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Abstract 1 Introduction

. . To achieve high performance, many processors
The Linux kernel currently supports a single g,,nnqrting virtual memory implement a Trans-
user space page size, usually the minimum dicption | gokaside Buffer (TLB) [8]. A TLB is
tated by the architecture. This paper describeg gma|| hardware cache for maintaining virtual
the ongoing modifications to the Linux kernel 14 physical translation information for recently
to allow appllcayons to vary the size of pages,gferenced pages. During execution of any in-
used to map their address spaces and to reap g ction, a translation from virtual to physical

performance benefits associated with the use Qfygresses needs to be performed at least once.
large pages. Thereby, a TLB is effectively reducing the cost

The results from our implementation of mul- of obtaining tr_anslation information from page
tiple page size support in the Linux kerneltables stored in memory.

are very encouraging. Namely, we find thatpograms with good spatial and temporal lo-
the performance improvement of applicationse,ity of reference achieve high TLB hit rates
written in various modern programming lan-ich contribute to higher application perfor-
guages range from 10% to over 35%. The 0bmance.  Because of long memory latencies,
served performance improvements are Consissrograms with poor locality can incur a notice-
tent with those reported by other researchers,p o performance hit due to low TLB utiliza-

Considering that memory latencies continue tg;q, Large working sets of many modern ap-

grow and represent a barrier for achieving Scalplications and commercial middleware [12, 13]

able performance on faster processors, We afake achieving high TLB hit rates a challeng-
gue that multiple page size support is a NeCeshg and important task.
sary and important addition to the OS kernel

and the Linux kernel in particular. Adding more entries to a TLB to increase its
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coverage and increasing the associativity of & he rest of the paper is organized as follows.
TLB to reach higher TLB hit rates is not al- In Section 2, we present an overview of the
ways feasible as large and complex TLBs maké.inux virtual memory subsystem. We de-
it difficult to attain short processor cycle times. scribe the design and implementation of mul-
A short TLB latency is a critical requirement tiple page size support in the Linux kernel in
for many modern processors with fast physi-Section 3 and Section 4 respectively. Experi-
cally tagged caches, in which translation infor-mental results obtained from the implementa-
mation (i.e., a physical page associated with @on are presented and analyzed in Section 5.
TLB entry) needs to be available to performRelated work is discussed in Section 6. Fi-
cache tag checking [8]. Therefore, many pro-ally, we summarize the results of our work
cessors achieve wider TLB coverage by supand present some ideas for future work in Sec-
porting large pages. Traditionally, operatingtion 7.

systems did not expose large pages to appli-

cation software, limiting this support to the .

kernel. Growing working sets of applications2 _The_ Virtual Memory Subsystem
make it appealing to support large pages forap- 1IN Linux

plications, as well as for the kernel itself.

A key challenge for this work was to provide In this section, we give a brief overview of the
efficient support for multiple page sizes with Linux Virtual Memory (VM) subsysterh Un-
only minor changes to the kernel. This paperless otherwise noted, this section refers to the
discusses ongoing research to support mu|tip|g.4 series of kernels after version 2.4.18.

page sizes in the context of the Linux operating

system, and makes the following contributions:2-1 Address space data structures

« it describes the changes necessary to suf=ach address space is defined by a

port multiple page sizes in the Linux ker- MM_struct  data  structure ~ The
nel: mm_struct  contains information about

the address space, including a list \dftual
* it presents validation data demonstratingMemory AreafVMAS), a pointer to the page
the accuracy of our implementation anddirectory, and various locks and resource
its ability to meet our design goals; and counters.

« it illustrates non-trivial performance ben- A VMA contains information about a single re-
efits of large pages (reaching more thamgion of the address space. This includes:
35%) for Java applications and (reaching
over 15%) for C and C++ applications

from well-known benchmark suites. * the address range the VMA is responsible

for;

We have an implementation of multiple page < the access rights — read, write, and exe-
size support for the 1A-32 architecture and are  cute — for that region;
currently working on an implementation for
the PowerP&architecture. 2This section is meant to be neither exhaustive or
complete.

1This is for the PPC405gp and PPC440 processors, 3Note that multiple tasks can share the same address
both of which support multiple page sizes. space
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* the file, if any, which backs the region; 2.2
and

Thepage data structure and allocator

The page data structure represents a page of

» any performance hints supplied by an
application, such as memory access be
haviour.

A VMA is also responsible for populating

the region at page fault time via it®opage
method. A VMA generally maps a virtual ad-
dress range onto a region of a file, or zero filled
(anonymous) memory. .

A VMA exists for each segment in a process’s
executable (e.g., its text and data segments),
its stack, any dynamically linked libraries, and
any other files the process may have mapped
into its address space. All VMAS, except for
those created when a process is initially loaded, *°
are created with thenmapsystem cafl. The
mmapsystem call essentially checks that the
process is allowed the desired access to the re-
quested file@ and sets up the VMA.

The page directorycontains mappings from
virtual addresses to physical addresses. Linux
uses a three levédlierarchical page tabl¢PT),
although in most cases the middle level is op-
timised out. Each leaf node entry in the PT,
called apage table entry(PTE), contains the
address of the corresponding physical page, the
current protection attributes for that p4gand
other page attributes such as whether the map-
ping is dirty, referenced, or valid.

Figure 1 shows the relationship between the
Virtual Address Space, theam_struct , the
VMASs, the Physical Address Space, and the
page directory.

4This is not strictly true: theshmat system call is
also used to create VMAs. It is, however, essentially a
wrapper for thenmapsystem call.

5This check is trivial if the mapping is anonymous.

5The pages protection attributes may change over the
life of the mapping due to copy-on-write and reference
counting

physical memory, and contains the following
properties:

its usage count, which denotes whether it
is in the page cache, if it has buffers as-
sociated with it, and how many processes
are using it;

its associated mapping, which indicates
how a file is mapped onto its data, and its
offset;

its wait queue, which contains processes
waiting on the page; and

its various flags, most importantly:

locked This flag is used to lock a page.
When a page is locked, 1/O is pend-
ing on the page, or the page is being
examined by the swap subsystem.

error Thisflag is used to communicate to
the VM subsystem that an error oc-
curred during I/0 to the page.

referenced This flag is used by the swap-
ping algorithm. It is set when a page
is referenced, for example, when the
page is accessed by thead sys-
tem call, and when a PTE is found
to be referenced during the page ta-
ble scan performed by the swapper.

uptodate This flag is used by the page
cache to determine whether the
page’s contents are valid. It is set af-
ter the page is read in.

dirty This flag is used to determine
whether the page’s contents has been
modified. It is set when the page
is written to, either by an explicit
write  system call, or through a
store instruction.
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Figure 1: Virtual Address Space data structures

Iru This flag is used to indicate that the Each zone uses a buddy allocator to allocate
page is in the LRU list. pages, so pages of different orders can be al-

located. Although a client of the allocator re-

guests pages from a specific list of zones and a

specific page order, the pages that are returned

launder This flag is used to determine can come from anywhere within the zone. This
whether the page is currently under-means that a page for the slab allocatcan
going swap activity. It is set when be allocated between pages that are allocated
the page is selected to be swappedor the page cache. The same can be said for
out. other non-swappable pages such as task con-

trol blocks and page table nodes.

active This flag is used to indicate that
the page is in the active list.

Pages are organised intones memory is re- 2:3 The page cache

guested in terms of the target zone. Each zone

has certain properties: tigMA zone consists The page cache implements a general cache
of pages whose physical address is below théor file data.  Most filesystems use the
16MB limit required by some older devices, page cache to avoid re-implementing the page
the normal zone contains pages that can becache’s functionality. A filesystem takes ad-
used for any purpose (aside from that fulfilledvantage of the page cache by setting a file’s
by theDMA zone), and theighmenzone con- mmapoperation togeneric_file_mmap

tains all pages that do not fit into the kerne’'sWhen the file ismmagd, the VMA is set
virtual memory: when the kernel needs to ac-up such that itsnopage function invokes
cess this memory, it needs to be mapped into flemap_nopage . The file'sread and
region of the kernels address space. Note thagrite  operations will also go through the
the DMA zone is only required for support of page cache.

legacy devices, and thiéghmemzone is only "The slab allocatof5] provides efficient allocation

required on machines with 32 bit (or smaller) of gbjects, such amode s. Pages allocated to the slab
address spaces. allocator cannot be paged out.
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The page cache uses the page’s mapping and this manner reference statistics are gathered
offset fields to uniquely identify the file data from the page tables in the system, and used to
that the page contains — when an access ocelect pages to be swapped out and freed.

curs, the page cache uses this data to look u;ig
the page in a hash table. he swapper thread may be woken up when

the amount of memory becomes too low. The
swapper functions may also be called directly
2.4 The swap subsystem when the amount of free memory becomes crit-
ical: when memory allocation fails, a task may

Linux attempts to fully utilise memory. Atany attémpt to swap out pages directly.

one time, the amount of available memory may

be less than that required by an application. T@-5 Anatomy of a page fault

satisfy a request for memory, the kernel may

need to free a page that is currently being used/Vhen a virtual memory address is accessed,

Selecting and freeing pages is the job of théut a corresponding mapping is notin the TLB,

swap subsystem. a TLB missoccurs. When this happens, the
fault addresss looked up in the page table, by

The swap subsystem uses two lists to recorgither the hardware in systems with a hardware

the activity of pages: a list of pages which haveipaded TLB, or via the kernel in systems with

not been accessed during in a certain time peg software loaded TLB (note that this implies
riod, called thenactivelist, and a list of pages an interrupt occurs).

which have been recently accessed, called the

activelist. The active list is maintained pseudo If @ mapping exists in the page table, is valid,
LRU, while the inactive list is used by the one- and matches permissions with the type of the
handed clock replacement algorithm currentlyaccess, the entry is inserted into the TLB, the
implemented in the kernel. Whenever a pagépage table is updated to reflect the access by
on the inactive list is referenced, it is moved tosetting the referenced Bjtand the faulting in-
the active list. struction is restarted.

The kernel uses a swapper thread to periodilf a valid mapping does not exist, the kernel's
cally balance the number of pages in the activgpage fault handler is invoked. The handler
and inactive lists: if a page in the active list hassearches the current address space’s VMA set
been referenced, it is moved to the end of thdor the VMA which corresponds to the fault ad-
active list, otherwise it is moved to the end ofdress, and checks whether the access requested
the inactive list. is allowed by the permissions specified in the

o VMA.
Periodically, the swapper thread sweeps

through the inactive list looking for pages that The kernel then looks up the PTE correspond-
can be freed. If the swapper thread is unable téng to the fault address and allocates a page ta-
free enough pages, it starts scanning page t&le node if necessary. If the fault is a write to
bles: for each PTE examined, the kernel checkg@ PTE marked read-only, the address space re-
to see whether the page has been referencéflires a private copy of the page. A page is
(i.e., whether thaeferencedbit is set in the allocated, the old page is copied, and the dirty

PTE)' If so, the pageis moved to the active list, 8Note that architectures with a hardware loaded TLB

if it is not already a member. Otherwise, theyhose page table doesn't map directly onto Linux’s need
page is considered a candidate for swappingo simulate this bit
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bit is set in the PTE. If the PTE exists but isn’t cation.
valid, the page needs to be swapped in, other-
wise the page needs to be allocated and filled3.1 Goals

If the VMA does not define aopage method, ] ) _ ]
the memory is defined to be anonymous i_e_Thls section discusses the design goals and
zero-filled memory that is not associated withUidelines which we attempt to adhere to in the

any device or file. In this case, the kernel allo-d€Sign of our solution. \We consider a good de-

cates a page, zeroes it, and inserts the appropfi9n t0 have the following properties:
ate entry into the page table. If a vahdpage

method exists, it is invoked and the resulting o\ overhead We do not wish to penalise ap-
page is inserted into the PTE. plications that will not benefit from large

pages, sO we aim to minimise the per-
formance impact of our modifications for
these applications.

In the majority of filesystems, thaopage
method goes to the page cache. The mapping
and offset for the fault address are calculated
— the information required for this calculation Ganeric The Linux kernel runs on numer-
is stored in the VMA — and the page cache g gifferent architecturgsnd is usually
hash table is searched for the file data corre- ported quickly to new architectures. Any
sponding to the mapping and offset. kernel enhancements such as ours should
be easily adaptable to support existing
and future systems, especially consider-
ing that many modern architectures fea-
ture MMUs which support multiple page
sizes.

If an up-to-date page exists, then no further ac-
tion is required. If the page exists but is not

up-to-date, it is read in. Otherwise, a new page
is allocated, inserted into the page cache, and
read in. In all cases, the page’s reference count

Is incremented, and the page is returned. Flexible While a generic solution allows for

easy portability, it does not indicate how
well such a solution takes advantage of
an architectures support for multiple page
sizes. The design should be flexible
This section discusses the approaches we con- enough to encompass any support.
sidered and justifies our final design. This sec-

tion is organised as follows: Section 3.1 dis-Simple The more complex a solution is, the
cusses the goals that guided the design and the More likely it is to have subtle bugs, and
terminology used throughout this and future ~ the harder it is to understand. While we
sections. Section 3.2 discusses the semantics can foresee a point at which a more com-
of large pages: what aspects of the support for ~ Plex solution may be necessary, the initial
large pages the kernel exports to user space, design should be as simple as possible.

the granularity at.Wh'Ch page size quISIOHS aLr(R/Iinimal The Linux kernel is a large and com-
made, and the high-level abstractions the ker- R
plex system, so a minimalist approach

nel exports to the user. is required: subsystem modifications that

3 Design

It should be noted that this is an ongoing 9A count of the number of architectures in the main-

project, so the approaches describe here maye kernel reveals 15 implementations that are more or
have been improved upon by the time of publi-less complete
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are not absolutely required may result in3.2.1 Visibility
a solution that is overly complex and un-

wieldy. Therefore, we try to limit our There are two basic approaches to supporting

changes to the VM subsystem only. multiple page sizes: restrict knowledge of su-
perpages to the kernel or export page size deci-
3.2 Semantics sions to user space.

n the former approach, the kernel can create
perpage mappings based on some heuristic,
~for example, a dynamic heuristic based on TLB
iss information, or a static heuristic based on
e type of mapping such as whether the map-
ping is for code, data, or whether it is anony-
The following terms are used throughout thismous. This approach is transparent to appli-
and later sections: cations, and should result in all applications
benefiting. It is, however, more complex, and
would rely on effective heuristics to map a vir-
tual address range with large pages.

This section discusses the semantics assomatgta
with supporting multiple page sizes: how the
page size for a range of virtual addresses i
chosen and whether the kernel considers thi I8
page size mandatory or advisory.

Base pageA base pages the smallest page
supported by the kernel, usually the mini-
mum dictated by the hardware. In the latter approach, an application explic-

itly requests a section of its address space be

mapped with superpages. This request could
come in the form of programmer hints, or via

Order A superpage’'rder refers to its size. instrumentation inserted by a compiler. While

A superpage of ordet contains2™ base this approach requires applications to have spe-
pages cific knowledge of the operating system'’s sup-

port for large pages, itis much simpler from the

Sub-superpageA sub-superpagés a super- kernels perspective. The major problem with
page of ordern, contained in a superpage thjs approach is that it requires the application
of ordern, such that > m. Note that programmer to have a good understanding of

a base page is a sub-superpage with ordghe applications memory behaviour.
m =0

Superpage A superpageis a contiguous se-
quence oR" base pages.

We have decided on the latter approach, due
to its simplicity: the former approach would
sttt necessitate developing heuristics that require

||||||i”ieii|||||||||| fine-tuning and rewriting,
order 4
[l base page (order = 0) 3.2.2  Granularity

This section discusses the granularity of con-
trol that the application has over page sizes.

. . . The approaches considered were:
These concepts are illustrated in Figure 2 PP

which shows a superpage of order 4 contain-
ing a sub-superpage of order 2. per address spaceWhile making page sizes

Figure 2: A superpage and sub-superpage
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per address space would simplify someThe kernel can take a best-effort approach to
aspects of the implementation, it is too re-mapping a virtual address with the applications
strictive. We expect applications to haveindicated page size, falling back to a smaller
regions of their address space where th@age size if the larger page is not immediately
use of large pages would be a waste ofavailable. Alternatively, the kernel can block

memory; the application until the desired page size be-
comes available, copying any existing pages to
the newly allocates superpage.

This approach also has its drawbacks: _ _ _
there is no clear set of types, althoughRather than mandating either behaviour, we

the region’s attributes (e.g., executableave elected to allow the application to choose

anonymous) could be used, so again thi®etween the two alternatives. In situations
approach is limited without any clear Where selecting a larger page size is merely an
gains; opportunistic optimisation for a relatively short

running application, the first behaviour is desir-
per address space regiornThis approach is able. In cases where the application is expected
more flexible than either of the above ap-to execute for an extended period of time, how-
proaches, however it does not allow forever, the expected performance improvement
hotspot mapping within a region; or may be greater than the expected wait time, and
so waiting for a superpage to become available
is justified. If an application is expected to re-
ever, there are implementation issues: th LS a large mapping over a n_umber of invoca-
’ - Nons (a text page or a data file, for example),

kerngl V.VOUId negd to keep t.rack of thethe application will benefit by waiting for the
applications desired page sizes for thelarge page to be constructed

entire address space.

per address space region type°

over an arbitrary address space range.
This is the most flexible approach, how-

To allow maximum flexibility while minimis- 4 Implementation

ing implementation overhead, we have decided

upon a combination of the last two options: anThjs section discusses the implementation of
application can dictate the page size for an arghe design in Section 3.

bitrary address range only if that range belongs
to an address space region. This means th t
an application can map a region hotspot with

large pages, but leave the rest of the region at o _ _

communicate a desired page size to the kernel.

A system call is the conventional mechanism
3.2.3 Interface for communicating with the kernel. In this sec-

tion, we discuss our implementation of a sys-
m call interface for setting the page size for a

Interface

This section discusses the guarantees givetr? ) £ the add
about the actual page size used to map an ad€9'on ot the address space.
dress space range. We considered three options: add a parameter

107 region is a defined part of the address space that0 themmapsystem call which specifying the
created by thenmapsystem call, for example. page size for the new mapping; implement a
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new system callsetpagesize ; and add an- structing the kernel to fall back to a smaller
other operation to thenadvise systemcall.  page size if a larger is not available. Conse-

) qguently, the kernel needs to keep track of the
Using themmapsystem call would appear 10 fo|iowing: firstly, the page size indicated by

be an obvious solution. It has, however, severghe application, which is associated with the
negative aspects: firstly, themapsystem call /4 A; secondly, the actual page size used to
is complex and is frequently used. Modifying map a virtual address.

mmayps argument types would break existing

code, as would adding extra parameters. SedFo communicate the requested page order to

ondly, the application would be restricted to thethe VMA's nopage function, another param-

one page size for that mapping, for the life ofeter was added. This parameter indicates the

the mapping. desired page order at invocation, and contains
the actual page size upon return. We rely upon

Using a new system call would be the cleanyne fact that subsystems which have not been
est alternative, however this requires signifi-y,qdified will only return base pages.
cant modifications to all architectures, and is

generally frowned upon where an alternative
. 16K 4M
exists. Py A

Using themadvise system call would allow MO e
an application to modify the page size at any
point during its execution and would not af- - Page Table
fect existing applications, as any modification \

|

would be orthogonal to current operations.

Page Directory

We therefore added setregionordefn) oper-
ation to themadvise system call, where is
the new page order. We implemented this us- Figure 3: The modified page table structure
ing the advise parameter of thenadvise

system call. The upper half of the parameterTo store the superpage size that actually maps
word contains the desired page order, while théhe virtual address range, the PTE includes the
lower half indicates that setregionordeoper- ~ order of the mapping. To achieve this, we as-
ation is to be performed. sociated unused bits within the PTE with dif-

ferent page sizes, although the actual bits and
Within the kernel, themadvise system call sjzes may be dictated by hardware.

verifies that the requested page order is actually

supported by the processor, and sets the VMAJ he page table structure was also modified: su-
order attribute accordingly. perpages which span a virtual address range

greater or equal to that of a non-leaf page direc-
tory entry are collapsed until they fit into a sin-
gle page table node (see Figure 3). This means
) _ _ o that we can now have valid page table elements
This section discusses the modifications madgy each level of the address translation hierar-
to the kernel's representation of a virtual ad'chy. This affects kernel routines which scan

dress space. The application can modify thgne nage table, for example, the swap routine.
page size used by a VMA at runtime, either

by an explicitmadvise system call or by in- Although the main reason behind this was to

4.2 Address space data structures
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conform to the page table structure defined byongs to. A superpage of ordemwould then be
the x86 family, it also has other advantagesoperated on by iterating over alt base pages.
the kernel can use positional information toThis approach conforms to the kernels existing
determine the page size, rather than relyinggemantics. It is, however, subject to various
solely on the information store in the PTE. Thisrace conditions, and is inelegant.

means that the number of page sizes supported

by the kernel is not restricted by the numberVe& implemented a combination of the two ap-

of unused bits in the PTE (which can be quiteProaches presented: while we do not have an
few). There may also be some performance adEXplicit hierarchy, there is an implicit hierar-

vantage as the TLB refill handler does needs t§hY created by storing the superpage’s order in
traverse fewer page table levels. each component base page. We logically parti-

tion the properties of a page into those associ-
4.3 Representing superpages in physical mem- ated with superpages, or with base pages.

oy This partitioning was guided by the usage of

these properties: if the property was used in

Yhe vM subsystem only, it was usually put in

the superpage partition. If the property was
sed for 1/O, it was put into the base page par-

This section discusses the representation of s
perpages in thepage data structure. The ker-
nel needs to keep track of various properties o
the superpage, such as vyhether Itis freeabl?i’tion. The properties were then partitioned as
whether it needs to be written back, etc. Thefollows:

superpage can include sub-superpages which

are in use: any superpage operation that affects

the sub-superpage also affects the superpage, ¢ the page’'susage count is per super-
and this needs to be taken into consideration. page. As all allocation are done in terms
of superpages, it follows that a superpage
is only freeable if no sub-superpage is be-
ing used. This means that whenever a sub-
superpage’s usage count is modified, the
actual modification is applied to the super-

page,

We considered the following representations
of superpages: firstly, an explicit hierarchy of
page data structures, with one level for each
possible order. A superpage would then be op-
erated on using thpage data structure at the
appropriate level. This implies that each oper-
ation would only have to look at a single in-
stance of thpage data structure.

» themapping andoffset properties are
per base page, as they are only used to per-

This approach is the cleanest in terms of se- form l/O on the page;

mantics. Unfortunately, the kernel makes cer-
tain assumptions about the one-to-one relation-
ship between thpage data structure and the
actual physical page. Implementing this de-
sign would violate those assumptions and also
involve significant modifications to the lower
levels of the kernel.

» thewait queue is per base page, as it
is used to signal when 1/0O has completed,;
 theflags are partitioned as follows:

locked is per base page, as it is used pri-
marily to indicate that a page is un-

The alternative involves a modification to the
existing page data structure, such that each
page contains the order of the superpage it be-

dergoing 1/O;

error is per base page, as itis used to in-
dicate an I/O error in the page;
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referenced is per superpage, as it is usedwe have created anothargepagezone, which
by the VM subsystem only; is used exclusively for large pages. While this

uptodate is per base page, as it is set!S Not @ permanent solution, it does aid in de-
when 1/0 successfully completes on PUgging, and solves the immediate problem for
a page; specialised users. The size of tlegepage

: . . ... zone is fixed at boot time.
dirty is per superpage, as it is primarily

used in the VM subsystem; For maximum flexibility, the current allocator
lru is per superpage, as it indicatesshould be modified so that pages which are not
whether a page is in the LRU list, pageable are allocated in so that they do not
and the LRU list is now defined to cause fragmentation. Also, pages which are
contain superpages; allocated together will probably be freed to-
Sgether, so clustering pages at allocation time

active is per superpage, as it indicate ,
P Perpag may also reduce fragmentation.

whether a page is in the active list,
and the active list is now defined to

launder is per superpage, as it is only o _
used in the swap subsystem, and thdf© support mapping files with superpages, the

swap subsystem has to deal with suPage cache needs to be modified. The bulk
perpages. of these modifications are in thpage and

affiliated functions, which attempt to allocate
All other flags are per base page, as theynd read in a superpage of the requested or-
reflect static properties of the page, (forder. To avoid any problems due to overlapping
example, whether the page is in the high-superpages, we require a superpage of order
mem zone). n also have file orden, — that is, the align-
ment of the superpage in the virtual, physical,
Operations that iterate over each base page inand file space is the same. For example, a 64K
superpage are required to operate in ascendingapping of a file should be at a file offset that is
order to avoid deadlock or other inconsisten-a multiple of 64K, a virtual offset that is a mul-
cies. tiple of 64K, and a physical offset of 64K

The changes to theopage function are es-
sentially straightforward. If an application re-
The current page allocator supports multiplequestsasuperpage which contained in the page

page sizes, however it has 2 major problems?aChe’ itget back a sub-superpage whose order

. i the minimum of the requested order and the
firstly, non-swappable pages can be sprea

throughout each zone, causing memory frag__superpages order. If a superpage does not ex-

. . : . _~ist, a page of the requested order is allocated,
mentation; secondly, if a large page is required . . .
: o each base page is read in, and the superpage is
but a user (i.e. swappable) page is in the way .
. - : addded to the LRU and active queues.
there is no efficient way to find all users of that

page. Because reading in a large page can cause sig-
nificant 1/0 activity (the amount of time re-

4.4 Page allocation

While the latter problem can be solved by Rik

van Riel's reverse mapping patch[18], the for- iithe virtual and physical alignment constraints are
mer is still an issue. For this implementation,common to most architectures.
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quired to read in 4MB of data from a disk can The architecture specific layer in our im-
be significant), we may need to read in basglementation consists mainly of page table
pages in a more intelligent fashion. One so-operations, i.e., creating and accessing a
lution is to read in the sub-superpage whichPTE. To constructed a PTE, the kernel now
contains the address of interest first and schedisesmk_pte_order , which is identical to
ule the remainder of the superpage to be reathk_pte 2 except for an additionairder pa-

in after the first sub-superpage has completedameter. This function creates a PTE with
When the rest of the superpage has completeghich maps a page of orderder . To al-
I/O, the address space can be mapped with thew the kernel to inspect a PTEpée_order
superpage. Note that this is similar to the earlyfunction is required. This function returns the
restart method used in some modern processomder of a PTE.

to fetch a cache line. . ) -
On architectures which use an additional page

table (usually because it is required by the
hardware), theupdate_mmu_cache needs
to be modified to take superpages into con-
In our current implementation, a region sideration. The kernel also requires a mech-
mapped with superpages will not be swappeanism to verify that a page size is sup-
out. Swapping a superpage would negate angorted. This is achieved by implementing the
performance gained by its use due to the higipgorder_supported function.

cost of disk 1/0. The superpage may need to be

written back, however, and this is handled in4.8 Anatomy of a large page fault

an essentially iterative manner — when the su-

perpage is not being used by any applicationsy, gystems with a hardware loaded TLB, a TLB
and it is chosen by the swap subsystem 10 bg,iqq is transparent to the kernel, and so is not

swapped out (i.e. when it appears as a VicCliNyigterent in the case of a large page. In ar-
on the LRU list), each base page is flushed (Qpitectures with a software TLB refill handler,
disk, and the superpage is freed. the new page table structure needs to be taken

In the future, a number of approaches preserif‘to consideration: t.he handler needs t.o check
themselves. The kernel may, for example, spliﬁ"’hether each level in the page table hierarchy

up a superpage into smaller superpages over'g @ valid PTE. The refill handler also needs to

series of swap events, until a threshold superXract the page size from the entry and insert
page order is met, and then swap that out. AI{N€ correctV’ A, PA, size) entry into the TLB.

ternatively, the kernel may just swap out theit ihere is no valid mapping in the page table, a

entire page. page fault occurs. As with the standard kernel,
the VMA is found and the access is validated.
4.7 Architecture specifics The PTE is then found, although a page table
node is not created if it is required — the page
This section discusses the architecture specifi2d!e node is allocated later on in the page fault
aspects of our implementation. Although ourPT0Cess. This postponement in allocating page
implementation attempts to be generic, the keriaPle nodes is required as the kernel does not
nel requires knowledge of the architecture’sknow what size the allocated page will be: this

support for multiple page sizes and the addi- 12rgr backwards compatibility, mk_pte calls
tional page table requirements. mk_pte_order  with order O

4.6 The swap subsystem
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is determined when the page is allocated. I-TLB 4K pages | 128 entries, 4-way SA
I-TLB 4M pages | Fragmented into 4K |-

On a write access to a page marked read-only TLB

in the PTE, a private copy is created and re-| I-L1 cache 12K micro-ops

places the read-only mapping. This involves| D-TLB 4K pages | 64 entries, FA

copying the entire superpage, so it is a rela-| D-TLB 4M pages| Shared with 4K D-TLB
tively expensive operation — as with all super- | D-L1 cache 8K, 64 byte CL, 4-way
page operations, there will only be overhead if SA

the operations would not have been done orj unified L2 cache | 256K, 64-byte CLS, 8
each base page. For example, writing a sin- way SA

gle character to a 4Mb mapping_ will result in Taple 1: Pentium 4 pProcessor's memory sys-
the whole 4Mb being copied, which would not o characteristics (Notation: CL - cache lines;

have occurred if the region was mapped withc| 5 . cache lines, sectored: SA - set associa-
4K pages. Conversely, if most or all of the tjye: Fa - fully associative).

base pages are to be written to, copying them
in one operation may reduce the total overhead

due to caching effects and the reduced numbefnd If SO, itis returned. If the sub-superpage’s
of page faults contents is not valid, each base page is read in,

and the sub-superpage is returned.

If no mapping exists, the VMA®rder field

is consulted to determine the application’s deB
sired page size. If there are pages mapped into
the region defined by this order and the fault
address, and the application has elected to opD this section, we present and analyze the ex-
portunistically allocate superpages, the kernePerimental data from our implementation of
selects the largest supported order that contairfgultiple page size support in the Linux kernel.

the fault address, no mapped pages, and 'S le%ﬁl results in this section were generated on a

than or _equ_al t,o the.deswed order. _Otherwse .8GHz Pentium 4 system with 512M of RAM.
the application’s desired page order is selecte . .
he Pentium 4 processor has separate instruc-

After the kernel has determined the correction and data TLBs and supports two different
page order' it examines the VMAlsopage page sizes: 4K and 4M Table 1 shows the pa-
method. If thmopage method is not defined, rameters of the memory system of Pentium 4.
a zeroed superpage is allocated and inserted

into the page table. Otherwise, thepage 5.1 V_alidating the Implementation with a
method is called with the calculated page order, ~ Micro-benchmark

and the result is inserted into the page table.

Experimental Results

This section presents and discusses the data
If the file that backs the VMA is using the page validating the accuracy of our implementa-
cache to handle page faults, the kernel searché®n and demonstrating the benefits of multi-
the page cache for the file data associated witple page size support for a simple microbench-
the fault address. If a superpage is found, thenark. The use of a simple benchmark makes

minimum of the superpage’s order and the reit possible to reason in detail about its memory
quested order is used to determine the sub-

. 13 . .
superpage to be validated. The sub-superpage Note that with large physical memory support

) . 1>4GB), the large page size on Pentium 4 processors
is then checked to ensure its contents are vali s oM. ) ge pag P
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Figure 4: The execution times of the microbenchmark with small 4K pages and large 4M pages
(left) and the ratios of execution times (right).

behavior and its interactions with the memorycase are at 8M and 10M. The first inflection
system. point indicates that the important working set
. (consisting of data and PTES) can no longer
The benchmark allocates a heap and initializeg; i the fast L1 cache. Up to this point, the
it with data. We vary the heap size from 128K ponchmark achieves full L1 cache reuse (both
to 32M in 128K increments in order to adjust yat4 and PTEs fit in the L1 cach&)Between
the working set of the benchmark. The benchyne first and the second inflection points, the

mark performs 1000 iterations during each ofyenchmark achieves partial cache reuse (some
which it strides through the heap in the follow- ¢ the data and PTEs remain in L1 across iter-

ing manner: for each 4K page, it acCesses ongjinng) After the second inflection point, there
word of data. Assuming that caches and TLBSs g |1 cache reuse (neither data nor PTES re-
do not contain any information, each data aCyajn in the L1 cache across iterations). The

cess brings one cache line of PTEs and ong,rking set, however, still fits in the larger L2
cache line of data into the data L1 cache. TQache. The performance of the 4K case de-
ensure that consecutive accesses do not COMPtades sooner than that of the 4M case due to
pete for cache lines in the same cache set, wg,o space overhead of PTEs The 4M case
increment the offset at which we access datqyges not suffer from this behavior as it uses
within & page by the size of a cache line. Were,, pTES and, hence, significantly less space
also access every sixteenth page to ensure that ihe |1 data cache: each cache line can ac-
we use only one PTE per L1 cache fifie commodate 16 PTEs mapping a total of 64M

We performed two sets of experiments. In theOf contiguous address space.

first set, the heap was mapped with 4K pagesg,, extending the portion of the graph where
In the second set, the heap was mapped with

4M pages. Both the 4K and the 4M cases have i5cgincidentally, because we access one cache line of
several inflection points. The first two inflec- data per 4K page and access every sixteenth page, the
tion points for the 4K case are at 4M and 6M,64-entry D-TLB begins thrashing at 4M, too.

and the first two inflection points for the 4M _Namely, the PTEs occupy the same number of cache
lines as the data. Consequently, the number of L1 misses

begins to grow once the number of distinct pages we
140n our Pentium 4 machine, one 64-byte cache lingouch exceeds one half the number of cache lines in the
accommodates sixteen 4-byte PTE entries. L1 data cache.
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the benchmark achieves full L1 cache reusdunction, we modified thesbrk function.
(i.e., past the first inflection point to the right), The memory allocator usesbrk to allocate
one can estimate the performance of the benchmemory at page granularity; it then allocates
mark on a system with increasingly larger L1portions of this memory to the application
cache. Similarly, by extending the portion of upon request. Thebrk function ensures
the graph where the benchmark experiences nihat the pages it gives to memory allocator are
L1 cache reuse, one can estimate the perfowalid; i.e., it grows the process’s heap using
mance of the benchmark on a system with ahebrk system call when required.

slower L1 data cache (whose access time is

equal to the access time of the L2 cache of ou¥ve modified thesbrkfunction so that it returns
configuration). The next inflection point (not Memory backed by large pages. At the first re-

shown on the graph) will occur when the L2 duest,sbrk maps a large region of memory,
cache starts to saturate. and uses themadvise system call to map that

region with large pages. Whenever the mem-

5.2 Assessing Performance for Traditional ary allocator reque_stsgmemos}qu retums
Workloads the next free page in this region.

If the memory request is greater than some
This section discuss the performance of multhreshold (128K), the current memory alloca-
tiple page size support in the context of thetor will allocate pages using themapsystem
SPEC CPU2000 benchmark suite[16], specifcall. To ensure that the memory allocator re-
ically CINT2000, the integer component of turned memory backed by large pages, we dis-
SPEC CPU2000. abled this feature so that the allocator always

The CINT2000 benchmark suite was designec&jses ousbrk .

to measure the performance of a CPU ando allow the applications to use our modi-
its memory subsystem. There are 12 integefied memory allocator ansbrk functions, we
benchmarks in the suite. These are §®p placed these functions in a shared library and
data compression utilitypr circuit placement ysed the dynamic linker’'s preload functional-
and routing utility, gcc compiler, mcf mini-  jty. We set theLD_PRELOADenvironment
mum cost network flow solvercrafty chess variable to out library, so the dynamic linker
program, parser natural language processor, will resolve anymalloc  function calls in the
eonray tracerperlbmK” perl utility, gapcom-  application to our implementation. In this way,

putational group theoryortexobject oriented no recompilation is necessary for the applica-

databasebzip2 data compression utility, and tions to use large pages.

twolf place and route simulation benchmarks.

All applications, except foeon are written in  Table 2 shows the performance results we ob-

C. Theeonbenchmark is written in C++. tained using large pages. Overall, the results
obtained are encouraging, many applications

We noted that the applications in theshowing approximately 15% improvement in
CINT2000 suite use themalloc family runtime.

of functions to allocate the majority of their
memory. To provide the application with mem-
ory backed by large pages via timealloc

"Due to compilation difficulties, this benchmark was
excluded from out results
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Benchmark| Improvement (%) small heags aligned to a 4M boundary and is
164.9zip 12.31 mapped by 4M pages.

175.vpr 16.72

176.gcc 9.29 The decision to map only themall heapto
181.mcf 9.43 large pages was based on the observation that,
186.crafty 15.22 with a few exceptions, most objects created by
197.parser 16.30 SPECjvm98 are small. We then repeated the
252 eon 12.07 experiments by mapping all three heap regions
254.gap 5.91 to large pages. We also varied the size of the
255 vortex 22 27 small heapfrom 16M to 128M and computed
256.bzip2 14.37 the performance improvements with 4M pages
300.twolf 12.47 over a configuration that uses only 4K pages.

For each application, Figure 5 shows the min-

Table 2: Performance improvements for SPEGmum, the average, and the maximum per-

CPU2000 integer benchmark suite using larggdormance improvements when tisenall heap
pages is mapped to large pages (left) and when all
three heap regions are mapped to large pages
5.3 Assessing Performance with Emerging (_rlght). Itcan be seen that for several applica-
Workloads tions the performance improvements are con-
sistent and range from 15% to 30% even if only
This section discusses the impact of Iargethesmall heapis mappeq to large pages. The
compress benchmark is the only one in the
pages on the performance of Java workloads:

Java applications, and SPECjvmo8 [15] ap_SU|_te that creates a significant nu_mber of large
. . . objects and only a few small objects, and so
plications in particular, are known to have to

have poor cache and page locality of data refploes not benefit from large pages in this case.

erences [11, 14]. To demonstrate the advang/nhen all three heap regions are mapped to
tages of large pages for Java programs, we cofarge pages, we observe an additional 5% to
ducted a set of experiments with tfaest con- 10% performance improvement. For many
figuration of Jikes Research Virtual MaChineappncations’ the performance improvement
(Jikes RVM) [1, 2] configured with the mark- ranges from 20% to 40% over the base case.
and-sweep memory manager (consisting of a can also be seen that teiempress bench-
allocator and a garbage collector) [3, 10]. mark enjoys a significant performance boost.

To get the baseline numbers, i.e., where the _ _
heap is mapped with 4K pages, we ran the-4 Discussion
SPECjvm98 applications with the largest avail-

able data size on an unmodified Jikes RVMThe observed benefits of |arge page support
The virtual address space in Jikes RVM con-can vary and depend on a number of factors
sists of three regions: thEotimage regiojthe  such as the characteristics of applications and
small heap(the heap region intended for small grchitecture. In this section, we discuss some
objects), and th&arge heap(for objects whose of these factors.

size exceeds 2K). We modified tHmootim-

age runnerof Jikes RVM?® to ensure that the mapping memory for Jikes RVM and the heap, loading
the core of the RVM into memory, and then passing con-

¥The bootimage runnefts a program responsible for trol to the RVM.
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Figure 5: Summary of results for SPECjvm98.

A small number of TLB entries covering large is 32 bytes and each PTE is 4 bytes, one L2
page$’ may not be sufficient for a realistic ap- cache line can cover eight 4K pages (a total of
plication to take full advantage of large page32k). Hence, a 512K L2 cache can accommo-
support. If the working set of an application is date PTEs to cover only 512M of address space
scattered over a wide range of address spacé@his does not leave any space for data in the
the application is likely to experiencing thrash-L2 cache). Consequently, for applications with
ing of a relatively small 4M page TLB, in some relatively large working sets, it is highly likely
cases to a much larger extent than with the 64that a significant fraction of PTEs would not
entry 4K page data TLB. This is a problem onbe found in the L2 cache on a TLB miss. Al-
processors like Pentium Il and Pentium Ill.  though hardware makes reloading a TLB from
a L2 cache relatively inexpensive, many TLB

Applications  executing on processors Withmisses may need to be satisfied directly from
software loaded TLBs are expected to benefnemory.

fit from large pages. The TLB miss overhead
of an application executing on a processor thaThe Java platform [7] presents another set of
handles TLB misses in hardware (such as x8@hallenges. For performance reasons, state-of-
processors) can also be significant unless mosthe-art JVMs compile Java bytecode into exe-
page tables of an application can fit in the L2cutable machine code [1, 2, 9]. In some virtual
cache and co-reside with the rest of the work-machines, such as Jikes RVM [1, 2], generated
ing set. This is highly unlikely for applications machine code is placed into the same heap as
of interest: assuming that each L2 cache lineapplication data and is managed by the same
memory manager. It has been observed that the
¥n Pentium 1l and Pentium IIl microprocessors, code locality of Java programs tends to be bet-

there are eight 4M page data TLB entries some of whict€[ than their data locality [14]. This suggests
are used by the kernel. that application code should reside in small
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pages while application data should reside inThe availability of large pages can also be ben-
large pages. In Jikes RVM, generated codeficial for programs that use data prefetching
and data objects are indistinguishable from thenstructions. Modern processors squash a data
memory manager’s point of view and are in-prefetching request if the appropriate transla-
termixed in the heap. Because a memory retion information is not available in the data
gion can only be mapped to either small orTLB. Consequently, high TLB miss rates of
large pages, a tradeoff must be made. Mapapplications can lead to many prefetching re-
ping the entire heap region to large pages maguests being squashed, thereby leading to in-
not be effective since application code may noteffective utilization of memory bandwidth and
need to use large pages. What is worse is thaeduced application performance[14]. The use
some processors have a very small number aff large pages can help reduce TLB misses and
4M page instruction TLB entri@which can take full advantage of prefetching hardware.
lead to thrashing of an instruction TLB. Con- Further, a hardware performing automatic se-
sequently, for best performance results, a JVMjuential data and code prefetching stops when
should be made aware of the constraints ima page boundary is crossed and has to be
posed by the underlying OS and hardware, andestarted at the beginning of the next pdge
segregate application code and data into sepdarge pages make it possible for such hard-
rate well-defined regions. ware to run for a longer period of time and to

_ perform more useful work with fewer interrup-
For Java programs, some performance gainggns

are expected to come from better garbage col-

lection (GC) performance. Much work during

garbage collection is spent on chasing point6 Related work

ers in objects to find all reachable objects

in the region of the heap th_at s being COI_Ganapathy and Schimmel [6] discussed a de-

lected [4]. Many reachable objects can be scat-. :
sign of general purpose operating system sup-

tered throughout the heap. As a result, the lo- ort for larae pages. Thev implemented their
cality of GCs is often worse than that of ap-p ge pages. y Imp

plications [11]. This behavior is representa-OIESIgn in the IRIX operating system for the

tive of systems employing non-moving GCSSGI ORIGIN 2000 system that employs the

: : MIPS R10000 processors (which handle TLB
which have to be used when some objects can- . :

) misses in software).
not be relocated (e.g., when not all pointers

can be identified reliably by a runtime). Con- An important aspect of their approach is that it
sequently, large pages can improve TLB missyreserves the format gffdat and PTE data
rates during GC (and overall GC performance)structures of the IRIX OS. Thefdat struc-
Applications that perform GC frequently, have tyres represent pages of a base size and contain
a lot of live data at GC times, or whose live ng page size information (just as in the original
data are spread around the heap can bene§ystem). Large pages are simply treated as a
from large page support and achieve short GGollection of base pages. Consequently, only a
pauses. Short pauses are critical for softwargew parts of the OS kernel need to be aware of

systems that are expected to have relativelyarge pages and need to be modified.
predictable response times.
The PTEs contain the page size information but

20There are only two 4M page instruction TLB entries  ?'This is due to the fact that such automatic prefetch-
in Pentium Il and Pentium Il processors. ing hardware uses physical addresses for prefetching.
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the page table layout is unchanged. They useroprocessor.
one PTE for each base page of a large page , )
and create a set of PTEs that correspond to all' their design the VM data structures such

addresses falling withing a large page. As ex2S the page table entry, virtual and physical

pected, for the large page PTESs, the page fram@@9¢€ frame descriptors are based on the small-
numbers are contiguous. est page size supported by the processor. A

large page is defined as a set of contiguous
To support multiple page sizes, the TLB misssmall base size pages. Hence, this design is
handler needs to set a page mask register in thenceptually similar to that of Ganapathy and
processor on each TLB miss. To ensure thaSchimmel [6].

programs that do not use large pages do no in- )
cur unnecessary runtime overhead, a TLB hanl h€ authors note that an important advantage

dler is configured per process. The allocatiorP! this approach is that it does not require

policy is specified on a command line (on a pelchanges to many parts of the OS. However,
segment basis) before starting an applicatiorlt N€ither reduces the sizes of data structures
Hence, applications do not need to be modified0 @pplications that use large pages. In ad-
to take advantage of large pages, and appncéj_ltlon, locking, access, and updates of data

tions that do not use large pages are not put Structures for large pages are somewhat ineffi-
disadvantage. cient. In spite of the benefits of space efficiency

and the efficiency of updates, they choose not
The advantage of this design is that it allowsto use variable page size based data structures
different processes to map the same large pageecause, as the authors indicate, such an ap-
with different page sizes. The disadvantageproach would lead to more changes in the OS
are (i) this approach does not reduce the sizand would have negative performance implica-
of page tables for applications that use largdions (e.g., a high page-fault latency in certain
pages and (ii) the information stored in PTEscases).

that cover a large page needs to be kept consis- _ o
tent. In their scheme, applications do not need

to be recompiled to take advantage of large
They demonstrated that applications frompages. The hints specifying large page sizes are
SPEC95 and NAS parallel suite do benefitregion-based and are used at page fault time. In
from large pages. For these applicationssome cases, such as for performance reasons,
they registered 80% to 99% reduction in TLBthe OS can ignore these page size hints and fall
misses and 10% to 20% performance improveback to mapping small pages.
ment. A business application like the TPC-C ) ] o
benchmark (which is known to have poor lo- 1h€Yy implemented their design in the HP-
cality and large working set) was also shownUX operating system and studied the impact

to benefit from large pages. The authors repor®f large pages on several VM benchmarks,
70% to 90% reduction in TLB misses and 6%SPEC95 applications, and one commercial ap-

to 9% performance improvement for this app"_plication. The reported performance improve-
cation. ments range from 15% to 55%.

Subramanian et al. [17] describe their imple-
mentation of multiple page size support in the
HP-UX operating system for the HP-9000 Se-
ries 800 system which uses the PA-8000 mi-
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