
How to replicate the fire: HA for netfilter based
firewalls

Harald Welte
Netfilter Core Team + Astaro AG

laforge@gnumonks.org || laforge@astaro.com

http://www.gnumonks.org/

Abstract

With traditional, stateless firewalling (such as
ipfwadm, ipchains) there is no need for spe-
cial HA support in the firewalling subsystem.
As long as all packet filtering rules and rout-
ing table entries are configured in exactly the
same way, one can use any available tool for
IP-Address takeover to accomplish the goal of
failing over from one node to the other.

With Linux 2.4.x netfilter/iptables, the Linux
firewalling code moves beyond traditional
packet filtering. Netfilter provides a modular
connection tracking susbsystem which can be
employed for stateful firewalling. The con-
nection tracking subsystem gathers informa-
tion about the state of all current network flows
(connections). Packet filtering decisions and
NAT information is associated with this state
information.

In a high availability scenario, this connection
tracking state needs to be replicated from the
currently active firewall node to all standby
slave firewall nodes. Only when all connec-
tion tracking state is replicated, the slave node
will have all necessarry state information at the
time a failover event occurs.

The netfilter/iptables does currently not have
any functionality for replicating connection
tracking state accross multiple nodes. How-

ever, the author of this presentation, Har-
ald Welte, has started a project for con-
nection tracking state replication with netfil-
ter/iptables.

The presentation will cover the architectural
design and implementation of the connection
tracking failover sytem. With respect to the
date of the conference, it is to be expected that
the project is still a work-in-progress at that
time.

1 Failover of stateless firewalls

There are no special precautions when in-
stalling a highly available stateless packet fil-
ter. Since there is no state kept, all information
needed for filtering is the ruleset and the indi-
vidual, seperate packets.

Building a set of highly available stateless
packet filters can thus be achieved by using any
traditional means of IP-address takeover, such
as Hartbeat or VRRPd.

The only remaining issue is to make sure the
firewalling ruleset is exactly the same on both
machines. This should be ensured by the fire-
wall administrator every time he updates the
ruleset.

If this is not applicable, because a very dy-
namic ruleset is employed, one can build a

Ottawa Linux Symposium 2002 566

very easy solution using iptables-supplied tools
iptables-save and iptables-restore. The out-
put of iptables-save can be piped over ssh to
iptables-restore on a different host.

Limitations

• no state tracking

• not possible in combination with NAT

• no counter consistency of per-rule
packet/byte counters

2 Failover of stateful firewalls

Modern firewalls implement state tracking (aka
connection tracking) in order to keep some
state about the currently active sessions. The
amount of per-connection state kept at the fire-
wall depends on the particular implementation.

As soon asany state is kept at the packet fil-
ter, this state information needs to be replicated
to the slave/backup nodes within the failover
setup.

In Linux 2.4.x, all relevant state is kept within
the connection tracking subsystem. In order
to understand how this state could possibly be
replicated, we need to understand the architec-
ture of this conntrack subsystem.

2.1 Architecture of the Linux Connection
Tracking Subsystem

Connection tracking within Linux is im-
plemented as a netfilter module, called
ip_conntrack.o.

Before describing the connection tracking sub-
system, we need to describe a couple of defini-
tions and primitives used throughout the con-
ntrack code.

A connection is represented within the con-
ntrack subsystem usingstruct ip_conntrack,
also calledconnection tracking entry.

Connection tracking is utilizingconntrack tu-
ples, which are tuples consisting out of (sr-
cip, srcport, dstip, dstport, l4prot). A con-
nection is uniquely identified by two tu-
ples: The tuple in the original direction
(IP_CT_DIR_ORIGINAL) and the tuple for
the reply direction (IP_CT_DIR_REPLY).

Connection tracking itself does not drop pack-
ets1 or impose any policy. It just associates
every packet with a connection tracking entry,
which in turn has a particular state. All other
kernel code can use this state information2.

2.1.1 Integration of conntrack with netfil-
ter

If the ip_conntrack.o module is registered
with netfilter, it attaches to the
NF_IP_PRE_ROUTING,
NF_IP_POST_ROUTING,
NF_IP_LOCAL_IN and
NF_IP_LOCAL_OUT hooks.

Because forwarded packets are the most com-
mon case on firewalls, I will only describe
how connection tracking works for forwarded
packets. The two relevant hooks for for-
warded packets are NF_IP_PRE_ROUTING
and NF_IP_POST_ROUTING.

Every time a packet arrives at the
NF_IP_PRE_ROUTING hook, connec-
tion tracking creates a conntrack tuple from
the packet. It then compares this tuple to the
original and reply tuples of all already-seen

1well, in some rare cases in combination with NAT it
needs to drop. But don’t tell anyone, this is secret.

2state information is internally represented via the
struct sk_buff.nfctstructure member of a packet.

Ottawa Linux Symposium 2002 567

connections3 to find out if this just-arrived
packet belongs to any existing connection. If
there is no match, a new conntrack table entry
(struct ip_conntrack) is created.

Let’s assume the case where we have al-
ready existing connections but are starting
from scratch.

The first packet comes in, we derive the tuple
from the packet headers, look up the conntrack
hash table, don’t find any matching entry. As
a result, we create a new struct ip_conntrack.
This struct ip_conntrack is filled with all nec-
essarry data, like the original and reply tuple
of the connection. How do we know the reply
tuple? By inverting the source and destination
parts of the original tuple.4 Please note that this
new struct ip_conntrack isnot yet placed into
the conntrack hash table.

The packet is now passed on to other call-
back functions which have registered with a
lower priority at NF_IP_PRE_ROUTING. It
then continues traversal of the network stack as
usual, including all respective netfilter hooks.

If the packet survives (i.e. is not dropped
by the routing code, network stack,
firewall ruleset, . . .), it re-appears at
NF_IP_POST_ROUTING. In this case,
we can now safely assume that this packet will
be sent off on the outgoing interface, and thus
put the connection tracking entry which we
created at NF_IP_PRE_ROUTING into the
conntrack hash table. This process is called
confirming the conntrack.

The connection tracking code itself is not
monolithic, but consists out of a couple of
seperate modules5. Besides the conntrack core,

3Of course this is not implemented as a linear search
over all existing connections.

4So why do we need two tuples, if they can be de-
rived from each other? Wait until we discuss NAT.

5They don’t actually have to be seperate kernel mod-

there are two important kind of modules: Pro-
tocol helpers and application helpers.

Protocol helpers implement the layer-4-
protocol specific parts. They currently exist
for TCP, UDP and ICMP (an experimental
helper for GRE exists).

2.1.2 TCP connection tracking

As TCP is a connection oriented protocol, it is
not very difficult to imagine how conntection
tracking for this protocol could work. There
are well-defined state transitions possible, and
conntrack can decide which state transitions
are valid within the TCP specification. In re-
ality it’s not all that easy, since we cannot as-
sume that all packets that pass the packet filter
actually arrive at the receiving end, . . .

It is noteworthy that the standard connection
tracking code doesnot do TCP sequence num-
ber and window tracking. A well-maintained
patch to add this feature exists almost as long
as connection tracking itself. It will be in-
tegrated with the 2.5.x kernel. The problem
with window tracking is its bad interaction
with connection pickup. The TCP conntrack
code is able to pick up already existing connec-
tions, e.g. in case your firewall was rebooted.
However, connection pickup is conflicting with
TCP window tracking: The TCP window scal-
ing option is only transferred at connection
setup time, and we don’t know about it in case
of pickup . . .

2.1.3 ICMP tracking

ICMP is not really a connection oriented pro-
tocol. So how is it possible to do connection
tracking for ICMP?

ules; e.g. TCP, UDP and ICMP tracking modules are all
part of the linux kernel module ip_conntrack.o

Ottawa Linux Symposium 2002 568

The ICMP protocol can be split in two groups
of messages

• ICMP error messages, which sort-
of belong to a different connection
ICMP error messages are associated
RELATED to a different connec-
tion. (ICMP_DEST_UNREACH,
ICMP_SOURCE_QUENCH,
ICMP_TIME_EXCEEDED,
ICMP_PARAMETERPROB,
ICMP_REDIRECT).

• ICMP queries, which have a request-
>reply character. So what the conntrack
code does, is let the request have a state of
NEW, and the replyESTABLISHED. The
reply closes the connection immediately.
(ICMP_ECHO, ICMP_TIMESTAMP,
ICMP_INFO_REQUEST,
ICMP_ADDRESS)

2.1.4 UDP connection tracking

UDP is designed as a connectionless datagram
protocol. But most common protocols using
UDP as layer 4 protocol have bi-directional
UDP communication. Imagine a DNS query,
where the client sends an UDP frame to port 53
of the nameserver, and the nameserver sends
back a DNS reply packet from its UDP port 53
to the client.

Netfilter trats this as a connection. The first
packet (the DNS request) is assigned a state of
NEW, because the packet is expected to cre-
ate a new ’connection’. The dns servers’ reply
packet is marked asESTABLISHED.

2.1.5 conntrack application helpers

More complex application protocols involving
multiple connections need special support by

a so-called “conntrack application helper mod-
ule”. Modules in the stock kernel come for
FTP and IRC(DCC). Netfilter CVS currently
contains patches for PPTP, H.323, Eggdrop
botnet, tftp ald talk. We’re still lacking a lot of
protocols (e.g. SIP, SMB/CIFS) - but they are
unlikely to appear until somebody really needs
them and either develops them on his own or
funds development.

2.1.6 Integration of connection tracking
with iptables

As stated earlier, conntrack doesn’t impose any
policy on packets. It just determines the rela-
tion of a packet to already existing connections.
To base packet filtering decision on this sate in-
formation, the iptablesstatematch can be used.
Every packet is within one of the following cat-
egories:

• NEW: packet would create a new connec-
tion, if it survives

• ESTABLISHED : packet is part of an al-
ready established connection (either di-
rection)

• RELATED : packet is in some way related
to an already established connection, e.g.
ICMP errors or FTP data sessions

• INVALID : conntrack is unable to derive
conntrack information from this packet.
Please note that all multicast or broadcast
packets fall in this category.

2.2 Poor man’s conntrack failover

When thinking about failover of stateful fire-
walls, one usually thinks about replication of
state. This presumes that the state is gathered
at one firewalling node (the currently active
node), and replicated to several other passive

Ottawa Linux Symposium 2002 569

standby nodes. There is, howeve, a very dif-
ferent approach to replication: concurrent state
tracking on all firewalling nodes.

The basic assumption of this approach is: In
a setup where all firewalling nodes receive ex-
actly the same traffic, all nodes will deduct the
same state information.

The implementability of this approach is to-
tally dependent on fulfillment of this assump-
tion.

• All packets need to be seen by all nodes.
This is not always true, but can be
achieved by using shared media like tra-
ditional ethernet (no switches!!) and
promiscuous mode on all ethernet inter-
faces.

• All nodes need to be able to process
all packets. This cannot be univer-
sally guaranteed. Even if the hardware
(CPU, RAM, Chipset, NIC’s) and soft-
ware (Linux kernel) are exactly the same,
they might behave different, especially
under high load. To avoid those effects,
the hardware should be able to deal with
way more traffic than seen during opera-
tion. Also, there should be no userspace
processes (like proxes, etc.) running on
the firewalling nodes at all. WARNING:
Nobody guarantees this behaviour. How-
ever, the poor man is usually not inter-
ested in scientific proof but in usability in
his particular practical setup.

However, even if those conditions are fulfilled,
ther are remaining issues:

• No resynchronization after reboot. If a
node is rebooted (because of a hardware
fault, software bug, software update, ..)
it will loose all state information until

the event of the reboot. This means, the
state information of this node after re-
boot will not contain any old state, gath-
ered before the reboot. The effect depend
on the traffic. Generally, it is only as-
sured that state information about all con-
nections initiated after the reboot will be
present. If there are short-lived connec-
tions (like http), the state information on
the just rebooted node will approximate
the state information of an older node.
Only after all sessions active at the time
of reboot have terminated, state informa-
tion is guaranteed to be resynchronized.

• Only possible with shared medium. The
practical implication is that no switched
ethernet (and thus no full duplex) can be
used.

The major advantage of the poor man’s ap-
proach is implementation simplicity. No state
transfer mechanism needs to be developed.
Only very little changes to the existing con-
ntrack code would be needed in order to be able
to do tracking based on packets received from
promiscuous interfaces. The active node would
have packet forwarding turned on, the passive
nodes off.

I’m not proposing this as a real solution to
the failover problem. It’s hackish, buggy and
likely to break very easily. But considering it
can be implemented in very little programming
time, it could be an option for very small instal-
lations with low reliability criteria.

2.3 Conntrack state replication

The preferred solution to the failover problem
is, without any doubt, replication of the con-
nection tracking state.

The proposed conntrack state replication
soltution consists out of several parts:

Ottawa Linux Symposium 2002 570

• A connection tracking state replication
protocol

• An event interface generating event mes-
sages as soon as state information changes
on the active node

• An interface for explicit generation of
connection tracking table entries on the
standby slaves

• Some code (preferrably a kernel thread)
running on the active node, receiving state
updates by the event interface and gener-
ating conntrack state replication protocol
messages

• Some code (preferrably a kernel thread)
running on the slave node(s), receiving
conntrack state replication protocol mes-
sages and updating the local conntrack ta-
ble accordingly

Flow of events in chronological order:

• on active node, inside the network RX
softirq

– connection tracking code is analyz-
ing a forwarded packet

– connection tracking gathers some
new state information

– connection tracking updates local
connection tracking database

– connection tracking sends event
message to event API

• on active node, inside the conntrack-sync
kernel thread

– conntrack sync daemon receives
event through event API

– conntrack sync daemon aggregates
multiple event messages into a state
replication protocol message, re-
moving possible redundancy

– conntrack sync daemon generates
state replication protocol message

– conntrack sync daemon sends
state replication protocol message
(private network between firewall
nodes)

• on slave node(s), inside network RX
softirq

– connection tracking code ignores
packets coming from the interface
attached to the private conntrac sync
network

– state replication protocol messages
is appended to socket receive queue
of conntrack-sync kernel thread

• on slave node(s), inside conntrack-sync
kernel thread

– conntrack sync daemon receives
state replication message

– conntrack sync daemon cre-
ates/updates conntrack entry

2.3.1 Connection tracking state replication
protocol

In order to be able to replicate the state be-
tween two or more firewalls, a state replica-
tion protocol is needed. This protocol is used
over a private network segment shared by all
nodes for state replication. It is designed to
work over IP unicast and IP multicast trans-
port. IP unicast will be used for direct point-to-
point communication between one active fire-
wall and one standby firewall. IP multicast will
be used when the state needs to be replicated to
more than one standby firewall.

The principle design criteria of this protocol
are:

Ottawa Linux Symposium 2002 571

• reliable against data loss, as the un-
derlying UDP layer does only provide
checksumming against data corruption,
but doesn’t employ any means against
data loss

• lightweight, since generating the state up-
date messages is already a very expensive
process for the sender, eating additional
CPU, memory and IO bandwith.

• easy to parse, to minimize overhead at
the receiver(s)

The protocol does not employ any security
mechanism like encryption, authentication or
reliability against spoofing attacks. It is as-
sumed that the private conntrack sync network
is a secure communications channel, not acces-
sible to any malicious 3rd party.

To achieve the reliability against data loss, an
easy sequence numbering scheme is used. All
protocol messages are prefixed by a seuqence
number, determined by the sender. If the slave
detects packet loss by discontinuous sequence
numbers, it can request the retransmission of
the missing packets by stating the missing se-
quence number(s). Since there is no acknowl-
edgement for sucessfully received packets, the
sender has to keep a reasonably-sized backlog
of recently-sent packets in order to be able to
fulfill retransmission requests.

The different state replication protocol mes-
sages types are:

• NF_CTSRP_NEW: New conntrack entry
has been created (and confirmed6)

• NF_CTSRP_UPDATE: State informa-
tion of existing conntrack entry has
changed

6See the above description of the conntrack code for
what is meant byconfirminga conntrack entry

• NF_CTSRP_EXPIRE: Existing con-
ntrack entry has been expired

To uniquely identify (and later reference)
a conntrack entry, aconntrack_id is as-
signed to every conntrack entry trans-
ferred using a NF_CTSRP_NEW message.
This conntrack_id must be saved at the
receiver(s) together with the conntrack
entry, since it is used by the sender for
subsequent NF_CTSRP_UPDATE and
NF_CTSRP_EXPIRE messages.

The protocol itself does not care about the
source of this conntrack_id, but since the cur-
rent netfilter connection tracking implementa-
tion does never change the addres of a con-
ntrack entry, the memory address of the entry
can be used, since it comes for free.

2.3.2 Connection tracking state syn-
cronization sender

Maximum care needs to be taken for the imple-
mentation of the ctsyncd sender.

The normal workload of the active firewall
node is likely to be already very high, so gen-
erating and sending the conntrack state replica-
tion messages needs to be highly efficient.

• NF_CTSRP_NEW will be generated at
the NF_IP_POST_ROUTING hook, at
the time ip_conntrack_confirm() is called.
Delaying this message until conntrack
confirmation happens saves us from repli-
cating otherwise unneeded state informa-
tion.

• NF_CTSRP_UPDATE need to be cre-
ated automagically by the conntrack core.
It is not possible to have any failover-
specific code within conntrack protocol
and/or application helpers. The easiest

Ottawa Linux Symposium 2002 572

way involving the least changes to the
conntrack core code is to copy parts of the
conntrack entry before calling any helper
functions, and then use memcmp() to find
out if the helper has changed any informa-
tion.

• NF_CTSRP_EXPIREcan be added very
easily to the existing conntrack destroy
function.

2.3.3 Connection tracking state syn-
cronization receiver

Impmentation of the receiver is very straight-
forward.

Apart from dealing with lost CTSRP pack-
ets, it just needs to call the respective con-
ntrack add/modify/delete functions offered by
the core.

2.3.4 Necessary changes within netfilter
conntrack core

To be able to implement the described con-
ntrack state replication mechanism, the follow-
ing changes to the conntrack core are needed:

• Ability to exclude certain packets from
being tracked. This is a long-wanted fea-
ture on the TODO list of the netfilter
project and will be implemented by hav-
ing a “prestate” table in combination with
a “NOTRACK” target.

• Ability to register callback functions to be
called every time a new conntrack entry is
created or an existing entry modified.

• Export an API to add externally add, mod-
ify and remove conntrack entries. Since
the needed ip_conntrack_lock is exported,

implementation could even reside outside
the conntrack core code.

Since the number of changes is very low, it is
very likely that the modifications will go into
the mainstream kernel without any big hassle.

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

