
SE Debian: how to make NSA SE Linux work in a
distribution

Russell Coker<russell@coker.com.au> ,
http://www.coker.com.au/

Abstract

I conservatively expect that tens of thou-
sands of Debian users will be using NSA SE
Linux [1] next year. I will explain how to make
SE Linux work as part of a distribution, and be
managable for the administrator.

Although I am writing about my work in devel-
oping SE Linux support for Debian, I am using
generic terms as much as possible, as the same
things need to be done for RPM based distribu-
tions.

1 Introduction

SE Linux offers significant benefits for secu-
rity. It accomplishes this by adding another
layer of security in addition to the default Unix
permissions model. This is accomplished by
firstly assigning atype to every file, device,
network socket, etc. Then every process has
a domain, and the level of access permitted
to a type is determined by the domain of the
process that is attempting the access (in addi-
tion to the usual Unix permission checks). Do-
mains may only be changed at process execu-
tion time. The domain may automatically be
changed when a process is executed based on
the type of the executable program file and the
domain of the process that is executing it, or a
privileged process may specify the new domain
for the child process.

In addition to the use of domains and types
for access control SE Linux tracks theidentity
of the user (which will besystem_ufor pro-
cesses that are part of the operating system or
the Unix user-name) and the role. Eachidentity
will have a list of roles that it is permitted to as-
sume, and eachrole will have a list of domains
that it may use. This gives a high level of con-
trol over the actions of a user which is tracked
through the system. When the user runs SUID
or SGID programs the original identity will
still be tracked and their privileges in the SE se-
curity scheme will not change. This is very dif-
ferent to the standard Unix permissions where
after a SUID program runs another SUID pro-
gram it’s impossible to determine who ran the
original process. Also of note is the fact that
operations that are denied by the security pol-
icy [2] have theidentityof the process in ques-
tion logged.

For a detailed description of how SE Linux
works I recommend reading the paper Peter
Loscocco presented at OLS in 2001 [1].

The difficulty is that this increase in functional-
ity also involves an increase in complexity, and
requires re-authenticating more often than on
a regular Unix system (the SE Linux security
policy requires that the user re-authenticate for
change ofrole). Due to this most people who
could benefit from SE Linux will find them-
selves unable to use it because of the difficul-
ties of managing it. I plan to address this prob-
lem through packaging SE Linux for Debian.

Ottawa Linux Symposium 2002 66

The first issue is getting packages of software
that is patched for support of the SE Linux sys-
tem calls and logic. This includes modified
programs for every method of login (/bin/login,
sshd, and X login programs), modifiedcron to
run cron jobs in the correct security context,
modified ps to display the security context,
modified logrotate to keep the correct context
on log files, as well as many other modified
utilities.

The next issue is to configure the system such
that when a package of software is installed the
correct security contexts will be automatically
applied to all files.

The most difficult problem is ensuring that
configuration scripts get run in the correct se-
curity context when installing and upgrading
packages.

The final problem is managing the configura-
tion files for the security policy.

Once these problems are solved there is still
the issue of the SE Linux sample policy being
far from the complete policy that is needed in
a real network. I estimate that at least 500 new
security policy files will need to be written be-
fore the sample policy is complete enough that
most people can just select the parts that they
need for a working system.

2 Patching the Packages

The task of the login program is to authenticate
the user,chown the tty device to the correct
UID, and change to the appropriate UID/GID
before executing the user’s shell. The SE
patched version of the login program performs
the same tasks, but in addition changes the se-
curity identifier (SID) on the terminal device
with thechsidsystem call and then uses theex-
ecve_securesystem call instead of theexecve
system call to change the SID of the child pro-

cess. The login program also gives the user a
choice of which of their authorised roles they
will assume at login time.

This is not very different from the regular func-
tionality of the login program and does not re-
quire a significant patch.

Typically this adds less than 9K to the object
size of the login program, so hopefully soon
many of the login programs will have the SE
code always compiled in. For the rest we just
need a set of packages containing the SE ver-
sions of the same programs. So this issue is not
a difficult one to solve and most of the work
needed to solve it has been done.

A similar patch needs to be applied to many
other programs which perform similar opera-
tions. One example iscron which needs to be
modified so cron jobs will be run in the cor-
rect security context. Another example is the
suexecprogram fromApache. An example of a
similar program for which no-one has yet writ-
ten a patch isprocmail.

Programs which copy files also need to have
suitable options for preserving SIDs,logrotate
and thefileutils package (which includescp)
have such patches,cpio lacks such a patch, and
there is a patch fortar but it doesn’t apply to
recent versions and probably needs to be re-
written.

3 Setting the Correct SID When
Installing Files

When a package of software is installed the fi-
nal part of the installation is running apostinst
script which in the case of a daemon will usu-
ally start the daemon in question. However if
the files in the package do not have the correct
SIDs then the daemon may not be able to run,
or will be unable to run correctly!

Ottawa Linux Symposium 2002 67

The Debian packaging system does not cur-
rently have any support for running a script af-
ter the files of a package are installed but be-
fore thepostinstscript. There have been dis-
cussions for a few years on how best to do this,
as I didn’t have time to properly re-writedpkg
I instead did a quick hack to make it run scripts
that it finds in/etc/dpkg/postinst.d/before run-
ning thepostinstof the package.

When installing an SE Linux system the pro-
gramsetfilesis used to apply the correct SIDs
to all files in the system. I have written a patch
to make it instead take a list of canonical fully-
qualified file names on standard input if run
with the -s switch, which is now included in
the NSA source release.

The combination of thedpkgpatch and theset-
files patch allow me to solve the basic prob-
lem of getting the correct SIDs applied to files,
my script just queries the package management
system for a list of files contained in the pack-
age and pipes it through tosetfilesto set the
SID on each file.

The next complication is setting the correct
SID for thesetfilesprogram, by default it gets
installed with the security typesbin_tbecause
that is the type of the directory it is installed
in. However in my default policy setup I have
not given thedpkg_t domain (which is used
by thedpkgprogram when it is run adminis-
tratively) the privilege of changing the SID of
files. So thesetfilesprogram needs to have the
typesetfiles_exec_tto trigger an automatic do-
main transition to thesetfiles_tdomain.

To solve this issue I have thepreinst script
(the script that is run before the package is
installed) of theselinux package rename the
/usr/sbin/setfilesto /usr/sbin/setfiles.oldon an
upgrade. Then the/etc/dpkg/postinst.d/selinux
script will run the old version if it exists.

Here’s the relevant section of the

selinux.preinstfile:

if [! -f /usr/sbin/setfiles.old -a \
-f /usr/sbin/setfiles]; then

mv /usr/sbin/setfiles \
/usr/sbin/setfiles.old

fi

Table 1 shows the contents of
/etc/dpkg/postinst.d/selinux. The first pa-
rameter to the script is the name of the package
that is being installed. Also I have"grep ..."
included because setfiles currently has some
problems with blank lines and/. which dpkg
produces.

4 Running Configuration Scripts
in the Correct Context

When a SE Linux system boots the process
init is started in the domaininit_t. When
it runs the daemon start scripts it uses the
scripts/etc/init.d/rcand/etc/init.d/rcSon a De-
bian system (on Red Hat it is/etc/rc.d/rcand
/etc/rc.d/rc.sysinit). So these scripts are given
the typeinitrc_exec_tand there is a ruledo-
main_auto_trans(init_t, initrc_exec_t, initrc_t)
which causes a transition to theinitrc_t do-
main. The security policy for each daemon will
have a rule causing a domain transition from
theinitrc_t domain to the daemon domain upon
execution of the daemon. This all happens as
thesystem_uidentity and thesystem_rrole.

When the system administrator wants to start a
script manually they use the programrun_init
which can only be run from thesysadm_tdo-
main, it re-authenticates the administrator (to
avoid the possibility of it being called by some
malicious code that the administrator acciden-
tally runs) before running the specified script
assystem_u:system_r:initrc_t.

This works fine when the daemon start script
is quite simple (most such start scripts just

Ottawa Linux Symposium 2002 68

#!/bin/sh

make -s -C /etc/selinux file_contexts/file_contexts

SETFILES=/usr/sbin/setfiles
if [-x /usr/sbin/setfiles.old]; then

SETFILES=/usr/sbin/setfiles.old
fi
dpkg -L $1 | grep ^/.. | $SETFILES -s \

/etc/selinux/file_contexts/file_contexts
if [-x /usr/sbin/setfiles.old -a "$1" = "selinux"]; then

rm /usr/sbin/setfiles.old
fi

Table 1: Contents of/etc/dpkg/postinst.d/selinux.

check whether the daemon is already running
and then run it with appropriate parameters).
However this doesn’t work for complex scripts,
which may copy files, change sysctl entries via
/proc, and do many other things. An example
of this is thedevfsdpackage where the start
script creates device nodes for device drivers
that lack kernel support fordevfs. Getting this
to work correctly required that the code for
device node creation be split into a separate
file with the same SID as the main daemon
(devfsd_exec_t) which causes it to run in the
same domain as the daemon (devfsd_t). Such
changes will probably have to be made to about
5% of daemon start scripts.

But that is part of the standard proceedure of
correctly setting up SE Linux. The package
specific part comes when the scripts have to be
started from the package installation. To get
the correct domain (initrc_t) for the scripts I
use the ruledomain_auto_trans(dpkg_t, etc_t,
initrc_t) which causes thedpkg_t domain to
transition to theinitrc_t domain when a script
of typeetc_t is executed. Now the hard part is
getting the identity and the role correct when
runningdpkg. For this purpose I have written
a customised version ofrun_init to change to
the context to system_u:system_r:dpkg_t,

system_u:system_r:apt_t, or sys-
tem_u:system_r:dselect_t, for the programs
dpkg, dselect, andapt-getrespectively.

Theapt_tanddselect_tdomains are only used
for selecting and downloading packages, and
then executingdpkg, which triggers an auto-
matic transition to thedpkg_tdomain.

5 Managing the Configuration
Files

For normal configuration files in Debian (al-
most every file under /etc and some files in
other locations) the file is registered as aconf-
file in the packaging system, and the package
status file contains the MD5 checksum of the
file. If a file is changed from its original con-
tents (according to an MD5 check) at the time
the package is upgraded and if the new ver-
sion has a different set of data for the file than
that which was provided by the old version of
the package (according to MD5) then the user
will be asked if they want to replace the old
file (with a default of no). However if the new
version of the package contains different con-
tent and the old content was not changed, then
the user will get the new content without even

Ottawa Linux Symposium 2002 69

being informed of the fact!

This is OK for many files, but the idea of a file
from your audited security configuration being
replaced with one you’ve never seen is not a
pleasant one! This is only the first problem
with managing policy files, the next problem is
the size of the database for the sample policy.
If you are using an initial RAM disk (initrd)
then you must have the policy database on the
initrd. The default initrd size of 4 megabytes is
not large enough to accomodate the usual mod-
ules and the complete sample policy.

So what we need to solve this is a way of
having a set of sample policy files (one per
domain), of which not all will be used, and
when new policy files are added or existing
files are changed the user must be prompted
as to whether they want to add the new files
or apply the changes. Also when adding new
policy the matching entries have to be added to
the database used bysetfilesfor setting the file
context.

In the latest versions of the sample pol-
icy the Makefile creates a configuration file
for setfilesto match the program configura-
tion files used. For every application policy
file domains/program/%.tethe matching file
file_contexts/program/%.fcwill be used as part
of the configuration. This change will solve the
issue of determining the configuration forset-
files, but it doesn’t entirely solve the problem.
One issue with this is that when a file is added
to or removed from the configuration the ap-
propriate changes need to be made to the file
system. If you make an addition to the pol-
icy before installing a new package (the cor-
rect proceedure) then you can usually get away
without this as long as none of the files or di-
rectories previously existed, however this is not
always the case, especially when files are di-
verted or when dealing with standard direc-
tories such as/var/spool/mailwhich will ex-

ist even if you have not installed any software
to use them! It should not be that difficult to
write a program to relabel the files matching
the specifications of the added policy, the ques-
tion is whether policy additions are common
enough to make it worth saving the effort of a
relabel. Also there’s the risk that a bug in such
a program (or its use) could potentially cause a
security hole.

The security policy is comprised of one con-
figuration file per application (or class of ap-
plication, some domains such as the DHCP
client domaindhcpd_t are used by multiple
programs which perform similar functions).
Also sometimes an application requires mul-
tiple domains which will therefore be defined
in the one file, for example my current pol-
icy for Postfix has eleven domains (which is
excessive, I plan to reduce it to three or four
once I’ve determined exactly what is required).
One problem I faced with this is the issue
of what to do when one domain needs to in-
teract with another domain, for example the
pppd process often needs to runsendmail -q
to flush the mail queue when it establishes a
connection. This requires the policy statement
domain_auto_trans(pppd_t, sendmail_exec_t,
sysadm_mail_t), previously such a statement
would be put in either thesendmail.tefile or
the pppd.tefile, thus making one of them de-
pend on the other. This is a bad idea because
there’s no reason for either of these programs
to depend on the other. The solution I devised
is based on the M4 macro language (which was
already used for simpler macro functionality in
producing the policy file). I created a script to
define a macro with the name of each appli-
cation policy file that is used. So the solution
to the PPP and Sendmail problem is to put the
following in thepppd.tefile:

ifdef(‘sendmail.te’,
‘domain_auto_trans(pppd_t,

sendmail_exec_t, sysadm_mail_t)’)

Ottawa Linux Symposium 2002 70

The next problem, is how to effectively manage
things so that when I ship a new and improved
sample policy the administrator can update it
without excessive pain.

The current method involves runningdiff -ru
and then copying files if you like the changes.
This is excessively painful even when manag-
ing one or two SE Linux machines! So it ob-
viously won’t scale to serious production. I
plan to write a Perl script to manage this, the
first thing it has to do is track when the ad-
ministrator doesn’t want a policy file. When
a file is removed then the fact that the user has
chosen not to have that file installed should be
recorded, and they should not be prompted to
re-install it on the next upgrade. However if
the sample policy is upgraded and a new file
has been added then they should be asked if
they want to install it. Then when a file in the
sample policy changes and it is a file that is in-
stalled the user should be asked if they want the
new file copied over their existing file (and they
should be provided with adiff to show what the
changes would be). Finally if such changes in-
volve the file configuration forsetfilesthen the
user should be asked whether they want to re-
label the system.

The people who are working on Red Hat pack-
aging are considering other ways of manag-
ing the versions of configuration files, one of
which involves having symbolic links pointing
to the files to be used, if you decide to use your
own version instead of one of the supplied pol-
icy files then you can change the sym-link.

6 Managing Device Nodes

In Linux there are two methods of managing
device nodes. One is the traditional method of
having /devbe a regular directory on the root
file system and have device nodes created on it
with mknod, the other is thedevfsfile system

which allows the kernel to automatically cre-
ate device nodes while thedevfsdprocess au-
tomatically assigns the correct UID, GID, and
permissions to them.

On a traditional (non-devfs) system running SE
Linux the device nodes will be labelled in the
same way as any other file. On a devfs system
things are different, the devfs policy database
contains rules for labelling device nodes. How-
ever this has some limitations, one being that
when the policy database does not have an en-
try for the device node at the time it is cre-
ated, then it will never be labelled. Another
is that everytype listed in the devfs configu-
ration rules must be defined, which can cause
needless dependencies.

To address these issues I wrote a module for
devfsd which adds support for SE Linux. This
allows you to change the mapping of SIDs to
device nodes and re-apply it at any time, and if
a security context listed in the configuration file
does not exist in the policy then an error will be
logged and the system will continue working.

This is especially useful for the case of anini-
trd as the types for all the possible device nodes
won’t need to be in the ram disk.

7 Work To Be Done

Initial RAM Disk

When using an initrd to boot a modular ker-
nel the security policy database must be stored
on the initrd. The problem is that the default
initrd size is 4M, which does not leave much
space when libc6 is included, often not enough
for the policy you want. Also even if the pol-
icy does fit you won’t really want to have such
a large initrd image. If you are installing SE
Linux on a single PC, or even on a network of
similar PCs then you are best advised to build
a kernel with all modules needed for booting

Ottawa Linux Symposium 2002 71

statically linked and not use an initrd. How-
ever this is not possible for a distribution ven-
dor who has to support a huge variety of hard-
ware.

Another problem with using an initrd for stor-
ing the policy is that when you generate a new
policy you then have to regenerate the initrd
to avoid having your changes disappear on the
next boot, of course a boot script could easily
load the updated policy from the root file sys-
tem before going to multi-user mode. But it is
wasteful to have a large policy on the initrd that
you then discard before ever using much of it.

The solution is to have a small policy that con-
tains all the settings needed for either the first
stage of boot, or alternately for running recov-
ery tools in case a failure prevents the machine
from entering multi-user mode. Then after the
machine has passed the first stages of the boot
process a complete policy can be loaded from
the root file system, as long as the two poli-
cies don’t conflict in any major way this should
work well. NB A Major policy conflict is a
situation where the initrd defines domains that
aren’t defined in the new policy and processes
are executed in such a domain.

The latest release of SE Linux supports auto-
matically re-loading the policy when the real
root file system is mounted. Now all that needs
to be done is for someone to write a mini-
policy to install on the initrd.

Polishing run_init

Stephen Smalley has suggested that we de-
velop arun_init program that incorporates the
functionality of my modified program as well
as of the originalrun_init program in a more
generic fashion. It is apparent that other peo-
ple will have similar needs for programs to ex-
ecute programs under a different domain, role,
and maybe identity. It is better that one pro-

gram do this than to have many people writing
programs for such things.

Also currently my program is hard-coded for
the names of the Debian administration pro-
grams. An improved program should handle
the needs of Debian, RPM, and the regular
run_init functionality.

Writing Sample Policy Files

Currently any serious system will require pol-
icy files that are not in the sample policy. This
forces everyone who uses SE Linux to start
by writing policy files (which is the most dif-
ficult and time consuming task involved with
the project). Currently we are writing new
sample policy files for the variety of daemons
and applications, and developing new macros
for writing policy files quickly. With the new
macros policy files are on average half the size
that they used to be (and I aim to reduce the
size again by new macros). The macros al-
low short policy files which are easy to under-
stand, and therefore the user can easily deter-
mine how to make any required changes, or
how to write a policy file for a new program
based on existing programs.

8 Obtaining the Source

Currently most of my packages and source are
available at http://www.coker.com.
au/selinux/ however I plan to eventually
get them all into Debian at which time I may
remove that site.

I have several packages in the unstable dis-
tribution of Debian, the first is thekernel-
patch-2.4-lsmand kernel-patch-2.5-lsmpack-
ages which supply the Linux Security Mod-
ules http://lsm.immunix.org/ kernel
patch. That patch includes SE Linux as well
as LIDS and some of the OpenWall function-

Ottawa Linux Symposium 2002 72

ality. When I have time I back-port patches
to older kernels and include new patches that
the NSA has not officially released, so often
my patches will provide more features than
the official patches distributed by the NSA
from http://www.nsa.gov/selinux/
index.html or the patches distributed by
Immunix. However if you want theofficial
patches then these packages may not be what
you desire.

From the selinux-smallarchive I create the
packagesselinuxand libselinux-devwhich are
also in the unstable distribution of Debian.

9 Acknowledgments

I would like to thank Stephen Smalley for be-
ing so helpful when I was learning about SE
Linux, and Dr. Brian May for checking my
early packages and giving me some good ad-
vice when I first started.

Also thanks to Dr. May, Stephen Smalley, and
Peter Loscocco for reviewing this paper.

References

[1] Meeting Critical Security Objectives
with Security-Enhanced Linux. Peter A.
Loscocco, NSA,
loscocco@tycho.nsa.gov; Stephen D.
Smalley, NAI Labs, ssmalley@nai.com
http://www.nsa.gov/selinux/

ottawa01-abs.html/

[2] Configuring the SELinux Policy. Stephen
D. Smalley, NAI Labs,
ssmalley@nai.com
http://www.nsa.gov/selinux/

policy2-abs.html/

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

