
Multiple Page Size Support in the Linux Kernel

Simon Winwood‡ §
§School of Computer Science and Engineering

University of New South Wales

Sydney 2052, Australia

sjw@cse.unsw.edu.au

Yefim Shuf‡ ¶
¶Computer Science Department

Princeton University

Princeton, NJ 08544, USA

yshuf@cs.princeton.edu

Hubertus Franke‡
‡IBM T.J. Watson Research Center

P.O. Box 218

Yorktown Heights, NY 10598, USA

{swinwoo, yefim, frankeh}@us.ibm.com

Abstract

The Linux kernel currently supports a single
user space page size, usually the minimum dic-
tated by the architecture. This paper describes
the ongoing modifications to the Linux kernel
to allow applications to vary the size of pages
used to map their address spaces and to reap the
performance benefits associated with the use of
large pages.

The results from our implementation of mul-
tiple page size support in the Linux kernel
are very encouraging. Namely, we find that
the performance improvement of applications
written in various modern programming lan-
guages range from 10% to over 35%. The ob-
served performance improvements are consis-
tent with those reported by other researchers.
Considering that memory latencies continue to
grow and represent a barrier for achieving scal-
able performance on faster processors, we ar-
gue that multiple page size support is a neces-
sary and important addition to the OS kernel
and the Linux kernel in particular.

1 Introduction

To achieve high performance, many processors
supporting virtual memory implement a Trans-
lation Lookaside Buffer (TLB) [8]. A TLB is
a small hardware cache for maintaining virtual
to physical translation information for recently
referenced pages. During execution of any in-
struction, a translation from virtual to physical
addresses needs to be performed at least once.
Thereby, a TLB is effectively reducing the cost
of obtaining translation information from page
tables stored in memory.

Programs with good spatial and temporal lo-
cality of reference achieve high TLB hit rates
which contribute to higher application perfor-
mance. Because of long memory latencies,
programs with poor locality can incur a notice-
able performance hit due to low TLB utiliza-
tion. Large working sets of many modern ap-
plications and commercial middleware [12, 13]
make achieving high TLB hit rates a challeng-
ing and important task.

Adding more entries to a TLB to increase its



Ottawa Linux Symposium 2002 574

coverage and increasing the associativity of a
TLB to reach higher TLB hit rates is not al-
ways feasible as large and complex TLBs make
it difficult to attain short processor cycle times.
A short TLB latency is a critical requirement
for many modern processors with fast physi-
cally tagged caches, in which translation infor-
mation (i.e., a physical page associated with a
TLB entry) needs to be available to perform
cache tag checking [8]. Therefore, many pro-
cessors achieve wider TLB coverage by sup-
porting large pages. Traditionally, operating
systems did not expose large pages to appli-
cation software, limiting this support to the
kernel. Growing working sets of applications
make it appealing to support large pages for ap-
plications, as well as for the kernel itself.

A key challenge for this work was to provide
efficient support for multiple page sizes with
only minor changes to the kernel. This paper
discusses ongoing research to support multiple
page sizes in the context of the Linux operating
system, and makes the following contributions:

• it describes the changes necessary to sup-
port multiple page sizes in the Linux ker-
nel;

• it presents validation data demonstrating
the accuracy of our implementation and
its ability to meet our design goals; and

• it illustrates non-trivial performance ben-
efits of large pages (reaching more than
35%) for Java applications and (reaching
over 15%) for C and C++ applications
from well-known benchmark suites.

We have an implementation of multiple page
size support for the IA-32 architecture and are
currently working on an implementation for
the PowerPC1 architecture.

1This is for the PPC405gp and PPC440 processors,
both of which support multiple page sizes.

The rest of the paper is organized as follows.
In Section 2, we present an overview of the
Linux virtual memory subsystem. We de-
scribe the design and implementation of mul-
tiple page size support in the Linux kernel in
Section 3 and Section 4 respectively. Experi-
mental results obtained from the implementa-
tion are presented and analyzed in Section 5.
Related work is discussed in Section 6. Fi-
nally, we summarize the results of our work
and present some ideas for future work in Sec-
tion 7.

2 The Virtual Memory Subsystem
in Linux

In this section, we give a brief overview of the
Linux Virtual Memory (VM) subsystem2. Un-
less otherwise noted, this section refers to the
2.4 series of kernels after version 2.4.18.

2.1 Address space data structures

Each address space is defined by a
mm_struct data structure3. The
mm_struct contains information about
the address space, including a list ofVirtual
Memory Areas(VMAs), a pointer to the page
directory, and various locks and resource
counters.

A VMA contains information about a single re-
gion of the address space. This includes:

• the address range the VMA is responsible
for;

• the access rights — read, write, and exe-
cute — for that region;

2This section is meant to be neither exhaustive or
complete.

3Note that multiple tasks can share the same address
space



Ottawa Linux Symposium 2002 575

• the file, if any, which backs the region;
and

• any performance hints supplied by an
application, such as memory access be-
haviour.

A VMA is also responsible for populating
the region at page fault time via itsnopage
method. A VMA generally maps a virtual ad-
dress range onto a region of a file, or zero filled
(anonymous) memory.

A VMA exists for each segment in a process’s
executable (e.g., its text and data segments),
its stack, any dynamically linked libraries, and
any other files the process may have mapped
into its address space. All VMAs, except for
those created when a process is initially loaded,
are created with themmapsystem call4. The
mmapsystem call essentially checks that the
process is allowed the desired access to the re-
quested file5 and sets up the VMA.

The page directorycontains mappings from
virtual addresses to physical addresses. Linux
uses a three levelhierarchical page table(PT),
although in most cases the middle level is op-
timised out. Each leaf node entry in the PT,
called apage table entry(PTE), contains the
address of the corresponding physical page, the
current protection attributes for that page6, and
other page attributes such as whether the map-
ping is dirty, referenced, or valid.

Figure 1 shows the relationship between the
Virtual Address Space, themm_struct , the
VMAs, the Physical Address Space, and the
page directory.

4This is not strictly true: theshmat system call is
also used to create VMAs. It is, however, essentially a
wrapper for themmapsystem call.

5This check is trivial if the mapping is anonymous.
6The pages protection attributes may change over the

life of the mapping due to copy-on-write and reference
counting

2.2 Thepage data structure and allocator

The page data structure represents a page of
physical memory, and contains the following
properties:

• its usage count, which denotes whether it
is in the page cache, if it has buffers as-
sociated with it, and how many processes
are using it;

• its associated mapping, which indicates
how a file is mapped onto its data, and its
offset;

• its wait queue, which contains processes
waiting on the page; and

• its various flags, most importantly:

locked This flag is used to lock a page.
When a page is locked, I/O is pend-
ing on the page, or the page is being
examined by the swap subsystem.

error This flag is used to communicate to
the VM subsystem that an error oc-
curred during I/O to the page.

referenced This flag is used by the swap-
ping algorithm. It is set when a page
is referenced, for example, when the
page is accessed by theread sys-
tem call, and when a PTE is found
to be referenced during the page ta-
ble scan performed by the swapper.

uptodate This flag is used by the page
cache to determine whether the
page’s contents are valid. It is set af-
ter the page is read in.

dirty This flag is used to determine
whether the page’s contents has been
modified. It is set when the page
is written to, either by an explicit
write system call, or through a
store instruction.



Ottawa Linux Symposium 2002 576

Virtual Memory Area

mmap

pgd

mm_struct

Page Directory

Page Table

Physical Address Space

Virtual Address Space

Figure 1: Virtual Address Space data structures

lru This flag is used to indicate that the
page is in the LRU list.

active This flag is used to indicate that
the page is in the active list.

launder This flag is used to determine
whether the page is currently under-
going swap activity. It is set when
the page is selected to be swapped
out.

Pages are organised intozones; memory is re-
quested in terms of the target zone. Each zone
has certain properties: theDMA zone consists
of pages whose physical address is below the
16MB limit required by some older devices,
the normal zone contains pages that can be
used for any purpose (aside from that fulfilled
by theDMA zone), and thehighmemzone con-
tains all pages that do not fit into the kernel’s
virtual memory: when the kernel needs to ac-
cess this memory, it needs to be mapped into a
region of the kernels address space. Note that
the DMA zone is only required for support of
legacy devices, and thehighmemzone is only
required on machines with 32 bit (or smaller)
address spaces.

Each zone uses a buddy allocator to allocate
pages, so pages of different orders can be al-
located. Although a client of the allocator re-
quests pages from a specific list of zones and a
specific page order, the pages that are returned
can come from anywhere within the zone. This
means that a page for the slab allocator7 can
be allocated between pages that are allocated
for the page cache. The same can be said for
other non-swappable pages such as task con-
trol blocks and page table nodes.

2.3 The page cache

The page cache implements a general cache
for file data. Most filesystems use the
page cache to avoid re-implementing the page
cache’s functionality. A filesystem takes ad-
vantage of the page cache by setting a file’s
mmapoperation togeneric_file_mmap .
When the file ismmaped, the VMA is set
up such that itsnopage function invokes
filemap_nopage . The file’s read and
write operations will also go through the
page cache.

7The slab allocator[5] provides efficient allocation
of objects, such asinode s. Pages allocated to the slab
allocator cannot be paged out.



Ottawa Linux Symposium 2002 577

The page cache uses the page’s mapping and
offset fields to uniquely identify the file data
that the page contains — when an access oc-
curs, the page cache uses this data to look up
the page in a hash table.

2.4 The swap subsystem

Linux attempts to fully utilise memory. At any
one time, the amount of available memory may
be less than that required by an application. To
satisfy a request for memory, the kernel may
need to free a page that is currently being used.
Selecting and freeing pages is the job of the
swap subsystem.

The swap subsystem uses two lists to record
the activity of pages: a list of pages which have
not been accessed during in a certain time pe-
riod, called theinactivelist, and a list of pages
which have been recently accessed, called the
activelist. The active list is maintained pseudo
LRU, while the inactive list is used by the one-
handed clock replacement algorithm currently
implemented in the kernel. Whenever a page
on the inactive list is referenced, it is moved to
the active list.

The kernel uses a swapper thread to periodi-
cally balance the number of pages in the active
and inactive lists: if a page in the active list has
been referenced, it is moved to the end of the
active list, otherwise it is moved to the end of
the inactive list.

Periodically, the swapper thread sweeps
through the inactive list looking for pages that
can be freed. If the swapper thread is unable to
free enough pages, it starts scanning page ta-
bles: for each PTE examined, the kernel checks
to see whether the page has been referenced
(i.e., whether thereferencedbit is set in the
PTE). If so, the page is moved to the active list,
if it is not already a member. Otherwise, the
page is considered a candidate for swapping.

In this manner reference statistics are gathered
from the page tables in the system, and used to
select pages to be swapped out and freed.

The swapper thread may be woken up when
the amount of memory becomes too low. The
swapper functions may also be called directly
when the amount of free memory becomes crit-
ical: when memory allocation fails, a task may
attempt to swap out pages directly.

2.5 Anatomy of a page fault

When a virtual memory address is accessed,
but a corresponding mapping is not in the TLB,
a TLB missoccurs. When this happens, the
fault addressis looked up in the page table, by
either the hardware in systems with a hardware
loaded TLB, or via the kernel in systems with
a software loaded TLB (note that this implies
an interrupt occurs).

If a mapping exists in the page table, is valid,
and matches permissions with the type of the
access, the entry is inserted into the TLB, the
page table is updated to reflect the access by
setting the referenced bit8, and the faulting in-
struction is restarted.

If a valid mapping does not exist, the kernel’s
page fault handler is invoked. The handler
searches the current address space’s VMA set
for the VMA which corresponds to the fault ad-
dress, and checks whether the access requested
is allowed by the permissions specified in the
VMA.

The kernel then looks up the PTE correspond-
ing to the fault address and allocates a page ta-
ble node if necessary. If the fault is a write to
a PTE marked read-only, the address space re-
quires a private copy of the page. A page is
allocated, the old page is copied, and the dirty

8Note that architectures with a hardware loaded TLB
whose page table doesn’t map directly onto Linux’s need
to simulate this bit



Ottawa Linux Symposium 2002 578

bit is set in the PTE. If the PTE exists but isn’t
valid, the page needs to be swapped in, other-
wise the page needs to be allocated and filled.

If the VMA does not define anopage method,
the memory is defined to be anonymous, i.e.,
zero-filled memory that is not associated with
any device or file. In this case, the kernel allo-
cates a page, zeroes it, and inserts the appropri-
ate entry into the page table. If a validnopage
method exists, it is invoked and the resulting
page is inserted into the PTE.

In the majority of filesystems, thenopage
method goes to the page cache. The mapping
and offset for the fault address are calculated
— the information required for this calculation
is stored in the VMA — and the page cache
hash table is searched for the file data corre-
sponding to the mapping and offset.

If an up-to-date page exists, then no further ac-
tion is required. If the page exists but is not
up-to-date, it is read in. Otherwise, a new page
is allocated, inserted into the page cache, and
read in. In all cases, the page’s reference count
is incremented, and the page is returned.

3 Design

This section discusses the approaches we con-
sidered and justifies our final design. This sec-
tion is organised as follows: Section 3.1 dis-
cusses the goals that guided the design and the
terminology used throughout this and future
sections. Section 3.2 discusses the semantics
of large pages: what aspects of the support for
large pages the kernel exports to user space,
the granularity at which page size decisions are
made, and the high-level abstractions the ker-
nel exports to the user.

It should be noted that this is an ongoing
project, so the approaches describe here may
have been improved upon by the time of publi-

cation.

3.1 Goals

This section discusses the design goals and
guidelines which we attempt to adhere to in the
design of our solution. We consider a good de-
sign to have the following properties:

Low overhead We do not wish to penalise ap-
plications that will not benefit from large
pages, so we aim to minimise the per-
formance impact of our modifications for
these applications.

Generic The Linux kernel runs on numer-
ous different architectures9 and is usually
ported quickly to new architectures. Any
kernel enhancements such as ours should
be easily adaptable to support existing
and future systems, especially consider-
ing that many modern architectures fea-
ture MMUs which support multiple page
sizes.

Flexible While a generic solution allows for
easy portability, it does not indicate how
well such a solution takes advantage of
an architectures support for multiple page
sizes. The design should be flexible
enough to encompass any support.

Simple The more complex a solution is, the
more likely it is to have subtle bugs, and
the harder it is to understand. While we
can foresee a point at which a more com-
plex solution may be necessary, the initial
design should be as simple as possible.

Minimal The Linux kernel is a large and com-
plex system, so a minimalist approach
is required: subsystem modifications that

9A count of the number of architectures in the main-
line kernel reveals 15 implementations that are more or
less complete



Ottawa Linux Symposium 2002 579

are not absolutely required may result in
a solution that is overly complex and un-
wieldy. Therefore, we try to limit our
changes to the VM subsystem only.

3.2 Semantics

This section discusses the semantics associated
with supporting multiple page sizes: how the
page size for a range of virtual addresses is
chosen and whether the kernel considers this
page size mandatory or advisory.

The following terms are used throughout this
and later sections:

Base pageA base pageis the smallest page
supported by the kernel, usually the mini-
mum dictated by the hardware.

Superpage A superpageis a contiguous se-
quence of2n base pages.

Order A superpage’sorder refers to its size.
A superpage of ordern contains2n base
pages.

Sub-superpageA sub-superpageis a super-
page of orderm, contained in a superpage
of ordern, such thatn ≥ m. Note that
a base page is a sub-superpage with order
m = 0

order = 2

order = 4

base page (order = 0)

Figure 2: A superpage and sub-superpage

These concepts are illustrated in Figure 2
which shows a superpage of order 4 contain-
ing a sub-superpage of order 2.

3.2.1 Visibility

There are two basic approaches to supporting
multiple page sizes: restrict knowledge of su-
perpages to the kernel or export page size deci-
sions to user space.

In the former approach, the kernel can create
superpage mappings based on some heuristic,
for example, a dynamic heuristic based on TLB
miss information, or a static heuristic based on
the type of mapping such as whether the map-
ping is for code, data, or whether it is anony-
mous. This approach is transparent to appli-
cations, and should result in all applications
benefiting. It is, however, more complex, and
would rely on effective heuristics to map a vir-
tual address range with large pages.

In the latter approach, an application explic-
itly requests a section of its address space be
mapped with superpages. This request could
come in the form of programmer hints, or via
instrumentation inserted by a compiler. While
this approach requires applications to have spe-
cific knowledge of the operating system’s sup-
port for large pages, it is much simpler from the
kernels perspective. The major problem with
this approach is that it requires the application
programmer to have a good understanding of
the applications memory behaviour.

We have decided on the latter approach, due
to its simplicity: the former approach would
necessitate developing heuristics that require
fine-tuning and rewriting.

3.2.2 Granularity

This section discusses the granularity of con-
trol that the application has over page sizes.
The approaches considered were:

per address spaceWhile making page sizes



Ottawa Linux Symposium 2002 580

per address space would simplify some
aspects of the implementation, it is too re-
strictive. We expect applications to have
regions of their address space where the
use of large pages would be a waste of
memory;

per address space region type10

This approach also has its drawbacks:
there is no clear set of types, although
the region’s attributes (e.g., executable,
anonymous) could be used, so again this
approach is limited without any clear
gains;

per address space regionThis approach is
more flexible than either of the above ap-
proaches, however it does not allow for
hotspot mapping within a region; or

over an arbitrary address space range.
This is the most flexible approach, how-
ever, there are implementation issues: the
kernel would need to keep track of the
applications desired page sizes for the
entire address space.

To allow maximum flexibility while minimis-
ing implementation overhead, we have decided
upon a combination of the last two options: an
application can dictate the page size for an ar-
bitrary address range only if that range belongs
to an address space region. This means that
an application can map a region hotspot with
large pages, but leave the rest of the region at
the system’s default page size.

3.2.3 Interface

This section discusses the guarantees given
about the actual page size used to map an ad-
dress space range.

10A region is a defined part of the address space that
created by themmapsystem call, for example.

The kernel can take a best-effort approach to
mapping a virtual address with the applications
indicated page size, falling back to a smaller
page size if the larger page is not immediately
available. Alternatively, the kernel can block
the application until the desired page size be-
comes available, copying any existing pages to
the newly allocates superpage.

Rather than mandating either behaviour, we
have elected to allow the application to choose
between the two alternatives. In situations
where selecting a larger page size is merely an
opportunistic optimisation for a relatively short
running application, the first behaviour is desir-
able. In cases where the application is expected
to execute for an extended period of time, how-
ever, the expected performance improvement
may be greater than the expected wait time, and
so waiting for a superpage to become available
is justified. If an application is expected to re-
use a large mapping over a number of invoca-
tions (a text page or a data file, for example),
the application will benefit by waiting for the
large page to be constructed.

4 Implementation

This section discusses the implementation of
the design in Section 3.

4.1 Interface

An application requires some mechanism to
communicate a desired page size to the kernel.
A system call is the conventional mechanism
for communicating with the kernel. In this sec-
tion, we discuss our implementation of a sys-
tem call interface for setting the page size for a
region of the address space.

We considered three options: add a parameter
to themmapsystem call which specifying the
page size for the new mapping; implement a



Ottawa Linux Symposium 2002 581

new system call,setpagesize ; and add an-
other operation to themadvise system call.

Using themmapsystem call would appear to
be an obvious solution. It has, however, several
negative aspects: firstly, themmapsystem call
is complex and is frequently used. Modifying
mmap’s argument types would break existing
code, as would adding extra parameters. Sec-
ondly, the application would be restricted to the
one page size for that mapping, for the life of
the mapping.

Using a new system call would be the clean-
est alternative, however this requires signifi-
cant modifications to all architectures, and is
generally frowned upon where an alternative
exists.

Using themadvise system call would allow
an application to modify the page size at any
point during its execution and would not af-
fect existing applications, as any modification
would be orthogonal to current operations.

We therefore added asetregionorder(n) oper-
ation to themadvise system call, wheren is
the new page order. We implemented this us-
ing the advise parameter of themadvise
system call. The upper half of the parameter
word contains the desired page order, while the
lower half indicates that asetregionorderoper-
ation is to be performed.

Within the kernel, themadvise system call
verifies that the requested page order is actually
supported by the processor, and sets the VMA’s
order attribute accordingly.

4.2 Address space data structures

This section discusses the modifications made
to the kernel’s representation of a virtual ad-
dress space. The application can modify the
page size used by a VMA at runtime, either
by an explicitmadvise system call or by in-

structing the kernel to fall back to a smaller
page size if a larger is not available. Conse-
quently, the kernel needs to keep track of the
following: firstly, the page size indicated by
the application, which is associated with the
VMA; secondly, the actual page size used to
map a virtual address.

To communicate the requested page order to
the VMA’s nopage function, another param-
eter was added. This parameter indicates the
desired page order at invocation, and contains
the actual page size upon return. We rely upon
the fact that subsystems which have not been
modified will only return base pages.

16K 4M

Physical memory

Page Table

Page Directory

Figure 3: The modified page table structure

To store the superpage size that actually maps
the virtual address range, the PTE includes the
order of the mapping. To achieve this, we as-
sociated unused bits within the PTE with dif-
ferent page sizes, although the actual bits and
sizes may be dictated by hardware.

The page table structure was also modified: su-
perpages which span a virtual address range
greater or equal to that of a non-leaf page direc-
tory entry are collapsed until they fit into a sin-
gle page table node (see Figure 3). This means
that we can now have valid page table elements
at each level of the address translation hierar-
chy. This affects kernel routines which scan
the page table, for example, the swap routine.

Although the main reason behind this was to



Ottawa Linux Symposium 2002 582

conform to the page table structure defined by
the x86 family, it also has other advantages:
the kernel can use positional information to
determine the page size, rather than relying
solely on the information store in the PTE. This
means that the number of page sizes supported
by the kernel is not restricted by the number
of unused bits in the PTE (which can be quite
few). There may also be some performance ad-
vantage as the TLB refill handler does needs to
traverse fewer page table levels.

4.3 Representing superpages in physical mem-
ory

This section discusses the representation of su-
perpages in thepage data structure. The ker-
nel needs to keep track of various properties of
the superpage, such as whether it is freeable,
whether it needs to be written back, etc. The
superpage can include sub-superpages which
are in use: any superpage operation that affects
the sub-superpage also affects the superpage,
and this needs to be taken into consideration.

We considered the following representations
of superpages: firstly, an explicit hierarchy of
page data structures, with one level for each
possible order. A superpage would then be op-
erated on using thepage data structure at the
appropriate level. This implies that each oper-
ation would only have to look at a single in-
stance of thepage data structure.

This approach is the cleanest in terms of se-
mantics. Unfortunately, the kernel makes cer-
tain assumptions about the one-to-one relation-
ship between thepage data structure and the
actual physical page. Implementing this de-
sign would violate those assumptions and also
involve significant modifications to the lower
levels of the kernel.

The alternative involves a modification to the
existing page data structure, such that each
page contains the order of the superpage it be-

longs to. A superpage of ordern would then be
operated on by iterating over all2n base pages.
This approach conforms to the kernels existing
semantics. It is, however, subject to various
race conditions, and is inelegant.

We implemented a combination of the two ap-
proaches presented: while we do not have an
explicit hierarchy, there is an implicit hierar-
chy created by storing the superpage’s order in
each component base page. We logically parti-
tion the properties of a page into those associ-
ated with superpages, or with base pages.

This partitioning was guided by the usage of
these properties: if the property was used in
the VM subsystem only, it was usually put in
the superpage partition. If the property was
used for I/O, it was put into the base page par-
tition. The properties were then partitioned as
follows:

• the page’susage count is per super-
page. As all allocation are done in terms
of superpages, it follows that a superpage
is only freeable if no sub-superpage is be-
ing used. This means that whenever a sub-
superpage’s usage count is modified, the
actual modification is applied to the super-
page;

• themapping andoffset properties are
per base page, as they are only used to per-
form I/O on the page;

• the wait queue is per base page, as it
is used to signal when I/O has completed;

• theflags are partitioned as follows:

locked is per base page, as it is used pri-
marily to indicate that a page is un-
dergoing I/O;

error is per base page, as it is used to in-
dicate an I/O error in the page;



Ottawa Linux Symposium 2002 583

referenced is per superpage, as it is used
by the VM subsystem only;

uptodate is per base page, as it is set
when I/O successfully completes on
a page;

dirty is per superpage, as it is primarily
used in the VM subsystem;

lru is per superpage, as it indicates
whether a page is in the LRU list,
and the LRU list is now defined to
contain superpages;

active is per superpage, as it indicates
whether a page is in the active list,
and the active list is now defined to
contain superpages;

launder is per superpage, as it is only
used in the swap subsystem, and the
swap subsystem has to deal with su-
perpages.

All other flags are per base page, as they
reflect static properties of the page, (for
example, whether the page is in the high-
mem zone).

Operations that iterate over each base page in a
superpage are required to operate in ascending
order to avoid deadlock or other inconsisten-
cies.

4.4 Page allocation

The current page allocator supports multiple
page sizes, however it has 2 major problems:
firstly, non-swappable pages can be spread
throughout each zone, causing memory frag-
mentation; secondly, if a large page is required,
but a user (i.e. swappable) page is in the way,
there is no efficient way to find all users of that
page.

While the latter problem can be solved by Rik
van Riel’s reverse mapping patch[18], the for-
mer is still an issue. For this implementation,

we have created anotherlargepagezone, which
is used exclusively for large pages. While this
is not a permanent solution, it does aid in de-
bugging, and solves the immediate problem for
specialised users. The size of thelargepage
zone is fixed at boot time.

For maximum flexibility, the current allocator
should be modified so that pages which are not
pageable are allocated in so that they do not
cause fragmentation. Also, pages which are
allocated together will probably be freed to-
gether, so clustering pages at allocation time
may also reduce fragmentation.

4.5 The Page Cache

To support mapping files with superpages, the
page cache needs to be modified. The bulk
of these modifications are in thenopage and
affiliated functions, which attempt to allocate
and read in a superpage of the requested or-
der. To avoid any problems due to overlapping
superpages, we require a superpage of order
n also have file ordern — that is, the align-
ment of the superpage in the virtual, physical,
and file space is the same. For example, a 64K
mapping of a file should be at a file offset that is
a multiple of 64K, a virtual offset that is a mul-
tiple of 64K, and a physical offset of 64K11.

The changes to thenopage function are es-
sentially straightforward. If an application re-
quests a superpage which contained in the page
cache, it get back a sub-superpage whose order
is the minimum of the requested order and the
superpage’s order. If a superpage does not ex-
ist, a page of the requested order is allocated,
each base page is read in, and the superpage is
added to the LRU and active queues.

Because reading in a large page can cause sig-
nificant I/O activity (the amount of time re-

11The virtual and physical alignment constraints are
common to most architectures.



Ottawa Linux Symposium 2002 584

quired to read in 4MB of data from a disk can
be significant), we may need to read in base
pages in a more intelligent fashion. One so-
lution is to read in the sub-superpage which
contains the address of interest first and sched-
ule the remainder of the superpage to be read
in after the first sub-superpage has completed.
When the rest of the superpage has completed
I/O, the address space can be mapped with the
superpage. Note that this is similar to the early
restart method used in some modern processors
to fetch a cache line.

4.6 The swap subsystem

In our current implementation, a region
mapped with superpages will not be swapped
out. Swapping a superpage would negate any
performance gained by its use due to the high
cost of disk I/O. The superpage may need to be
written back, however, and this is handled in
an essentially iterative manner — when the su-
perpage is not being used by any applications,
and it is chosen by the swap subsystem to be
swapped out (i.e. when it appears as a victim
on the LRU list), each base page is flushed to
disk, and the superpage is freed.

In the future, a number of approaches present
themselves. The kernel may, for example, split
up a superpage into smaller superpages over a
series of swap events, until a threshold super-
page order is met, and then swap that out. Al-
ternatively, the kernel may just swap out the
entire page.

4.7 Architecture specifics

This section discusses the architecture specific
aspects of our implementation. Although our
implementation attempts to be generic, the ker-
nel requires knowledge of the architecture’s
support for multiple page sizes and the addi-
tional page table requirements.

The architecture specific layer in our im-
plementation consists mainly of page table
operations, i.e., creating and accessing a
PTE. To constructed a PTE, the kernel now
usesmk_pte_order , which is identical to
mk_pte 12 except for an additionalorder pa-
rameter. This function creates a PTE with
which maps a page of orderorder . To al-
low the kernel to inspect a PTE, apte_order
function is required. This function returns the
order of a PTE.

On architectures which use an additional page
table (usually because it is required by the
hardware), theupdate_mmu_cache needs
to be modified to take superpages into con-
sideration. The kernel also requires a mech-
anism to verify that a page size is sup-
ported. This is achieved by implementing the
pgorder_supported function.

4.8 Anatomy of a large page fault

In systems with a hardware loaded TLB, a TLB
miss is transparent to the kernel, and so is not
different in the case of a large page. In ar-
chitectures with a software TLB refill handler,
the new page table structure needs to be taken
into consideration: the handler needs to check
whether each level in the page table hierarchy
is a valid PTE. The refill handler also needs to
extract the page size from the entry and insert
the correct(V A, PA, size) entry into the TLB.

If there is no valid mapping in the page table, a
page fault occurs. As with the standard kernel,
the VMA is found and the access is validated.
The PTE is then found, although a page table
node is not created if it is required — the page
table node is allocated later on in the page fault
process. This postponement in allocating page
table nodes is required as the kernel does not
know what size the allocated page will be: this

12For backwards compatibility, mk_pte calls
mk_pte_order with order 0



Ottawa Linux Symposium 2002 585

is determined when the page is allocated.

On a write access to a page marked read-only
in the PTE, a private copy is created and re-
places the read-only mapping. This involves
copying the entire superpage, so it is a rela-
tively expensive operation — as with all super-
page operations, there will only be overhead if
the operations would not have been done on
each base page. For example, writing a sin-
gle character to a 4Mb mapping will result in
the whole 4Mb being copied, which would not
have occurred if the region was mapped with
4K pages. Conversely, if most or all of the
base pages are to be written to, copying them
in one operation may reduce the total overhead
due to caching effects and the reduced number
of page faults.

If no mapping exists, the VMA’sorder field
is consulted to determine the application’s de-
sired page size. If there are pages mapped into
the region defined by this order and the fault
address, and the application has elected to op-
portunistically allocate superpages, the kernel
selects the largest supported order that contains
the fault address, no mapped pages, and is less
than or equal to the desired order. Otherwise,
the application’s desired page order is selected.

After the kernel has determined the correct
page order, it examines the VMA’snopage
method. If thenopage method is not defined,
a zeroed superpage is allocated and inserted
into the page table. Otherwise, thenopage
method is called with the calculated page order,
and the result is inserted into the page table.

If the file that backs the VMA is using the page
cache to handle page faults, the kernel searches
the page cache for the file data associated with
the fault address. If a superpage is found, the
minimum of the superpage’s order and the re-
quested order is used to determine the sub-
superpage to be validated. The sub-superpage
is then checked to ensure its contents are valid,

I-TLB 4K pages 128 entries, 4-way SA
I-TLB 4M pages Fragmented into 4K I-

TLB
I-L1 cache 12K micro-ops
D-TLB 4K pages 64 entries, FA
D-TLB 4M pages Shared with 4K D-TLB
D-L1 cache 8K, 64 byte CL, 4-way

SA
unified L2 cache 256K, 64-byte CLS, 8-

way SA

Table 1: Pentium 4 processor’s memory sys-
tem characteristics (Notation: CL - cache lines;
CLS - cache lines, sectored; SA - set associa-
tive; FA - fully associative).

and if so, it is returned. If the sub-superpage’s
contents is not valid, each base page is read in,
and the sub-superpage is returned.

5 Experimental Results

In this section, we present and analyze the ex-
perimental data from our implementation of
multiple page size support in the Linux kernel.

All results in this section were generated on a
1.8GHz Pentium 4 system with 512M of RAM.
The Pentium 4 processor has separate instruc-
tion and data TLBs and supports two different
page sizes: 4K and 4M13. Table 1 shows the pa-
rameters of the memory system of Pentium 4.

5.1 Validating the Implementation with a
Micro-benchmark

This section presents and discusses the data
validating the accuracy of our implementa-
tion and demonstrating the benefits of multi-
ple page size support for a simple microbench-
mark. The use of a simple benchmark makes
it possible to reason in detail about its memory

13Note that with large physical memory support
(>4GB), the large page size on Pentium 4 processors
is 2M.



Ottawa Linux Symposium 2002 586

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

T
im

e 
(m

ill
is

ec
on

ds
)

Test size (megabytes)

DTLB micro-benchmark (L1-DCache)
1000 iterations, 128k increments

4k pagesize
4M pagesize

0
1
2
3
4
5
6
7
8
9

0 2 4 6 8 10 12 14 16

4k
:4

M

Test size (megabytes)

DTLB micro-benchmark (L1-DCache)
1000 iterations, 128k increments

4k:4M

Figure 4: The execution times of the microbenchmark with small 4K pages and large 4M pages
(left) and the ratios of execution times (right).

behavior and its interactions with the memory
system.

The benchmark allocates a heap and initializes
it with data. We vary the heap size from 128K
to 32M in 128K increments in order to adjust
the working set of the benchmark. The bench-
mark performs 1000 iterations during each of
which it strides through the heap in the follow-
ing manner: for each 4K page, it accesses one
word of data. Assuming that caches and TLBs
do not contain any information, each data ac-
cess brings one cache line of PTEs and one
cache line of data into the data L1 cache. To
ensure that consecutive accesses do not com-
pete for cache lines in the same cache set, we
increment the offset at which we access data
within a page by the size of a cache line. We
also access every sixteenth page to ensure that
we use only one PTE per L1 cache line14.

We performed two sets of experiments. In the
first set, the heap was mapped with 4K pages.
In the second set, the heap was mapped with
4M pages. Both the 4K and the 4M cases have
several inflection points. The first two inflec-
tion points for the 4K case are at 4M and 6M,
and the first two inflection points for the 4M

14On our Pentium 4 machine, one 64-byte cache line
accommodates sixteen 4-byte PTE entries.

case are at 8M and 10M. The first inflection
point indicates that the important working set
(consisting of data and PTEs) can no longer
fit in the fast L1 cache. Up to this point, the
benchmark achieves full L1 cache reuse (both
data and PTEs fit in the L1 cache)15. Between
the first and the second inflection points, the
benchmark achieves partial cache reuse (some
of the data and PTEs remain in L1 across iter-
ations). After the second inflection point, there
is no L1 cache reuse (neither data nor PTEs re-
main in the L1 cache across iterations). The
working set, however, still fits in the larger L2
cache. The performance of the 4K case de-
grades sooner than that of the 4M case due to
the space overhead of PTEs16. The 4M case
does not suffer from this behavior as it uses
few PTEs and, hence, significantly less space
in the L1 data cache; each cache line can ac-
commodate 16 PTEs mapping a total of 64M
of contiguous address space.

By extending the portion of the graph where

15Coincidentally, because we access one cache line of
data per 4K page and access every sixteenth page, the
64-entry D-TLB begins thrashing at 4M, too.

16Namely, the PTEs occupy the same number of cache
lines as the data. Consequently, the number of L1 misses
begins to grow once the number of distinct pages we
touch exceeds one half the number of cache lines in the
L1 data cache.



Ottawa Linux Symposium 2002 587

the benchmark achieves full L1 cache reuse
(i.e., past the first inflection point to the right),
one can estimate the performance of the bench-
mark on a system with increasingly larger L1
cache. Similarly, by extending the portion of
the graph where the benchmark experiences no
L1 cache reuse, one can estimate the perfor-
mance of the benchmark on a system with a
slower L1 data cache (whose access time is
equal to the access time of the L2 cache of our
configuration). The next inflection point (not
shown on the graph) will occur when the L2
cache starts to saturate.

5.2 Assessing Performance for Traditional
Workloads

This section discuss the performance of mul-
tiple page size support in the context of the
SPEC CPU2000 benchmark suite[16], specif-
ically CINT2000, the integer component of
SPEC CPU2000.

The CINT2000 benchmark suite was designed
to measure the performance of a CPU and
its memory subsystem. There are 12 integer
benchmarks in the suite. These are thegzip
data compression utility,vpr circuit placement
and routing utility, gcc compiler, mcf mini-
mum cost network flow solver,crafty chess
program, parser natural language processor,
eonray tracer,perlbmk17 perl utility, gapcom-
putational group theory,vortexobject oriented
database,bzip2 data compression utility, and
twolf place and route simulation benchmarks.
All applications, except foreon, are written in
C. Theeonbenchmark is written in C++.

We noted that the applications in the
CINT2000 suite use themalloc family
of functions to allocate the majority of their
memory. To provide the application with mem-
ory backed by large pages via themalloc

17Due to compilation difficulties, this benchmark was
excluded from out results

function, we modified thesbrk function.
The memory allocator usessbrk to allocate
memory at page granularity; it then allocates
portions of this memory to the application
upon request. Thesbrk function ensures
that the pages it gives to memory allocator are
valid; i.e., it grows the process’s heap using
thebrk system call when required.

We modified thesbrkfunction so that it returns
memory backed by large pages. At the first re-
quest,sbrk maps a large region of memory,
and uses themadvise system call to map that
region with large pages. Whenever the mem-
ory allocator requests a memory,sbrk returns
the next free page in this region.

If the memory request is greater than some
threshold (128K), the current memory alloca-
tor will allocate pages using themmapsystem
call. To ensure that the memory allocator re-
turned memory backed by large pages, we dis-
abled this feature so that the allocator always
uses oursbrk .

To allow the applications to use our modi-
fied memory allocator andsbrk functions, we
placed these functions in a shared library and
used the dynamic linker’s preload functional-
ity. We set theLD_PRELOADenvironment
variable to out library, so the dynamic linker
will resolve anymalloc function calls in the
application to our implementation. In this way,
no recompilation is necessary for the applica-
tions to use large pages.

Table 2 shows the performance results we ob-
tained using large pages. Overall, the results
obtained are encouraging, many applications
showing approximately 15% improvement in
run time.



Ottawa Linux Symposium 2002 588

Benchmark Improvement (%)
164.gzip 12.31
175.vpr 16.72
176.gcc 9.29
181.mcf 9.43
186.crafty 15.22
197.parser 16.30
252.eon 12.07
254.gap 5.91
255.vortex 22.27
256.bzip2 14.37
300.twolf 12.47

Table 2: Performance improvements for SPEC
CPU2000 integer benchmark suite using large
pages

5.3 Assessing Performance with Emerging
Workloads

This section discusses the impact of large
pages on the performance of Java workloads.
Java applications, and SPECjvm98 [15] ap-
plications in particular, are known to have to
have poor cache and page locality of data ref-
erences [11, 14]. To demonstrate the advan-
tages of large pages for Java programs, we con-
ducted a set of experiments with thefast con-
figuration of Jikes Research Virtual Machine
(Jikes RVM) [1, 2] configured with the mark-
and-sweep memory manager (consisting of an
allocator and a garbage collector) [3, 10].

To get the baseline numbers, i.e., where the
heap is mapped with 4K pages, we ran the
SPECjvm98 applications with the largest avail-
able data size on an unmodified Jikes RVM.
The virtual address space in Jikes RVM con-
sists of three regions: thebootimage region, the
small heap(the heap region intended for small
objects), and thelarge heap(for objects whose
size exceeds 2K). We modified thebootim-
age runnerof Jikes RVM18 to ensure that the

18Thebootimage runneris a program responsible for

small heapis aligned to a 4M boundary and is
mapped by 4M pages.

The decision to map only thesmall heapto
large pages was based on the observation that,
with a few exceptions, most objects created by
SPECjvm98 are small. We then repeated the
experiments by mapping all three heap regions
to large pages. We also varied the size of the
small heapfrom 16M to 128M and computed
the performance improvements with 4M pages
over a configuration that uses only 4K pages.

For each application, Figure 5 shows the min-
imum, the average, and the maximum per-
formance improvements when thesmall heap
is mapped to large pages (left) and when all
three heap regions are mapped to large pages
(right). It can be seen that for several applica-
tions the performance improvements are con-
sistent and range from 15% to 30% even if only
the small heapis mapped to large pages. The
compress benchmark is the only one in the
suite that creates a significant number of large
objects and only a few small objects, and so
does not benefit from large pages in this case.

When all three heap regions are mapped to
large pages, we observe an additional 5% to
10% performance improvement. For many
applications, the performance improvement
ranges from 20% to 40% over the base case.
It can also be seen that thecompress bench-
mark enjoys a significant performance boost.

5.4 Discussion

The observed benefits of large page support
can vary and depend on a number of factors
such as the characteristics of applications and
architecture. In this section, we discuss some
of these factors.

mapping memory for Jikes RVM and the heap, loading
the core of the RVM into memory, and then passing con-
trol to the RVM.



Ottawa Linux Symposium 2002 589

0 5 10 15 20 25 30 35 40 45 50

_201_compress

_202_jess

_205_raytrace

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

Performance improvement (percent)

 

P
erform

ance im
provem

ent w
ith the sm

all heap
m

apped to large pages

R
atio

0 5 10 15 20 25 30 35 40 45 50

_201_compress

_202_jess

_205_raytrace

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

Performance improvement (percent)

 

P
erform

ance im
provem

ent w
ith all three heap regions

m
apped to large pages

R
atio

Figure 5: Summary of results for SPECjvm98.

A small number of TLB entries covering large
pages19 may not be sufficient for a realistic ap-
plication to take full advantage of large page
support. If the working set of an application is
scattered over a wide range of address space,
the application is likely to experiencing thrash-
ing of a relatively small 4M page TLB, in some
cases to a much larger extent than with the 64-
entry 4K page data TLB. This is a problem on
processors like Pentium II and Pentium III.

Applications executing on processors with
software loaded TLBs are expected to bene-
fit from large pages. The TLB miss overhead
of an application executing on a processor that
handles TLB misses in hardware (such as x86
processors) can also be significant unless most
page tables of an application can fit in the L2
cache and co-reside with the rest of the work-
ing set. This is highly unlikely for applications
of interest: assuming that each L2 cache line

19In Pentium II and Pentium III microprocessors,
there are eight 4M page data TLB entries some of which
are used by the kernel.

is 32 bytes and each PTE is 4 bytes, one L2
cache line can cover eight 4K pages (a total of
32k). Hence, a 512K L2 cache can accommo-
date PTEs to cover only 512M of address space
(this does not leave any space for data in the
L2 cache). Consequently, for applications with
relatively large working sets, it is highly likely
that a significant fraction of PTEs would not
be found in the L2 cache on a TLB miss. Al-
though hardware makes reloading a TLB from
a L2 cache relatively inexpensive, many TLB
misses may need to be satisfied directly from
memory.

The Java platform [7] presents another set of
challenges. For performance reasons, state-of-
the-art JVMs compile Java bytecode into exe-
cutable machine code [1, 2, 9]. In some virtual
machines, such as Jikes RVM [1, 2], generated
machine code is placed into the same heap as
application data and is managed by the same
memory manager. It has been observed that the
code locality of Java programs tends to be bet-
ter than their data locality [14]. This suggests
that application code should reside in small



Ottawa Linux Symposium 2002 590

pages while application data should reside in
large pages. In Jikes RVM, generated code
and data objects are indistinguishable from the
memory manager’s point of view and are in-
termixed in the heap. Because a memory re-
gion can only be mapped to either small or
large pages, a tradeoff must be made. Map-
ping the entire heap region to large pages may
not be effective since application code may not
need to use large pages. What is worse is that
some processors have a very small number of
4M page instruction TLB entries20 which can
lead to thrashing of an instruction TLB. Con-
sequently, for best performance results, a JVM
should be made aware of the constraints im-
posed by the underlying OS and hardware, and
segregate application code and data into sepa-
rate well-defined regions.

For Java programs, some performance gains
are expected to come from better garbage col-
lection (GC) performance. Much work during
garbage collection is spent on chasing point-
ers in objects to find all reachable objects
in the region of the heap that is being col-
lected [4]. Many reachable objects can be scat-
tered throughout the heap. As a result, the lo-
cality of GCs is often worse than that of ap-
plications [11]. This behavior is representa-
tive of systems employing non-moving GCs
which have to be used when some objects can-
not be relocated (e.g., when not all pointers
can be identified reliably by a runtime). Con-
sequently, large pages can improve TLB miss
rates during GC (and overall GC performance).
Applications that perform GC frequently, have
a lot of live data at GC times, or whose live
data are spread around the heap can benefit
from large page support and achieve short GC
pauses. Short pauses are critical for software
systems that are expected to have relatively
predictable response times.

20There are only two 4M page instruction TLB entries
in Pentium II and Pentium III processors.

The availability of large pages can also be ben-
eficial for programs that use data prefetching
instructions. Modern processors squash a data
prefetching request if the appropriate transla-
tion information is not available in the data
TLB. Consequently, high TLB miss rates of
applications can lead to many prefetching re-
quests being squashed, thereby leading to in-
effective utilization of memory bandwidth and
reduced application performance[14]. The use
of large pages can help reduce TLB misses and
take full advantage of prefetching hardware.
Further, a hardware performing automatic se-
quential data and code prefetching stops when
a page boundary is crossed and has to be
restarted at the beginning of the next page21.
Large pages make it possible for such hard-
ware to run for a longer period of time and to
perform more useful work with fewer interrup-
tions.

6 Related work

Ganapathy and Schimmel [6] discussed a de-
sign of general purpose operating system sup-
port for large pages. They implemented their
design in the IRIX operating system for the
SGI ORIGIN 2000 system that employs the
MIPS R10000 processors (which handle TLB
misses in software).

An important aspect of their approach is that it
preserves the format ofpfdat and PTE data
structures of the IRIX OS. Thepfdat struc-
tures represent pages of a base size and contain
no page size information (just as in the original
system). Large pages are simply treated as a
collection of base pages. Consequently, only a
few parts of the OS kernel need to be aware of
large pages and need to be modified.

The PTEs contain the page size information but

21This is due to the fact that such automatic prefetch-
ing hardware uses physical addresses for prefetching.



Ottawa Linux Symposium 2002 591

the page table layout is unchanged. They use
one PTE for each base page of a large page
and create a set of PTEs that correspond to all
addresses falling withing a large page. As ex-
pected, for the large page PTEs, the page frame
numbers are contiguous.

To support multiple page sizes, the TLB miss
handler needs to set a page mask register in the
processor on each TLB miss. To ensure that
programs that do not use large pages do no in-
cur unnecessary runtime overhead, a TLB han-
dler is configured per process. The allocation
policy is specified on a command line (on a per
segment basis) before starting an application.
Hence, applications do not need to be modified
to take advantage of large pages, and applica-
tions that do not use large pages are not put at
disadvantage.

The advantage of this design is that it allows
different processes to map the same large page
with different page sizes. The disadvantages
are (i) this approach does not reduce the size
of page tables for applications that use large
pages and (ii) the information stored in PTEs
that cover a large page needs to be kept consis-
tent.

They demonstrated that applications from
SPEC95 and NAS parallel suite do benefit
from large pages. For these applications,
they registered 80% to 99% reduction in TLB
misses and 10% to 20% performance improve-
ment. A business application like the TPC-C
benchmark (which is known to have poor lo-
cality and large working set) was also shown
to benefit from large pages. The authors report
70% to 90% reduction in TLB misses and 6%
to 9% performance improvement for this appli-
cation.

Subramanian et al. [17] describe their imple-
mentation of multiple page size support in the
HP-UX operating system for the HP-9000 Se-
ries 800 system which uses the PA-8000 mi-

croprocessor.

In their design the VM data structures such
as the page table entry, virtual and physical
page frame descriptors are based on the small-
est page size supported by the processor. A
large page is defined as a set of contiguous
small base size pages. Hence, this design is
conceptually similar to that of Ganapathy and
Schimmel [6].

The authors note that an important advantage
of this approach is that it does not require
changes to many parts of the OS. However,
it neither reduces the sizes of data structures
for applications that use large pages. In ad-
dition, locking, access, and updates of data
structures for large pages are somewhat ineffi-
cient. In spite of the benefits of space efficiency
and the efficiency of updates, they choose not
to use variable page size based data structures
because, as the authors indicate, such an ap-
proach would lead to more changes in the OS
and would have negative performance implica-
tions (e.g., a high page-fault latency in certain
cases).

In their scheme, applications do not need
to be recompiled to take advantage of large
pages. The hints specifying large page sizes are
region-based and are used at page fault time. In
some cases, such as for performance reasons,
the OS can ignore these page size hints and fall
back to mapping small pages.

They implemented their design in the HP-
UX operating system and studied the impact
of large pages on several VM benchmarks,
SPEC95 applications, and one commercial ap-
plication. The reported performance improve-
ments range from 15% to 55%.



Ottawa Linux Symposium 2002 592

7 Conclusions and Further Work

Many modern processors support pages of var-
ious sizes ranging from a few kilobytes to sev-
eral megabytes. The Linux OS uses large pages
internally for its kernel (to reduce the over-
head of TLB misses) but does not expose large
pages to applications. Growing memory la-
tencies and large working sets of applications
make it important to provide support for large
pages to the user-level code as well.

In this paper, we discussed the design and im-
plementation of multiple page size support in
the Linux kernel. We validated our imple-
mentation on a simple microbenchmark. We
also demonstrated that realistic applications
can take advantage of large pages to achieve
significant performance improvements.

This work opens up a number of interesting di-
rection. In the future, we plan to modify ker-
nel’s memory allocator to further support large
pages. We would also like to evaluate the im-
pact of large pages on database and web work-
loads. These types of workloads are known
to have large working sets and poor locality.
Achieving high performance on commercial
workloads is crucial for continuing success of
Linux.

The latency of fetching a large 4M page from
a disk (as a result of a page fault) can be sig-
nificant. We consider implementing the “early
restart” feature that would fetch and map the
critical chunk of data first and complete fetch-
ing the remaining data chunks later, thereby re-
ducing pauses experienced by applications.

Some architectures support a number of differ-
ent page sizes (e.g., 16K, 256K, 4M, and 64M).
We would be interested in evaluating the per-
formance of applications on systems that have
this architectural support.

Acknowledgements

We would like to thank Pratap Pattnaik and
Manish Gupta for supporting this work. We
also like to thank Chris Howson for all of his
helpful advice.

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton,
M. G. Burke, P.Cheng, J.-D. Choi, A. Cocchi,
S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo,
J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño
Virtual Machine.IBM System Journal, 39(1),
2000.

[2] B. Alpern, A. Cocchi, D. Lieber, M. Mergen,
and V. Sarkar. Jalapeño - a
compiler-supported Java virtual machine for
servers. InWorkshop on Compiler Support
for Software System (WCSSS 1999), Atlanta,
GA, May 1999.

[3] C. Attansio, D. Bacon, A. Cocchi, and
S. Smith. A comparative evaluation of
parallel garbage collectors. InProc. of
Fourteenth Annual Workshop on Languages
and Compilers for Parallel Computing
(LCPC), Cumberland Falls, Kentucky, Aug.
2001.

[4] H.-J. Boehm. Reducing garbage collector
cache misses. InProc. of ISMM 2000, Oct.
2000.

[5] J. Bonwick. The slab allocator: An
object-caching kernel memory allocator. In
Summer 1994 USENIX Conference, pages
87–98, 1994.

[6] N. Ganapathy and C. Schimmel. General
purpose operating system support for
multiple page sizes. InProc. of the 1998
USENIX Technical Conference, New
Orleans, USA, June 1998.



Ottawa Linux Symposium 2002 593

[7] J. Gosling, B. Joy, and G. Steele.The
Java(TM) Language Specification.
Addison-Wesley, 1996.

[8] J. L. Hennessy and D. A. Patterson.
Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers,
1995.

[9] The Java Hotspot Performance Engine
Architecture.
http://java.sun.com/products
/hotspot/whitepaper.html.

[10] R. Jones and R. Lins.Garbage Collection:
Algorithms for Automatic Dynamic Memory
Management. John Wiley and Sons, 1996.

[11] J.-S. Kim and Y. Hsu. Memory system
behavior of Java programs: Methodology and
analysis. InProc. of SIGMETRICS 2000,
June 2000.

[12] C. Navarro, A. Ramirez, J.-L. Larriba-Pey,
and M. Valero. Fetch engines and databases.
In Proc. of Third Workshop On Computer
Architecture Evaluation Using Commercial
Workloads, Toulouse, France, 2000.

[13] V. Oleson, K. Schwan, G. Eisenhaur,
B. Plale, C. Pu, and D. Aminv. Operational
information systems - an example from the
airline industry. InFirst USENIX Workshop
on Industrial Experiences with Systems
Software (WIESS), San Diego, California,
October 2000.

[14] Y. Shuf, M. J. Serrano, M. Gupta, and J. P.
Singh. Characterizing the memory behavior
of Java workloads: A structured view and
opportunities for optimizations. InProc. of
SIGMETRICS 2001, June 2001.

[15] Standard Performance Evaluation Council.
SPEC JVM98 Benchmarks, 1998.
http://www.spec.org/osg/jvm98/ .

[16] Standard Performance Evaluation Council.
SPEC CPU2000 Benchmarks, 2000.
http://www.spec.org/osg
/cpu2000/ .

[17] I. Subramanian, C. Mather, K. Peterson, and
B. Raghunath. Implementation of multiple
pagesize support in HP-UX. InProc. of the
1998 USENIX Technical Conference, New
Orleans, USA, June 1998.

[18] R. van Riel. Rik van Riel’s Linux kernel
patches.http://www.surriel.com
/patches/.



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


