
Mandatory Access Control for Linux Clustered
Servers

Miroslaw Zakrzewski
Open Systems Lab
Ericsson Research

8400 Decarie Blvd

Town of Mont Royal, Quebec

Canada H4P 2N2

Miroslaw.Zakrzewski@ericsson.ca

Abstract

In today’s world, the use of computers and net-
works is growing and the vision of a single
infrastructure for voice and data is becoming
a reality. However, with different technolo-
gies and services using the same networking
infrastructure, the realization of this vision re-
quires higher levels of security to be imple-
mented in computer systems. Current secu-
rity solutions do not address all of the security
challenges facing today’s computer systems,
including clustered platforms, in one compre-
hensive and coherent fashion.

This paper presents the previous work done in
the area of access control and then focus on
new mechanisms for clustered Linux servers
as part of the research project at the Ericsson
Open Systems Lab. In this paper, we address
the design and implementation of a framework
for the mandatory access control in the dis-
tributed security infrastructure (DSI). The on-
going work is mainly based on the Flask archi-
tecture and the Linux Security Module (LSM)
framework with a focus on Linux clustered
servers. The paper also addresses the effects
of the cluster security on the performance of
the distributed system, since enforcing security

may introduce degradation in the performance,
an increase in administration, and some annoy-
ance for the user.

We are implementing cluster-aware access
control mechanisms in the Linux kernel. We
expect that our work will help position Linux
as a secure operating system for clustered
servers.

1 Introduction

The security of computing systems could be
enforced on different levels of the computing
environment such as hardware, operating sys-
tem, application and network level. The pri-
mary subject from the security prospective is
the operating system level, being a fundamen-
tal piece of the security of every computer sys-
tem, and a critical point of failure for the entire
system. Currently implemented security mech-
anisms of operating systems are based on user
privileges and are inadequate to protect against
the various kinds of attacks in today’s com-
plex environments. To address these problems,
security in operating systems has long been a
well-researched topic, which formulated vari-
ous security models and policies.



Ottawa Linux Symposium 2002 619

Various research results have shown that
mandatory security provided by the operat-
ing system is essential for the security of the
whole system [3]; furthermore, they proved
that mandatory access control mechanisms are
very efficient in supporting complex relation-
ships between different entities in the comput-
ing environment.

Several attempts were made to reach a very se-
cure platform. For instance, The FLASK ar-
chitecture [5,12] (on which SE Linux [17] is
based) was created as an attempt to serve as
a generic architecture for the mandatory ac-
cess control. An important design goal was
to provide flexible support for security poli-
cies. The FLASK architecture achieved the
goal by separating the security policy from the
enforcement mechanism and by having secu-
rity checks transparent to the applications. An-
other attempt from SE Linux was to prototype
the access control in the Linux kernel.

However, the existing solutions, including
Flask and SE Linux, do not address the access
control in distributed environments. One such
environment is computer cluster. In our con-
text, a cluster is defined as a collection of inter-
connected stand-alone computers working to-
gether to solve a problem as a single computer.
The cluster can appear as a single system to
users and applications. Since from the logical
point of view we can see a cluster as a single
entity, we should apply this definition to the
cluster security as well and treat the subjects
and resources as if they were located on one
virtual machine.

Even though new security approaches, such as
FLASK, address the problem of mandatory ac-
cess control between subjects and resources
belonging to the same processing node, they
are still missing the mandatory, finer-grained
security checks between the subjects and re-
sources belonging to different nodes.

There exist many security solutions for clus-
tered servers ranging from external solutions,
such as firewalls, to internal solutions such as
integrity checking software. However, there is
no solution dedicated for clusters. The most
commonly used security approach is to pack-
age several existing solutions. Nevertheless,
the integration and management of these dif-
ferent packages is very complex, and often re-
sults in the absence of interoperability between
different security mechanisms. Additional dif-
ficulties are also raised when integrating these
many packages, such as the ease of system
maintenance and upgrade, and the difficulty of
keeping up with numerous security patches and
upgrades.

Carrier class clusters have very tight re-
strictions on performance and response time.
Therefore, much pressure is put on the system
designer while designing security solutions. In
fact, many security solutions cannot be used
due to their high resource consumption.

In a distributed environment, subjects and re-
sources can be located anywhere on the net-
work so the relations between them are more
complex.

In this paper, we present the preliminary results
developing the Linux security module (LSM)
that links all the nodes of the cluster in a trans-
parent fashion; the Linux security module is
also referred to as the distributed security mod-
ule. The security module enforces the secu-
rity checking on a node between subjects and
resources belonging to the same or different
nodes of the cluster. The distributed security
module is a part of the distributed security in-
frastructure (DSI) and cannot be used without
it. The DSI decides about the security policy
and defines mechanisms that control the mod-
ule. In the next section, a brief description of
the distribution security infrastructure is intro-
duced.



Ottawa Linux Symposium 2002 620

Primary 

Security 

Server Node


Node 1
 Node 2
 Node 3


SM
SS
 SM
 SM


Proc123
 Proc978
 Proc222

K

er
n

el



Secure Communication Channel


Secondary


Data Traffic
In
si

d
e 

th
e 

C
lu

st
er




Security 

and

O&M/IDS


O
u

ts
id

e 
th

e 
C

lu
st

er



SS
 Security Server


SM
 Security Manager


Authenticated

Encrypted 

Communications


Primary 

Security 

Server Node


Node 1
 Node 2
 Node 3


SM
SS
 SM
 SM


Proc123
 Proc978
 Proc222

K

er
n

el



Secure Communication Channel


Secondary


Data Traffic
In
si

d
e 

th
e 

C
lu

st
er




Security 

and

O&M/IDS


O
u

ts
id

e 
th

e 
C

lu
st

er



SS
 Security Server


SM
 Security Manager


Authenticated

Encrypted 

Communications


 


Figure 1: Distributed Architecture of DSI

2 Distributed Security Infrastruc-
ture

2.1 DSI Characteristics

As part of a carrier class Linux cluster, DSI [6]
must comply with carrier class requirements
such as reliability, scalability, and high avail-
ability. Furthermore, DSI supports the follow-
ing requirements: coherent framework, pro-
cess level approach, pre-emptive security, dy-
namic security policy, transparent key manage-
ment, and minimal impact on performance.

2.2 DSI Architecture

DSI has two types of components: the man-
agement components and service components.
DSI management components define a thin
layer of components that includes a security
server, security managers, and a security com-
munication channel (Figure1). The service
components define a flexible layer, which can
be modified or updated by adding, replacing,
or removing services according to the needs.

The security server is the central point of man-
agement in DSI, the entry point for secure op-

Security Context

Repository


Security Context
 Security Manager


Security Policy
 Key Repository


Key Management


Auditing 

Service


Access Control 

Service


Authentication 

Service


Integrity 

Service


Security Context

Repository


Security Context
 Security Manager


Security Policy
 Key Repository


Key Management


Auditing 

Service


Access Control 

Service


Authentication 

Service


Integrity 

Service


 


Figure 2: DSI Services

eration and management, and intrusion detec-
tion systems from outside the cluster. It is the
central security authority for all the security
components in the system. It is responsible
for the distributed security policy. It also de-
fines the dynamic security environment of the
whole cluster by broadcasting changes in the
distributed policy to all security managers.

Security managers enforce security at each
node of the cluster. They are responsible for
locally enforcing changes in the security en-
vironment. Security managers only exchange
security information with the security server.

The secure communication channel provides
encrypted and authenticated communications
between the security agents. All communica-
tions between the security server and the out-
side of the cluster take place through the secure
communication channel.

The DSI architecture at each node is based on
a set of loosely coupled services (Figure 2).
Each service, upon its creation, sends a pres-
ence announcement to the local security man-
ager, which registers these services and pro-
vides their access mechanisms to the internal
modules.

There are two types of services: security ser-
vices (access control, authentication, integra-
tion, auditing) and security service providers
(for example secure key management) that run
at user level and provide services to security



Ottawa Linux Symposium 2002 621

managers.

3 Cluster Access Control

3.1 General Discussion

In general, the Access Control Service (ACS)
can be seen as a layer (software, hardware) that
enforces the security policy as a two-parameter
function. It relies on the notions of subject (or
access request initiator), resource (or target),
environment, decision, and enforcement.

A subject could be a program or process and a
resource can be a file or a communication re-
source. The same process can be a subject in
one access control operation and a resource in
another.

An access control could be interpreted as a ma-
trix where one axis is the list of all possible
subjects and the other is the list of all possible
resources. The entries in the matrix define the
permissions. Even for reasonable-sized sys-
tems the matrix gets complicated, very fast so
there is a need to reduce its complexity. In
order to do this, the term class is introduced.
Class groups the subjects and resources, which
have the same permission and create only one
entry for them in the matrix.

When a Subject tries to access a Resource (Fig-
ure 3), the access request is intercepted by the
access control layer and based on the subject’s
rights, the access either is granted or not. The
access control of an operation system is usually
added in the system call layer (Linux). This is
ideal for the operating system because it makes
the access control transparent for the applica-
tions, and more secure because it’s located in
one of the lowest software layers, in addition
it’s fast because it’s embedded into the opera-
tion system.

The ACS assumes that the subjects have been

Subject


Access Control

Decision = function(Subject,Resource)


Resource


Access Request


Subject


Access Control

Decision = function(Subject,Resource)


Resource


Access Request


 


Figure 3: Access Control

properly authenticated. One of the important
characteristics of the access control for clus-
ters is that it allows verifying the access control
privileges even when subjects and resources
are located on different nodes in the cluster.

The ACS that runs on the cluster processors is
comprised of two parts:

1. A kernel-space part: This part is respon-
sible for implementing both the enforce-
ment and the decision-making tasks of
access control. These two responsibili-
ties are separated. The kernel-space part
maintains an internal representation of the
information upon which it bases its de-
cisions. This information (security pol-
icy) is supplied by the security server and
stored in the local memory for fast access
(hash table). On Linux, the kernel-space
part is implemented as a Linux Security
Module (LSM).

2. A user-space part: This part has many
responsibilities. It takes the informa-
tion from the Distributed Security Policy
and from the Security Context Repository,
combines them together, and feeds them
to the kernel space part in an easily us-
able form. It also takes care of propagat-
ing back alarms from the kernel space part
to the security manger, which will feed



Ottawa Linux Symposium 2002 622

them to the Auditing and Logging Service
and if necessary propagate to the security
server through SCC.

Both parts, kernel-space and user-space, are
started and monitored by the local Security
Manager (SM) on each node. The SM also in-
troduces them to other services and subsystems
of the DSI infrastructure with which they need
to interact.

The ACS aims to provide fine-grained access
control (at the system call level). It respects
the minimization principles of least privilege
to limit the propagation and damage caused by
eventual security breaches. As such, it pro-
vides defense in depth.

The ACS that is running on a processor must
make as little assumptions as possible about
other processors, including whether they have
been compromised. For that reason, an ACS
instance is always the one making access de-
cisions about resources that are local to its
processor. For the initial design of the ACS,
only grant/deny decision will be considered.
Other more involved decisions would involve
rate limiting and total usage limiting. Actions
other than access control decision, such as in-
terposition and active reactions, are not imple-
mented either.

3.2 Cluster Access Types

The distributed environments allow that the ac-
tors of ACS (subject and resource) can be lo-
cated anywhere in the cyber space.

Based on their mutual location in the cluster
(Figure 4), and to reduce the complexity when
analyzing access control, we can distinguish
the following types of the access control:

• Cluster Local Access: Both subject and
resource are located on the same node in

Node


R


S


R
R


S
CLUSTER


Node


R


S


R
R


S
CLUSTER


 


Figure 4: Cluster Access Control

the cluster

• Cluster Remote Access: Both subject and
resource are located on different nodes in-
side the same cluster

• Cluster Outside Access: Subject is located
on a node inside cluster and resource is
outside the cluster or Subject is located
outside the cluster and resource on a node
inside the cluster.

• No Cluster Access: Both subject and re-
source are outside the cluster

The above classification allows us to reduce
the complexity of the cluster access control
by classifying the various access approaches.
First, we analyze the Cluster Local Access and
next we will move to the Cluster Remote Ac-
cess. The Cluster Outside Access and No Clus-
ter Access are out of the scope of this paper.

3.3 Distributed Access Control Architecture

Finding an efficient solution to the cluster
mandatory access control is a complex task.
There are many factors involved in defining
the access rights because the subjects and re-
sources can be located on different nodes in the



Ottawa Linux Symposium 2002 623

SnID1


SnIDx


Security

Server


Resource

(File)


SnID2


Subject 1

(Process)


Subject 2

(Process)


Resource

(Comm.)


Resource

(Comm.)


SnID
, SID


SID


SID
SID


SID
SID


SnID1


SnIDx


Security

Server


Resource

(File)


SnID2


Subject 1

(Process)


Subject 2

(Process)


Resource

(Comm.)


Resource

(Comm.)


SnID
, SID


SID


SID
SID


SID
SID


SnID1


SnIDx


Security

Server


Resource

(File)


SnID2


Subject 1

(Process)


Subject 2

(Process)


Resource

(Comm.)


Resource

(Comm.)


SnID
, SID


SID


SID
SID


SID
SID


 


Figure 5: Distributed Access Control

cluster. To simplify the relationships, we can
handle the access control in two levels:

1. Local when subject and resource are lo-
cated on the same node, and

2. Remote when subject and resource are lo-
cated on different nodes.

For local access control, the access rights are
the functions of the security IDs of the subject
(SSID) and the resource (TSID). This is based
on the FLASK architecture:

Access = Function (SSID, TSID)

The FLASK architecture can serve as a solu-
tion for the single node processing. When the
nodes are presented as a cluster, security solu-
tions become more complicated. In this case,
we extend the FLASK architecture to the clus-
ter remote access model. One of the new pa-
rameters is the security node ID (SnID) (Fig-
ure 5), which defines the node in terms of the
security. Access rights are no more just the
function of the subject and target security ID’s,
but as well, the function of the security node
ID.

Access = Function

(SSnID,SSID,TSnID,TSID)

An important part of the distributed system is
the network, which spans the nodes of the clus-
ter. To apply the access control functions in the
cluster, there must be a way to pass the security
parameters between the nodes in a transparent
fashion. In our research, we try to find the ap-
propriate architecture for this problem as well.

Our prototype is based on a cluster of
Linux machines and the implementation of the
mandatory access control will by exercised in
the Linux kernel. By implementing the manda-
tory access control inside the kernel, we can
achieve security transparency in the system.

Another functionality of the access control is
to be able to generate alarms in case of intru-
sion detection. When the security module de-
tects the intrusion, an alarm notification will be
passed to the security manager and later to the
security server. Based on the severity of the
alarm, the security server will take an action.
An example of the action will be a change of
the security node ID, loading a new security
policy, or declaring a node compromised and
disconnecting it from the cluster. In the most
severe case, the security server may ask ACS
to block all accesses except the security path
of the security manager.

4 DSI Security Module

Our security enforcement software for Linux
is built as a Linux module and works in the
kernel space. We based our development on
the Linux Security Module (LSM) infrastruc-
ture (security hooks) introduced in the Linux
kernel.

LSM framework does not supply any addi-
tional security in the Linux kernel. It only
provides the infrastructure to support the se-
curity development as Linux modules. The
LSM kernel patch adds security fields to ker-
nel data structures and inserts calls (called



Ottawa Linux Symposium 2002 624

hooks) at special points in the kernel code
to perform a module specific access con-
trol. LSM adds methods for registering and
un-registering security modules, and a gen-
eral security system call that allows the com-
munication between user programs and the
LSM for security aware applications. Each
LSM hook is a function pointer in a global
structure calledsecurity_ops . Because
the hooks are embedded in the kernel and
are called even before a security module
is installed, this structure is initialized to a
set of functions provided by a dummy se-
curity module. These functions are just
placeholders for more useful security mech-
anisms that can be loaded as a Linux mod-
ule. A register_security method is in-
troduced to allow a security module to set its
own security functions (to overlay the dummy
functions). An unregister_security
method is used to return to the dummy func-
tions.

The LSM methods are organized into two cat-
egories:

• Hooks to handle the security fields

• Hooks to perform access control

We started the development with the kernel
2.4.17 [13] and the appropriate security patch
(lsm-full-2002_01_15-2.4.17.patch

[15]). The DSM module cannot act alone and
rely on the services supplied by DSI. DSM
only enforces the access control but the policy
is decided by the DSI security server. The
security server is responsible for giving the
security policy to the security module. The
security server (SS) is responsible to supply
the security node ID to each node of the cluster
as well. Sending the security node ID to the
node of the cluster means that the node is part
of the cluster from the security point of view
and it can start the security operation. Before

the security node ID is sent to the cluster node,
all the security checks are disabled on this
node.

DSM takes security decisions based on the se-
curity policy decided by the security server and
the security identifiers (SID) assigned to each
subject and resource. Security Identifiers are
non-persistent and are meaningful only on the
local node. The security server provides func-
tionality for converting a SID to its correspond-
ing security context. All the entities for which
security is being enforced are divided into se-
curity classes. A security class is a distinct type
of resource with a distinct set of legal opera-
tions, for example, a process, a file, etc.

When a security decision must be taken, the
security IDs of a subject and a resource are
extracted from their kernel representations and
will be used for the security access decision.
For efficiency, the security policy is repre-
sented in the kernel memory.

4.1 Labels

As already mentioned, all the subjects and re-
sources must be labeled. Since the security
module can be loaded run-time, we distinguish
two modes of subjects labeling. Before the
module is loaded there are no labels attached
to any subject or resource in the system. At
the module initialization time, all the running
tasks are scanned and the labels are attached to
them. When a new process is created after the
security module is loaded, the security hooks
are used to do the labeling.

Because Linux stores the process descriptor
and the Kernel Mode process stack in a sin-
gle 8KB memory area, we can use this fact and
avoid allocating memory for labeling the sub-
jects (Figure 6). The other labels are attached
to the resources run-time, which implies that
the module checks if the label is there. If the



Ottawa Linux Symposium 2002 625

Struct
 Task_
Struct


security


task_security_t

task


Kernel Stack


8 Kb 

block


Struct
 Task_
Struct


security


task_security_t

task


Kernel Stack


8 Kb 

block


 


Figure 6: Task Label

label is not attached, a new label will be cre-
ated.

4.2 Network Labels

Because the access in the cluster can be per-
formed from a subject located on one node to
the resource located on another, there is a need
to control such accesses as well.

When a process on one node makes an access
to a resource on another node, first the local ac-
cess to the communications resources (socket,
network interface) is checked. When the lo-
cal access is granted then the message can be
sent to the remote location. In order to iden-
tify the sending subject, the Security Node ID
(security node identifier) and the Security ID
of the subject (security subject identifier) are
added to the message. For the purpose of this
exercise, we use the IP protocol for the security
information transfer. A new option is added
after the IP header based on the hooks in the
IP protocol stack. On the receiving side, these
two information (Security Node ID and Secu-
rity SID) are extracted (based on the hooks in
the IP stack) and are used to build the network
security ID (NSID).

NSID = Function (SnID, SID)

This function is specified by the security server
in form of the conversion table. The receiving
side looks up into the table by specifying SnID
and SID and extract the Security Network ID.
Now the security network ID can be used as a
local label to all the access controls.

For instance, a client process tries to access
a server’s process. The client node does not
know what is the security of the server node,
so it can only perform access control checks
based on the security attributes of the com-
munications resources (sockets, network inter-
face). The server node can perform access con-
trol checks based on the security attributes of
the client process, the source node, and the
server process. When a process attempts to ac-
cept a connection or receive a packet, if the pol-
icy prohibits the server process from receiving
data from the client process, the connection or
the packet is dropped and alarm is generated.

4.3 Implementation status

We are in the process of building the work-
ing prototype of the cluster security infrastruc-
ture. The kernel module has been implemented
where the subjects (tasks) have been labeled.
The local access to the communication objects
(sockets) has been implemented and we are
currently working on the remote access imple-
mentation.

In the current implementation, the security in-
formation is added to the IP message after the
IP header as an option. There is no imple-
mentation of the interface to other parts of
the distributed security architecture. The ac-
tions of the security server are simulated by the
user mode programs (load policy, load secu-
rity node ID). The alarms generated by the dis-
tributed security module are sent to the special
user mode program as well. The current imple-



Ottawa Linux Symposium 2002 626

mentation is not optimized for the performance
and it is built in order to check the overall logic
of the cluster security.

5 Performance Challenges

Enforcing security does not come free; there
is always a performance price to pay. At the
same time, an over secured system is almost
unusable; therefore the security introduced to
the system must be properly balanced. This
section discusses the impact of the security im-
plementation on the overall performance of the
system.

We performed testing for three different kernel
configurations: the first testing was done with
kernel 2.4.17; the second was done with the
same kernel and our security module loaded
plus the IP packet modification; the third was
done with the same kernel and the security
module but without IP packet modification.
These tests were executed on a Pentium III 650
MHz Dell laptop with 265 MB RAM.

5.1 Test Types

We performed three types of testing: process
creation with fork, UDP local access, and UDP
remote access. The purpose of the testing was
to get a preliminary performance evaluation of
the security module, to answer the question of
how much performance we lose when adding
extra security features. The UDP tests were
performed with and without IP packet modi-
fication in order to see how much performance
was lost during IP packet modification. In the
following subsection, we explain the testing
procedure per testing type.

Process Creation Testing

This test measures the time a process can fork
a child that immediately exits. The parent pro-
cess loops 100,000 performing fork and wait

calls. The test was performed 5 times and the
average was calculated. Later the average time
of the single loop (fork, wait) was calculated.

UDP Local Access Testing

The UDP Local Access test measures the time
needed by a process to send a UDP message.
This test sends 500,000 UDP messages in a
loop. The test was performed 5 times and the
average was calculated. Later the average time
of the single loop (send) was calculated. The
sending process does not check if the message
was sent outside the node; in addition, it does
not wait for the confirmation. In this case, it
is not important whether the server has DSM
installed or not.

UDP Remote Access Testing

The UDP Remote Access test measures the
time needed by a process to send a UDP mes-
sages and receive a UDP response from a
server. The client process will send a new mes-
sage after receiving the confirmation from the
server. It is important, in this case, that the
server runs the DSM software for the permis-
sion to be checked on the receiving side. In this
test, the second server is a Pentium II 300 MHz
desktop with 128 MB RAM. This test sends
and receives 100,000 UDP messages in a loop.
The test was performed 5 times and the aver-
age was calculated. Later the average time of
the single loop (send, recv) was calculated.

5.2 Test Results and Interpretation

Based on the testing performed, we present the
results in Table1 and 2. All numbers are in mi-
croseconds.

Process Creation Testing
Results

The average fork test with kernel 2.4.17 and the
DSM module was completed in 167 microsec-



Ottawa Linux Symposium 2002 627

Linux Linux Overhead
2.4.17 2.4.17 %

with DSM

Fork 167 169 +1.20%
UDP
Local Access 16.388 19.7 +20%
(Send Message)
UDP
Remote Access 133.44 173.88 +30%
(Loopback)

Table 1: Performance Analysis with IP packet
modification

Linux Linux Overhead
2.4.17 2.4.17 %

with DSM

UDP
Local Access 16.388 17.084 +4.2%
(Send Message)
UDP
Remote Access 133.44 140.64 +5.4%
(Loopback)

Table 2: Performance Analysis without IP
packet modification

onds, compared to 169 microseconds with ker-
nel 2.4.17 without the DSM module. As a re-
sult, we have a 1.2% increase as overhead. This
is because the system had to perform a permis-
sion check on the fork operation and to spend
some extra time on labeling of the child pro-
cess.

UDP Local Access Testing Results

In this case, the average overhead for the set-
ting with DSM module against the setting with-
out the DSM module is 20%. This overhead
consists of performing permission check on the
socket send message andsk_buff label at-
tachment for each message sent plus the la-
beling of IP messages. When the IP packet
modification is disabled (Table 2) the overhead
drops to 4.2%. As we can see most of the over-
head is related to IP packet modification. Only
a small fraction of the overhead is caused by
the security module.

UDP Remote Access Testing Results

In this case, the average overhead for the set-
ting with DSM module against the setting with-
out the DSM module is 30%. The overhead
consists of the following:

• Performing a permission check on the
send socket side,

• Attaching a label tosk_buff ,

• Attaching the security information to the
IP message,

• Retrieving the security information on the
receive side,

• Attaching the network security ID to
sk_buff ,

• Performing the permission checking on
sk_buff ,



Ottawa Linux Symposium 2002 628

• Performing the security checking on the
socket, and,

• Repeating all the above operations on the
return message.

When the IP packet modification is disabled
(Table 2), the overhead drops to 5.4%. As we
can see most of the overhead is related to IP
packet modification. Only a small fraction of
the overhead is caused by the security module.

5.3 Discussion

One of the most frequently asked questions is
how adding security mechanisms will affect
the performance of the system. Based on the
testing results (Table 1), the percentage over-
head for some operations, such as the UDP re-
mote access, is considerable. The simple test,
like fork, has relatively small overhead because
there is only one security check. Neverthe-
less, some more complicated tests, like loop-
back, have high overhead because the security
is checked in many points on the way of the
traveling message. As it is shown in Table 2,
the most of the overhead is added by the IP
packet modification.

These results must be regarded as an upper case
of the performance because no single security
operation has been optimized. Nevertheless,
the results demonstrated the challenges facing
the development of efficient distributed secu-
rity.

We believe that after optimizing the implemen-
tation, we will decrease the percentage over-
head significantly.

6 Conclusion

6.1 Lessons learned

One of our objectives was to prototype a dis-
tributed security module for Linux clusters.
During the process, we acquired a lot of com-
petence in the area of Linux kernel internals,
which allowed us to set up the task security
structure without memory allocation.

It is always important to divide complex prob-
lems into smaller parts in order to simplify the
solution. In our case, we approached the prob-
lem of distributed access control in the way that
we tried to answer three important questions:

1. How to perform the local access control?

2. How to perform the remote access con-
trol?

3. How to transfer the security information
from one node to another in a transparent
way?

While building the first prototype, we managed
to crash the kernel many times. We realized
that the swapper task (task 0) is not on the
for_each_task list and has to be handled
separately.

One of the lessons was that the system could
not be over secured because it becomes unus-
able. By loading a very strict policy, we were
not able to interact with the operating system
up to the point where we had to reboot the sys-
tem.

6.2 Final remarks

We were able to achieve our first goal of build-
ing the framework of the mandatory access
control for Linux cluster. The security checks
can be performed on the subjects and resources



Ottawa Linux Symposium 2002 629

located on the same (local access) and different
nodes (remote access) of the cluster.

We tested the framework with buffer overflow
attacks and it proved that the current solution
could guard against these types of attacks.

We continue to work implementing the new
functionality in DSM for Linux clusters. In
addition, we are in the process on building a
benchmarking environment (Security Evalua-
tion Lab) that is capable of testing the perfor-
mance and the resistance of the system against
various possible attacks such as denial of ser-
vice attacks.

The distributed security module (DSM) is an
integral part of the distributed security infras-
tructure (DSI). It relies on the services of DSI
and provides access control services to DSI.
The development of DSM and DSI are ongo-
ing at full speed.

In the short term, we plan to implement inter-
faces between some services of DSI and DSM.
One of the examples could be the interface be-
tween the security manager on a node and the
DSM. This interface will be used to load a new
policy and to pass a new node security node ID
downloaded by the security manage to a node.
In addition, we plan to introduce the mecha-
nisms to pass alarms from DSM to SM and
later to SS.

7 Future Work

We are in the early stage of the prototyping and
in the first stage of building the mandatory ac-
cess control for Linux clusters. Our first goal
is to prototype the framework of the distributed
access control to check the logic of the dis-
tributed access.

Based on the limited functionality (socket level
network access), we plan to exercise the server

security as a function of the received connec-
tion (traffic) from the clients with different se-
curity ID’s. When a server accesses resources
on the local node the access control does not
know whether the access is a local access or
is performed on behalf of a remote client. In
this case, there must be a change of the server
access rights based on the clients connected to
it.

In the current implementation, the security in-
formation sent on the network is not protected;
they can be sniffed and used in possible at-
tacks. Our next objective is to securely trans-
mit this information without any performance
degradation.

The security information is attached as options
to the IP packet. Because the IP protocol is
relatively high level, there is a need to imple-
ment this feature on lower levels of the network
stack.

One of our next steps is to investigate the rela-
tionships when a subject or a resource is out-
side the cluster. Since we are at an early pro-
totype phase, the performance optimization is
not done yet. Therefore, improving the perfor-
mance of the secure system is the next chal-
lenge.

Finally, we plan to test our security mech-
anisms built into the servers of the cluster
through generating different types of attacks to
verify how the new security mechanisms can
improve the overall system security.

Acknowledgments

Ibrahim Haddad, Ericsson Research Canada,
for commenting and reviewing this paper.
David Gordon, Ericsson Research Canada, for
contributing to the IP options implementation
and buffer overflow exercise.



Ottawa Linux Symposium 2002 630

References

[1] A. Chitturi “Implementing Mandatory
Network Security in a Policy-Flexible
System,” Masters Thesis, University of Utah,
June 1998.

[2] P. Loscocco, S. Smallay “Integrating
Flexible Support for Security Policies into
Linux Operating System” Technical Report,
NSA and NAI Labs, Oct 2000.

[3] P. Loscocco, S. Smallay, P.A.
Muckelbauer, R.C. Taylor, S.J. Turner, J.F.
Farrell “The Inevitability of Failure: The
Flawed Assumption of Security in Modern
Computing Environments” InProceeding of
the 21st National Information Systems
Security Conference, Oct 1998.

[4] P. Loscocco, S. Smallay “Meeting Critical
Security Objectives with Security Enhanced
Linux” Technical Report, NSA and NAI Labs,
Oct 2000.

[5] R. Spencer, P. Loscocco, S. Smallay, M.
Hibler, D. Andersen, J. Lepreau “The Flask
Architecture: System Support for Diverse
Security Policies,” NSA, SCC, University of
Utah.

[6] M. Dagenais, I. Haddad, C. Levert, M.
Pourzandi, M Zakrzewski “A New
Architecture for Security in Carrier Class
Clusters,” Apr. 2002.

[7] G. Nutt Kernel Projects for Linux, Addison
Wesley Longman, 2001.

[8] A. Rubini, J. CorbetLinux Device Drivers,
O’Reilly, 2001, Second Edition.

[9] M. Beck, H. Boehme, M. Dziadzka, U.
Kunitz, R. Magnus, D. VerwornerLinux
Kernel Internals, Addison Wesley Longman,
1998, Second Edition

[10] D.P. Bovet, M. CesatiUnderstanding the
Linux Kernel, O’Reilly, 2001, First Edition.

[11] Buffer Overflow,
http://www.insecure.org/stf

/smashstack.txt

[12] Flask Architecture,
http://www.cs.utah.edu/flux/fluke

/html/flask.html

[13] Linux Kernel,
http://www.kernel.org

[14] Linux Kernel Module Programming,
http://metalab.unc.edu/mdw/LDP

/lkmpg/mpg.html

[15] LSM Patches to Kernel,
http://lsm.immunix.org

[16] Network Patch (selopt),
http://www.intercode.com.au

/jmorris/selopt/old/

[17] SELinux,http://www.nsa.org

/selinux

Glossary

ACS Access Control Service

DSI Distributed Security Architecture

DSM Distributed Security Module

LSM Linux Security Module

NSID Network Security ID

SCC Secure Communication Channel

SM Security Manager

SnID Security Node ID

SS Security Server

SSID Source Security ID



Ottawa Linux Symposium 2002 631

SSnID Source Security Node ID

TSID Target Security ID

TSnID Target Security Node ID



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


