa Linux Symposium 2002 104

boot of the client. This is possible, but the full
implications would need to be worked out.

7.2 New Directions

There are many new directions we would like
SIS to take, however it is unlikely that more
then one or two of these will get accomplished
this year due to the size of the development
team. So consider some of these pie in the sky
ideas that hopefully some eager volunteers will
help us do.

7.2.1 SIS to other Platforms

Currently in the pipe is work to bring SIS to
PowerPC, HPARISC, and S/390 Linux. Some
of these ports should see the light of day
this summer. There has always been the
thought that SIS could be applied to other op-
erating systems, especially the *BSD family
(FreeBSD, OpenBSD, and NetBSD) of oper-
ating systems. Any OS which Linux supports
creation of, and read / write access to, their
filesystem should be able to be supported by
SIS in some manner.

7.2.2 Multicast SIS

Once upon a time a multicast library was writ-
ten for SystemImager called multicaster. The
library was never fully finished, but was posted
to Source Forge anyway. The funny thing with
open source projects, is they pop up in the odd-
est places. Sometime in October of last year,
a new project was announced on Freshmeat
calledmrsync which was a derivative of mul-
ticaster with an rsync like command line inter-
face. This is being used in production shops at
the moment. The possibility exists of making
SIS use mrsync instead of rsync during initial

installation to allow installation to scale to hun-
dreds or thousands of simultaneous nodes.

7.2.3 Diskless SIS

SIS creates fully chrootable images on a server
which can then be deployed to clients. With
very few modifications it should be able to
build fully chrootable environments which
could be used for diskless environments as
well. There is significant interest from certain
segments of the high performance computing
community for this, so I believe this will hap-
pen in the near future.

7.2.4 UML Verification Suite

Because the images on the server are full in-
stallations of a running system, it seems possi-
ble that a more hearty verification on system
integrity could be run on them. The natural
choice for this would be User Mode Linux. Af-
ter image instantiation, a custom verification
program could be run in a UML instance which
uses the image as its root filesystem. This
would allow for a burn in test of the image be-
fore it was ever deployed, and could help track
down possible conflicting libraries or software
revisions. This type of burn it would be essen-
tial for large installations that want an assur-
ance test on their images before deployment.

8 SIS in Action

One of the areas that Linux has penetrated ex-
tremely well, is the High Performance Com-
puting arena, specifically High Performance
Linux Clusters. This arena is very will suited
to the strengths of SIS, as all the machines in
a cluster tend to be nearly identical. Only a
small number of images will be needed to de-
ploy hundreds or thousands of machines. The

Ottawa Linux Symposium 2002 105

installation method is distribution independent,
so no matter what distribution the user chooses
to deploy, the methodology is the same. SIS
also has both a command line and graphic user
interface, so it can be driven by another appli-
cation very easily.

OSCAR (Open Source Cluster Application Re-
source) is a cluster building based on the best
known practices in Linux clustering. As of OS-
CAR 1.2, System Installation Suite is the in-
staller for all the client nodes in an OSCAR
cluster. The OSCAR wizard is written in Perl
Tk, and hence can use TkSIS panels directly.
Every panel in TkSIS allows a callback to be
registered. OSCAR uses this feature to do
other cluster setup tasks at every stage. This
integration was very easy to accomplished, and
has given the OSCAR project a very robust dis-
tribution independent mechanism for installa-
tion. SIS was instrumental in allowing OS-
CAR support both Red Hat and Mandrake in
OSCAR version 1.3.

Other clustering projects such as Clubmask,
SCore, and SCE are looking at moving to SIS
for their installation so they can support numer-
ous underlying distributions. We expect many
tools to leverage the image based framework
for systems management that System Installa-
tion Suite has created in the future.

9 Conclusion

System Installation Suite is a novel approach
to the massive installation problem in Linux
which is both distribution and architecture ag-
nostic. It provides an image based framework
for extremely scalable installation and main-
tenance. It has always been the intent of the
project to expose as many clean interfaces as
possible to other applications, so System In-
stallation Suite can be cleanly integrated into
other projects or products requiring an install

method that works on many distributions. The
expectation is that other components could be
easily added to System Installation Suite over
time to exploit many of the capabilities of im-
age based systems that have yet to be explored.

Our motto has always been: “Do it once, do it
right, do it for every buddy”. We want to sup-
port every distribution and every architecture
that will run Linux equally well. By doing so,
we raise the base line for Linux system’s man-
agement, and make Linux easier to deploy for
administrators everywhere.

For more information on System Installation
Suite: how to use it, how to join the project,
and what you can do to help, please visit our
web site athttp://sisuite.org. Links to all the
component parts of System Installation Suite
are provided there, as well as a network in-
staller which will download and install the lat-
est version of System Installation Suite.

10 Acknowledgements

Credit must always be given where credit is
due. System Installation Suite has had many
contributors, and hopefully many more (for a
full list please see the credits files of all the var-
ious projects). Specifically mentioned should
be the follow folks that have put long hours into
making System Installation Suite happen over
the past year, Michael Chase-Salerno, Brian
Finley, and Dann Frazier. The following com-
panies have donated a significant amount of
time and effort to the project as well, and
should be commended for that: Bald Guy Soft-
ware, Hewlett Packard, and IBM.

Special thanks go out to my editing crew: Trey
Belew, Michael Chase-Salerno, Joe Greenseid,
and Barb Kane. Without their assistance, this
paper would have been far less legible. I also
want to thank my employer, IBM, for allowing
me to spend the last year working full time on

Ottawa Linux Symposium 2002 106

the System Installation Suite project. I believe
this project is a significant contribution to the
Linux community, and am thrilled to have been
a part of it.

11 References

LUI,
http://oss.software.ibm.com/lui

System Configurator,
http://systemconfig.sf.net

SystemImager,
http://systemimager.org

SystemInstaller,
http://systeminstaller.sf.net

System Installation Suite,
http://sisuite.org

OSCAR,http://oscar.sf.net

12 Trademarks

Linux is a registered trademark of Linus Tor-
valds.

IBM, PowerPC, and S/390 are trademarks or
registered trademarks of International Business
Machines Corporation.

Solaris is a trademark of Sun Microsystems,
Inc.

All other trademarks are the property of their
respective owners.

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

